Supplementary Information

Directed Self-Assembly of Viologen-based 2D Semiconductors with Intrinsic UV– SWIR Photoresponse after Photo/thermo Activation

Xiao-Qing Yu, ^{†,§} Cai Sun, [†] Bin-Wen Liu, [†] Ming-Sheng Wang[†]* & Guo-Cong Guo[†] [†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian 350002, China [§]University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China *email: <u>mswang@fjirsm.ac.cn</u> (M.-S. Wang)

Index

1 Supplementary Figures.	2
2 Supplementary Tables.	11
3 Supplementary Note 1:	12
Measurement of the relative spin density.	12

1 Supplementary Figures.

Supplementary Fig. 1 PXRD patterns of 1 and 2. a) 1_simulated, 1A, 1B-P, 1B-T, 1A_100% hum; b) 2_simulated, 2A, 2B-P, 2B-T, 2A_100% hum. Note: 1_simulated/2_simulated refer to simulated PXRD curves that were simulated using the single-crystal X-ray diffraction data. 1A/2A are as-prepared crystalline samples; 1B-P/2B-P are samples that were irradiated by an Xe lamp for 70 min; 1B-T/2B-T are samples that were thermally annealed at 180 °C for 150 min; 1A_100% hum/2A_100% hum are samples that were placed in the dark under the 100% relative humidity for 12 h.

Supplementary Fig. 2 Thermogravimetric analysis. The data for 1A (a) and 2A (b) measured in nitrogen atmosphere with a ramp rate of 5 °C min⁻¹.

Supplementary Fig. 3 Electron absorption spectra and color change of 2. Time-dependent electron absorption spectra measured in the diffuse reflectance mode, color change, and combined UV/Visible/NIR spectra (200–2500 nm) and IR spectra (2500–3000 nm) of **2** upon irradiation at room temperature (a) or thermal annealing at 180 °C (b).

Supplementary Fig. 4 Multispectral absorption of 1A, **1B-P and 1B-T**. Combined UV/Visible/NIR spectra (200–2500 nm) and IR spectra (2500–3000 nm) for **1A**, **1B-P**, and **1B-T**.

Supplementary Fig. 5 Air-stability and ESR test. a) Stability test for the thermo-induced sample 2B-T monitored using UV/Visible/NIR spectra (200–2500 nm) and IR spectra (2500–3000 nm). The sample was placed in air in the dark at room temperature for 6 month. The minor difference between 2B-T and 2B-T@6month was attributed to systematic errors caused by instrumental instability or shift of the sample holder. b) ESR patterns for 2A, 2B-P and 2B-T. Note: 2A is as-prepared crystalline sample; 2B-P is sample that was irradiated by an Xe lamp for 70 min; 2B-T is sample that was thermally annealed at 180 °C for 150 min.

Supplementary Fig. 6 Current–voltage (I-V) plots. *I-V* plots featured Ohmic connect at 298 K in air for **1A** (a) and **1B-T** (b).

Supplementary Fig. 7 Temperature-dependent conductivities of 1A and 1B-T. $\ln \sigma = -E_a/k_BT + \text{constant}$, where E_a is the activation energy, k_B is Boltzmann constant, T is temperature, and σ is conductivity.

Supplementary Fig. 8 Photoswitching behavior for three samples of 1B-T. Power for each wavelength: a) 355 nm, 2.1 W; 600 nm, 5.0 mW; 1500 nm, 23 mW; 2400 nm, 6.0 mW; b) 355 nm, 2.1 W; 600 nm, 12 mW; 1500 nm, 12 mW; 2400 nm, 3.0 mW; c) 355 nm, 2.1 W; 600 nm, 16 mW; 1500 nm, 15 mW; 2400 nm, 3.5 mW.

Supplementary Fig. 9 Plot of relative photocurrent gain versus power. Laser power-dependent photoresponse behavior of **1B-T** with 1000 nm (a), 1200 nm (b) and 1500 nm (c) lasers, respectively. As can be seen, photocurrent gain shows a linear correlation to power, which means that a higher power density produces more carriers in a specific optical power range.

Supplementary Fig. 10 Current–voltage (*I–V*) plots. *I-V* plots featured Ohmic connect at 298 K in vacumn for **2A** (a) and **2B-T** (b).

Supplementary Fig. 11 Photoresponse behavior with different wavelengths of the 2B-T. Power for each wavelength: a) 355 nm, 2.1 W; b) 590 nm, 19.2 mW; c) 1000 nm, 28 mW; d) 1200 nm, 25 mW; e) 1800 nm, 25 mW; f) 2400 nm, 7 mW.

Supplementary Fig. 12 Band structure and the density of states of 1. Γ_a - Γ_h denote the region maxima of the density of states. $\Gamma_a \rightarrow \Gamma_e$, $\Gamma_b \rightarrow \Gamma_e$, and $\Gamma_c \rightarrow \Gamma_e$ contain CN \rightarrow Fe^{III} charge-transfer, d–d transition band of Fe^{III} and MMCT, respectively. $\Gamma_d \rightarrow \Gamma_f$, $\Gamma_d \rightarrow \Gamma_g$, and $\Gamma_d \rightarrow \Gamma_h$ can be assigned to Cl⁻/CN⁻/Fe^{III} \rightarrow MQ⁺. For the convenience of discussion, the up-spin bands and the down-spin bands are not given separately.

Supplementary Fig. 13 Hydrogen-bonding diagram of 1.

Supplementary Fig. 14 Calculations of electron absorption spectra. The π -stacked $[(HMQ^{2+})(HMQ^{+\bullet})]_n$ (a) and $[(HMQ^{+\bullet})(HMQ^{+\bullet})]_n$ (b) moieties (n refers the number). The models were truncated from the sing-crystal structure and modified using H atoms to replace metal atoms. $HMQ^{2+} = N$ -protonated N'-methyl 4,4'-bipyridinium. $HMQ^{+\bullet} =$ one-electron reduced HMQ^{2+} . All calculations were performed at the pbe1pbe/6-31g* level using the TD-DFT method.

2 Supplementary Tables.

Supplementary table 1 Crystal and structure refinement data.

	1 (as-synthesized)	2 (as-synthesized)
Formula	C ₂₈ H ₂₈ ClFeMnN ₁₀ O ₃	C ₂₈ H ₂₈ ClFeZnN ₁₀ O ₃
<i>M</i> _r	698.83	709.27
Crystal size (mm ³)	$0.2 \times 0.16 \times 0.13$	$0.18 \times 0.13 \times 0.08$
Crystal system	Monoclinic	Monoclinic
Space group	<i>P2/m</i>	P2/m
<i>a</i> (Å)	7.332(4)	7.332(4)
<i>b</i> (Å)	7.688(3)	7.688(3)
<i>c</i> (Å)	13.528(7)	13.528(7)
β (deg)	98.064(14)	98.064(14)
$V(\text{\AA}^3)$	755.0(6)	755.0(6)
D_{calcd} (g/cm ³)	1.510	1.533
Ζ	1	1
<i>F</i> (000)	358	363
Abs coeff (mm ⁻¹)	1.036	1.408
Reflns collcd/unique (R _{int})	8130/1886 (0.0617)	7142/1504 (0.0727)
Data/params/restraints	1886/121/0	1504/121/6
R_1^a	0.1216	0.1167
ωR_2^{b}	0.1569	0.2132
GOF on F ²	1.057	1.027
$\Delta \rho_{\max}$ and $\Delta \rho_{\min}$ (e/Å ³)	0.907 and -0.585	1.258 and -0.609

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, {}^{b}\omega R_{2} = \{\sum \omega [(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum \omega [(F_{o})_{2}]^{2} \}^{1/2}.$

3 Supplementary Note 1:

Measurement of the relative spin density.

The relative spin density of **1** and **2** were measured using standard sample set in the instrument as a reference. The test conditions and methods are consistent with the standard sample. The following table shows the relative spin densities that are obtained by subtracting the recorded data to that of **1A** or **2A**. **1B-P/2B-P** are samples that were irradiated by an Xe lamp for 70 min; **1B-T/2B-T** are samples that were thermally annealed at 180 °C for 150 min.

Sample name	Relative spin density / mol ⁻¹	Sample name	Relative spin density / mol ⁻¹
1B-P	2.478×10^{21}	2B-P	1.020×10^{17}
1B-T	5.637×10^{22}	2В-Т	1.303×10^{20}

Supplementary table 2 Relative spin densities.