Green gravel: a novel restoration tool to combat kelp forests decline

Stein Fredriksen,^{1,2*} Karen Filbee-Dexter,^{1,3} Kjell Magnus Norderhaug,¹ Henning Steen,¹ Torjan Bodvin,¹⁺ Melinda A. Coleman,⁴ Frithjof Moy,¹ Thomas Wernberg^{3*}

¹ Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway

² University of Oslo, Department of Biosciences, PO Box 1066 Blindern, 0316 Oslo, Norway.

³UWA Oceans Institute & School of Biological Sciences, The University of Western Australia, Perth, Australia

⁴New South Wales Department of Primary Industries, Coffs Harbour, Australia

*Corresponding authors: stein.fredriksen@ibv.uio.no, thomas.wernberg@uwa.edu.au †Deceased

Figure S1. Green gravel seeded with kelp (*Saccharina latissima*) and held in the lab and kelp plants after growth in the field in April, June and October at 7 m depth. Row A: Gravel with low seedling density, B: Gravel with high seedling density. C: Gravel from in-door seedling raceways. Average maximum plant length from 5 gravels is indicated in red on each photo.