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Supplementary Material and methods 

 

Analysis of published gene expression datasets. Raw Affymetrix expression files were 

downloaded from GEO (GSE35802 1, GSE48209 2, GSE56777 3, GSE47067 4, 5) and 

analyzed using the Partek Genomic Suite.  Probeset data were normalized by making pre-

background adjustments for GC correction and probe sequence bias, and then correcting for 

RMA background and carrying out quantile normalization.  Normalized probe set data were 

log2 transformed and summarized using the median polish method.  Differential expression 

was determined using an ANOVA model.  Data from a study by Nolan et al. 4, where brain 

ECs were compared to several other tissues, were analyzed using RankProdIt 6, a rank based 

meta-analysis tool that we used to generate a consensus brain EC gene signature.  

Additionally, a literature search was conducted to find evidence of TFs that are associated 

with EC barrier resistance formation 7-15 or induction of molecules involved in barrier 

formation (e.g. tight junctions 7-9, 12, 16-27). 

 
  



Supplementary Figure and Supplementary Dataset legends: 

 

Supplementary Figure 1. Expression of transcription factors in freshly isolated 

endothelial cells from different organs with upregulation in brain endothelial cells. TF 

expression levels were compared between brain ECs and ECs of other vascular beds using 

data from three different studies (GSE47067 4, GSE48209 2, GSE35802 1, GSE56777 3, 5).  

Data from a study by Nolan et al. (GSE47067 4), where brain ECs were compared to several 

other tissues, was analyzed using RankProdIt 6, a rank based meta-analysis tool, to generate a 

consensus brain EC fold-change in expression.  The heatmap shows genes with the greatest 

fold difference.  Genes were sorted based on RankProdIt fold-change (FC>1.5) in GSE47067 

4. 

 

Supplementary Figure 2. Relative mRNA expression of EC transporter genes as compared 

to empty vector adenovirus control.  Columns represent mean ± SD.  *=P or FDR<0.05, **= 

P or FDR<0.01, ***= P or FDR<0.001.  All experiments were performed in triplicates. 

 

Supplementary Dataset 1. Fold-change in expression of genes in freshly isolated ECs 

from the BBB versus ECs from different organs as calculated using RankProdIt 

analysis. Raw microarray expression data from GSE47067 4 of ECs from different vascular 

beds was analyzed using the Partek Genomics suite to calculate the fold-change in gene 

expression between ECs from brain versus other ECs of other vascular beds.  RankProdIt 

values were calculated as a consensus summary fold-change. 

 

Supplementary Dataset 2. List of human and mouse transcription factors as identified 

by the FANTOM consortium 28. 

 



Supplementary Dataset 3. Fold-change expression of transcription factors that had a 

FC>1.5 in GSE47067 from studies with freshly isolated ECs from the BBB versus ECs 

from different organs. GSE47067 4, GSE48209 2, GSE35802 1, GSE56777 3, 5.  

 

Supplementary Dataset 4. Evidence from literature or expression that transcription 

factors are relevant to induction of high-barrier resistance of ECs. The list denotes gene 

symbols, expression evidence from previous studies among 67 TFs that were identified from: 

GSE47067 4 or literature evidence. 

 

Supplementary Dataset 5. RNA-seq differential expression analysis at 48 h after 

transduction of hPSC-ECs with adenovirus overexpressing transcription factors at 80 

MOI. FPKM (Fragments per Kilobase of transcript per Million mapped reads) values are 

listed for each gene and replicate. 

 

Supplementary Dataset 6. RNA-seq differential expression analysis at 48 h after 

transduction of hPSC-ECs with adenovirus overexpressing transcription factor 

combinations at 20 MOI. RPKM (Reads per Kilobase of transcript per Million mapped 

reads) values are listed for each gene and replicate. 
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Supplementary Figure S1.
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Supplementary Figure S2.

*

***
*

**
***

***

*
***

**

**

***

***

***

***

*** ***

***

**

***

*

***

***

***

******

***

***

***

**

**

**

*** ***

***

***

**

********

***

*** *

***

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0 .0

0 .5

1 .0

1 .5

2 .0

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

ABCC1 (MRP1)

*

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0 .0

0 .5

1 .0

1 .5

2 .0

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

ABCC4 (MRP4)

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

1

2

3

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

ABCC5 (MRP5)

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

5

1 0

1 5

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

***

*** ***

ABCB1 (P-GP)

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

1

2

3

4

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

ABCG2

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

5

1 0

1 5

2 0

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

SLC1A1

***

**

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0 .0

0 .5

1 .0

1 .5

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

ABCA1 

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

1

2

3

4

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

SLC2A1 (GLUT1)

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0 .0

0 .5

1 .0

1 .5

2 .0

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

***

**

*

SLC16A1 (MCT1)

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

CAV2

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

MAOA

CAV1

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

2

4

6

8

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

INSR TFRC

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

1

2

3

4

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

SLC38A5

emp ty

S OX 18
T AL 1

F OX F2

S OX 7

F OX C1
E TS 1

K LF
11

L MO
2
L EF 1

0

1

2

3

R
el

at
iv

e 
ex

pr
es

si
on

 (
em

pt
y=

1)

LEPRLDLR


	Supplementary Material and methods_combined_TF_DMM_080120_v1
	Supplementary_figures_combined
	Supplementary_Figure1_DMM
	Supplementary_Figure 2


