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Supplementary Material and methods

Analysis of published gene expression datasets. Raw Affymetrix expression files were
downloaded from GEO (GSE35802 !, GSE48209 2, GSE56777 3, GSE47067 *°) and
analyzed using the Partek Genomic Suite. Probeset data were normalized by making pre-
background adjustments for GC correction and probe sequence bias, and then correcting for
RMA background and carrying out quantile normalization. Normalized probe set data were
log> transformed and summarized using the median polish method. Differential expression
was determined using an ANOVA model. Data from a study by Nolan et al. 4, where brain
ECs were compared to several other tissues, were analyzed using RankProdlIt ¢, a rank based
meta-analysis tool that we used to generate a consensus brain EC gene signature.
Additionally, a literature search was conducted to find evidence of TFs that are associated
with EC barrier resistance formation "*° or induction of molecules involved in barrier

formation (e.g. tight junctions 79121627y,



Supplementary Figure and Supplementary Dataset legends:

Supplementary Figure 1. Expression of transcription factors in freshly isolated
endothelial cells from different organs with upregulation in brain endothelial cells. TF
expression levels were compared between brain ECs and ECs of other vascular beds using
data from three different studies (GSE47067 *, GSE48209 2, GSE35802 !, GSE56777 3 °).
Data from a study by Nolan et al. (GSE47067 *), where brain ECs were compared to several
other tissues, was analyzed using RankProdlt °, a rank based meta-analysis tool, to generate a
consensus brain EC fold-change in expression. The heatmap shows genes with the greatest

fold difference. Genes were sorted based on RankProdlt fold-change (FC>1.5) in GSE47067

4

Supplementary Figure 2. Relative mRNA expression of EC transporter genes as compared
to empty vector adenovirus control. Columns represent mean = SD. *=P or FDR<0.05, **=

P or FDR<0.01, ***= P or FDR<0.001. All experiments were performed in triplicates.

Supplementary Dataset 1. Fold-change in expression of genes in freshly isolated ECs
from the BBB versus ECs from different organs as calculated using RankProdlt
analysis. Raw microarray expression data from GSE47067 # of ECs from different vascular
beds was analyzed using the Partek Genomics suite to calculate the fold-change in gene
expression between ECs from brain versus other ECs of other vascular beds. RankProdIt

values were calculated as a consensus summary fold-change.

Supplementary Dataset 2. List of human and mouse transcription factors as identified

by the FANTOM consortium 28,



Supplementary Dataset 3. Fold-change expression of transcription factors that had a
FC>1.5 in GSE47067 from studies with freshly isolated ECs from the BBB versus ECs

from different organs. GSE47067 4, GSE48209 2, GSE35802 *, GSE56777 *°.

Supplementary Dataset 4. Evidence from literature or expression that transcription
factors are relevant to induction of high-barrier resistance of ECs. The list denotes gene
symbols, expression evidence from previous studies among 67 TFs that were identified from:

GSE47067 * or literature evidence.

Supplementary Dataset 5. RNA-seq differential expression analysis at 48 h after
transduction of hPSC-ECs with adenovirus overexpressing transcription factors at 80
MOI. FPKM (Fragments per Kilobase of transcript per Million mapped reads) values are

listed for each gene and replicate.

Supplementary Dataset 6. RNA-seq differential expression analysis at 48 h after
transduction of hPSC-ECs with adenovirus overexpressing transcription factor
combinations at 20 MOI. RPKM (Reads per Kilobase of transcript per Million mapped

reads) values are listed for each gene and replicate.
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Supplementary Figure S1.
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Supplementary Figure S2.
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