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Abstract
High-throughput phenotyping based on non-destructive imaging has great potential in plant biology and breeding
programs. However, e�cient feature extraction and quanti�cation from image data remains a bottleneck that needs to be
addressed. Advances in sensor technology have led to the increasing use of imaging to monitor and measure a range of
plants including the model Arabidopsis thaliana. These extensive datasets contain diverse trait information but feature
extraction is often still implemented using approaches requiring substantial manual input. The computational detection
and segmentation of individual fruits from images is a challenging task, for which we have developed DeepPod, a patch
based two-phase deep learning framework. The associated manual annotation task is simple and cost e�ective without the
need for detailed segmentation or bounding boxes. Convolutional neural networks (CNNs) are used for classifying di�erent
parts of the plant in�orescence, including the tip, base and body of the siliques and the stem in�orescence. In a post
processing step, di�erent parts of the same silique are joined together for silique detection and localisation, whilst taking
into account possible overlapping among the siliques. The proposed framework is further validated on a separate test
dataset of 2,408 images. Comparisons of the CNN based prediction with manual counting (R2 = 0.90) showed the desired
capability of methods for estimating silique number.
Key words: Plant phenotyping; image analysis; deep learning; object detection, fruit counting; Arabidopsis

Introduction

Photometrics (imaging following by computationally assisted
feature extraction andmeasurement) promises to revolutionise
biological research and agricultural production systems [1, 2, 3,
4, 5]. Automation of work�ows remains a key challenge in
the scaling of these approaches to cope with the requirements
of large genetic experiments or, indeed, food production sys-
tems. Phenotyping aims to measure observable plant features,
often as a response of environmental cues and/or variability

between individuals. Traditionally, phenotyping has been a
labour-intensive and costly process, usually manual and of-
ten destructive. High-throughput phenotyping technologies
aim to address this problem by the use of non-destructive ap-
proaches either in glasshouses [1, 6, 2] or directly in the �eld
[4, 7] integrating imaging, robotics, spectroscopy, high tech
sensors and high-performance computing [8, 3].
Imaging has the potential to generate an enormous vol-

ume of data in real time, while image analysis to extract use-
ful information is currently the main bottleneck. The ex-
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traction of quantitative traits relies on the development and
use of improved software techniques. Machine learning tools
have been used to identify patterns in large biological datasets
[8, 9, 10, 11, 12]. Recently, deep learning tools have been ap-
plied to accurately extract features from plant images [13, 14,
15, 16, 17, 18, 19, 20, 21].
Model organisms have been widely used to dissect di�er-

ent biological processes and provide a useful means to test and
develop new methods that can subsequently be more widely
applied to crop and ecological scenarios. Arabidopsis thaliana is
a small, �owering plant widely used to address questions re-
lated to plant genetics, molecular, evolution, ecology, physiol-
ogy, among others [22, 23, 24]. The seedling produces a small
rosette that increases in size by addition of leaves. The central
meristem produces an in�orescence that produces �owers and
then fruits. The fruits are also known as pods or siliques [24].
The measurement of traits, such as growth rate, �owering and
fruit number are key to evaluate plant performance and repro-
ductive �tness [25]. However, many high-throughput imaging
studies focus on growth dynamics of the rosette [26, 27, 9, 28],
despite the importance of fruit production in reproductive and
evolutionary processes [2, 29, 30, 31].
This work demonstrates that deep learning can be used to

estimate fruit number from images. In particular, we have de-
veloped DeepPod, a framework for Arabidopsis silique detection
that involves a deep neural network for patch based classi�-
cation and an object reconstructor for silique localisation and
counting. The framework has been validated using a separate
dataset of 2408 images from biological experiments. This al-
lowed the analysis of large numbers of plants in�orescences in
an accurate and e�ective way providing a cost e�ective alter-
native to manual counting.

Background

Convolutional Neural Networks (CNNs) have become the dom-
inant type of models for image classi�cation [32]. The input
for a CNN, typically an image, can be represented as a three-
dimensional array of height×width×channels. A CNN contains
convolutional layers, where inputs are passed through various
�lters for extracting features that are arranged as feature maps,
prior to using the fully connected layers for classi�cation or re-
gression. The weights or parameters of the �lters are shared
among the neurons of the convolutional layers [33], not only
to encourage detection of repeated patterns in the image but
also to reduce the number of parameters for the network to
learn. Other types of layers such as pooling are also often used
in combination with convolutional layers to reduce the dimen-
sionality of feature maps. A CNN can be trained using a back-
propagation algorithm to update the weights in an iterative
process, in order to minimise the loss function that measures
the discrepancy between the predicted output and actual out-
put for the training examples. What makes CNNs particularly
attractive in computer vision is that they can directly extract
features from images without the need for time-consuming,
hand-crafted pre-processing or feature extraction steps, un-
like classical machine learning approaches [34].
Recent publications have reported the application of deep

learning in various plant phenotyping tasks such as leaf count-
ing, age estimation, mutant classi�cation, disease detection,
fruit classi�cation and plant organ localisation [14, 20, 19, 21,
18, 16, 15, 13]. Mohanty et al. [14] trained deep convolutional
neural networks to identify 14 crop species and 26 diseases us-
ing a publicly available plant disease dataset. They built mod-
els with architectures of AlexNet [35] and GoogleNet [36] using
transfer learning. Wang et al. [20] employed CNNs to establish
disease severity in apple black rot images. Deep learning meta-

architectures have also been considered for more complex sce-
narios. Fuentes et al. [19] demonstrated a combination of CNNs
and deep feature extractors to recognise di�erent diseases and
pests in tomatoes, which dealt with inter- and intra-class vari-
ations. Deep learning was also used for cassava disease detec-
tion via mobile devices [21]. Pawara et al. [18] applied CNNs
to classify leaf, fruits and �owers in �eld images. They com-
pared the performance of classical classi�ers to CNNs, where
architectures such as GoogleNet and AlexNet gave the best re-
sults in the plant-related datasets used. Taghavi et al. [16]
proposed a CNN-LSTM (-Long Short Term Memory) frame-
work for plant classi�cation using temporal sequence of im-
ages. Particularly the model features were learned using CNNs
and the plant growth variation over time were modeled with
LSTMs. Ubbens et al. [15] used CNNs for regression to perform
leaf counting. They used rendered images of synthetic plants to
augment Arabidopsis rosette dataset and concluded that the aug-
mentation with high-quality 3D synthetic plants improved the
performance of leaf counting while real and synthetic plants
could be interchangeably used for training a neural network.
Pound et al. [13] demonstrated wheat root and shoot feature
identi�cation and localisation using a shallow CNN architec-
ture for patch classi�cation. The model had two convolutional
layers followed by max pooling layers. They found that the leaf
tips represented the hardest classi�cation problem compared
to the leaf base due to the existing variations in orientation,
size, shape and colour of tips in their dataset.
Our proposed framework treats the silique (or pod) count-

ing problem as an object detection and segmentation problem
followed by counting. One popular approach of deep learning
frameworks for object detection is to train a single convolu-
tional neural network to jointly perform object classi�cation
and localisation tasks, where the object localisations are usu-
ally de�ned by bounding boxes. Examples of such networks in-
clude Fast-RCNN (Regional-CNN), SSD (Single Shot Multibox
Detector), YOLO (You Only Look Once) [37]. However train-
ing of such networks require labelled data with detailed seg-
mentation or bounding boxes of individual objects, which are
obtained usually through a very tedious manual process. More-
over, the image size allowed for the network input is limited
due to the complexity of network architecture and the available
memory.
In our case, the resolution of the raw images needs to be

su�ciently high in order to preserve details of pods that are
small and narrow, often overlapping. A single image can also
contain a wide variation in the number of fruits from 0 to near
400, which poses further challenges for deep learning models
when the available labelled data is limited.
To address these issues, we adopted an alternative approach

that performs patch based classi�cation and localisation in two
separate phases. The �rst step is to classify a region of a suit-
able size in the original image into di�erent parts of the in�o-
rescences. In the localisation phase, each original image will
be scanned and each patch classi�ed as silique/not silique (i.e.
as one of the four classes including the tip, base or body of
siliques, and the stem in�orescence). Given an accurate clas-
si�cation of patches as silique/not silique, one could then esti-
mate the number of siliques and their lengths to a good preci-
sion. The manual annotation task for the proposed framework
was simple, involving collection of su�cient pixels from dif-
ferent de�ned structural parts of the plant.

Data Acquisition

A set of 2,552 images of mature in�orescences from di�er-
ent individuals and available within the National Plant Phe-
nomics Centre (NPPC) (Aberystwtyh University, United King-
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Figure 1. An illustrative example of image and features (the important parts of the plants) annotated for patch based classi�cation..

dom), were used to establish and test the CNN pipeline. A sub-
set of this dataset (referred to as Set-1 = 144 images) was ran-
domly selected for manual annotation and then used to train
one shallow and one deep convolutional neural network. A to-
tal of 2,408 images (referred to as Set-2) were used to test the
performance of the selected model. The mature in�orescence
or stem of each plant, with attached fruits, was imaged in a
�atbed scanner (Plustek, OpticPro A320) at 300 dpi and stored
in .PNG format with image size equal to 3600×5100. A sample
image is shown in Figure 1. Manual counting of fruits from
the images was done by a single person, minimizing operator
variation.

Patch based Classi�cation using CNNs

Data Preparation for Model Development

Data Annotation
An annotation tool with a graphical user interface (GUI) was
built (in MatLab) to assist with manual annotation of di�erent
parts of the in�orescence. Figure 2 shows some screenshots
of annotation via the GUI. The user selects the class type (tip,
base, body of the silique and stem) and clicks on the respec-
tive parts on each input image. The annotated parts (points
clicked) were saved as de�ned locations based on image coordi-
nates. An example annotated image illustrating the prede�ned
parts of the silique (tip, base, body and stem) is given in Figure
3. This tool was used to manually annotate Set-1, which was
used to develop the patch classi�ers (see Section Patch Based
Classi�cation Problem).
The main advantages of this annotation platform include its

relatively low cost and ease of use. Compared to other annota-
tion approaches that require detailed segmentation, polygons
or bounding boxes, this approach requires annotation of just
four main structural elements. Using this platform, Set-1 was
manually annotated by a single person in a total of 36 working
hours.
Table 1 shows the number of annotations performed per

class (before augmentation). This dataset was used in the ini-
tial training step for classifying whole in�orescence into de-
�ned parts. In order to prepare patches for classi�cation, Set-
1 was randomly split into training, validation and test sets as
rounded of 65%, 20% and 15% of the 144 images.

Table 1. Summary statistics for data annotation performed on Set-1.
Feature Number of manual annotations
Silique Tip 7299
Silique Base 8058
Silique Body 11187

Stem 10266

Patch Generation & Augmentation
Using the annotated data to prepare training samples, square
bounding box patches were extracted while being centred at
the manually annotated points. Subsequently, data augmenta-
tion [38, 39] was performed to increase the amount of training
data via speci�c transformations as well as considering frames
di�erent from the centred ones. The patches of size 50 × 50
were �rst extracted. Then, random 32×32 pixel crops followed
by random mirroring or rotation were performed. For pre-
processing, we normalised the data using the channel means
and standard deviations on the training set. For validation sam-
ples, no augmentation was undertaken and the 32×32 patches
centred at the annotated points were extracted. Figure 4 shows
various examples of each class that were used in the training
procedure.

Data Preparation for Testing

The training patches were centred at the annotated points fol-
lowed by augmentation, as described earlier. To prepare test
samples, the di�erence in the distribution between the testing
data and the training/ validation data (that were used during
training time) was taken into account. First, the whole image
was scanned over with a sliding window and tiled into 32× 32
patches with 50% overlap both in the vertical and horizontal
direction (see Figure 7). Most pixels within the area of interest
(plant area) would hence be included in four di�erent patches.
The patches belonging to the white background (lacking plant
pixels) were excluded by thresholding.
The rationale behind selecting overlapping regions was (1)

to increase the number of patches by a factor of four compared
to without overlapping; (2) to make the patch classi�cation
more robust by combining multiple predictions and (3) to ex-
clude ambiguous patch examples.
When applying the model to test data, the di�erence be-
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Figure 2. The developed GUI used for manually annotating plant parts.

Figure 3. Example annotated images (from left to right) for tip, base, body and stem.

tween the sample distribution for training and that for test-
ing, i.e. presence of potential covariate and dataset shift, can
adversely a�ect the model generalisation performance. To ad-
dress this issue, each test image will also be normalised using
the channel wise mean and standard deviation of the training
set.
Then the resultant patches were fed to the trained networks

and the classi�cation outcomes for each sample patch (tip,
base, stem, body) were computed.

Building CNN Classi�ers

In the next step, CNN-based classi�ers were built to take ex-
tracted patches of interest as input, and to output probability
scores for di�erent labels {0, 1, 2, 3} indicating the probability
that the input patch contains a base, body, stem and tip, re-

spectively.
Network Architecture
LeNet is a pioneering convolutional network that was proposed
to classify handwriting digits [40]. LeNet architecture [41], is
a set of three convolutional layers stacked on top of each other,
followed by two fully connected layers and �nally ending with
a Softmax layer (see Figure 5).
DenseNet is a model notable for its key characteristic of by-

passing signals from preceding layers to subsequent layers that
enforces optimal information �ow in the form of feature maps.
Amongst DenseNet variants [42], DenseNet-Basic is a success-
ful model proposed for the CIFAR10 [34] image classi�cation
challenge. Hereafter, DenseNet-Basic will be referred to as
“DenseNet”. A simple DenseNet is made up of a total of L layers,
while each layer is responsible for implementing a speci�c non-
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Figure 4. Example extracted patches using manual annotations. From top to bottom: samples of base, body, stem and tip, respectively. Note that, the key structural
elements are not always centered in the patches due to the random cropping process for patch extraction.

linear transformation, which is a composite function of di�er-
ent operations such as Batch Normalisation, Recti�ed Linear
Unit, Pooling and Convolution [40, 42]. Within a dense block
that consists of multiple densely connected layers with such
composite functions, all layers are directly connected to each
other, and each layer receives inputs (i.e. feature maps) from
all preceding layers (as illustrated in the middle row of Fig-
ure 6). The number of feature maps generated from the com-
posite function layer is usually �xed and is called the growth
rate (k) for the DenseNet.
To facilitate down-sampling for CNNs, the network used

for our experiment consisted of multiple dense blocks. And
the dense blocks were connected to each other through tran-
sition layers (composed of a batch normalisation layer, a 1×1
convolutional layer, dropout layer and a 2×2 average pooling
layer as shown in the bottom row of Figure 6).
The growth rate (k) was set to 12 for all dense blocks in

order to generate narrow layers within the overall DenseNet
structure (i.e. 3 dense-blocks with equal number of layers and
2 transition layers). A relatively small growth rate (of 12) was
found to be su�cient to obtain satisfying results on our target
datasets. The initial convolution layer incorporated 16 convolu-
tions of size 3×3 on the input images. The number of feature-
maps in all other layers follow the setting for k.
At the end of the last dense block (3rd dense block), a global

average pooling was performed to minimize over-�tting by re-
ducing the total number of parameters in the model. The �nal
Softmax classi�er of four output nodes will predict the proba-
bility for each class based on the extracted features in the net-
work. The rest of the model’s parameters with regards to the
kernel, stride and padding sizes were kept as default as detailed
in [42].
Training
In our experiments with LeNet and DenseNet, similar con�g-
uration has been applied as in Huang et al. [42]. Both mod-
els were trained via a stochastic gradient descent solver with
the parameters set to Gamma = 0.1 (for the learning rate de-
creasing factor), momentum = 0.9 (for weight update from the

Table 2. Classi�cation results on the validation samples.
LeNet DenseNet

Accuracy 80.55% 86.80%
Loss 0.64 0.37

previous iteration) and the weight-decay factor = 10–5. We
trained LeNet and DenseNet with mini-batches of size 64 and
8 (according to our hardware speci�cations), respectively. Both
models were trained using an initial learning rate of 0.001 with
33% step down policy. LeNet was trained for 15 epochs and
DenseNet was trained for 30 epochs. In our implementation,
the LeNet and DenseNet models pretrained on the CIFAR10
dataset [34] were used to initialise the weights, whilst the net-
works were �ne-tuned using prepared training data from the
silique dataset. In the pre-processing step for each model, the
mean patch calculated on the training set patches was sub-
tracted for each sample patch being fed.
All CNN training and testing was performedwithin the Ca�e

framework [43]. The computations were carried out using a
NVIDIA GeForce GTX 1080 GPU, Intel Core i7-4790 Processor
and Ubuntu 16.04 operating system.
Table 2 shows the classi�cation accuracy and loss for both

networks on the validation data from Set-1 after training.
Performance on Patch Based Classi�cation
In the initial evaluation, we used the test samples in our model
development data Set-1 to evaluate the classi�cation and de-
tection performance of both the shallow and deep networks.
The aim of this comparative evaluation was to choose the
best model for correct classi�cation of patches and estimating
silique counts on the smaller development dataset.
The classi�cation results of both networks are presented in

Tables 3 and 4 in terms of a confusion matrix, per-class ac-
curacy and total classi�cation accuracy. Note that only anno-
tated patches have been considered for this evaluation. The
DenseNet network showed higher representation learning ca-
pacity and thus higher accuracy to classify plant parts as com-
pared to the LeNet network.
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Figure 5. LeNet architecture.

Figure 6. The DenseNet-Basic architecture used for patch based Arabidopsis structural part classi�cation. The feature-map sizes in the three dense-blocks were
32× 32, 16× 16, and 8× 8, respectively.

Table 3. Performance of patch based classi�cation on the testingimages for model development using LeNet network.
Base Body Stem Tip Per-class accuracy

Base 344 12 52 4 83.5%
Body 15 280 26 30 79.77%
Stem 14 29 270 4 85.17%
Tip 91 31 8 169 56.52%

Accuracy = 77.08 %

Table 4. Performance of patch based classi�cation on the testingimages for model development using DenseNet network.
Base Body Stem Tip Per-class accuracy

Base 392 4 14 2 95.15%
Body 15 290 13 33 82.62%
Stem 11 14 290 2 91.48%
Tip 1 3 0 295 98.66%

Accuracy = 91.88 %

Post-processing for Silique Localisation &
Counting

Image Reconstruction

Given the classi�cation of various patches in an image, post
processing can be applied to reconstruct the image and detect
probable silique appearances. The plant regions are �rst iden-
ti�ed from the background (including borders) using simple
thresholding methods. Then the plant regions are further seg-
mented into four classes based on labelling of the patches of
interest.
As the patches for a test image are generated with 50%

overlap along both the horizontal and vertical direction, each
patch consists of four squares of equal size (16×16), called sub-
patches. Each sub-patch has four class predictions from four
adjacent patches, the �nal decision is inferred through major-
ity vote and the label for each pixel in the sub-patch was de-
termined accordingly (See Figure 7). In case of a tied vote for
several classes, the average probability of those classes for the
image will be assigned to the sub-patch and its pixels.
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Figure 7. Flowchart of the sub-patch labelling step for image reconstruction.

Silique Counting

To count siliques in the reconstructed image, a silique is de-
�ned as an area composed of three interconnected parts: one
tip, one body and one base in such a way that the body is located
between the tip and the base (Figure 1). The areas where tips
and bodies presenting shared borders are initially identi�ed,
these tip-body areas were extended through shared borders to
search for the connected tips, which eventually established a
combined area for a silique object.
In practice, many touching or overlapping siliques were ob-

served in the captured images, which was a problem for detect-
ing individual siliques accurately. In the case where one silique
object area contained multiple tips or bases, the angle between
the potentially overlaid siliques was calculated, using a cross
product between the di�erent vectors linking the bases to the
corresponding tips. For example, for the case of two siliques
overlaying (often with the same apparent base or tip), the cen-
ters of tips and bases were computed; then using a cross prod-
uct, the centers were connected in order to calculate the angle
between overlaid siliques. If the measured angle was larger
than a predetermined threshold, the region was considered as
two distinctive siliques, otherwise as a single silique. The value
of the threshold was set to 0.05 in our experiments according
to the resolution of the images.

Test results for Silique Counting

Results on the test data for model development

Figure 8 shows the results of image reconstruction for several
randomly selected images after patch classi�cation (using the
DenseNet network), with colors indicating di�erent structural
parts of the plant.
Table 5 reports the performance of silique count prediction

using the two di�erent trained networks. In this table, the
correlation coe�cient (for the linear relationship between the
prediction and the manual counts) shows that the prediction
using the deeper model (DenseNet) is more accurate than us-

ing the shallower model (LeNet). This linear correlation can be
better seen in Figure 9 showing the scatter plots of the actual
vs automated silique counts. We also examined the distribu-
tion of the errors (actual–prediction) in silique counting, see
Figure 10 for the histograms of errors for the two trained mod-
els. It appears that both LeNet and DenseNet under estimated
the counts compared to manual counting in most cases.
Comparing a shallow and a deep network for classifying im-

age patches, we concluded that the classi�cation results and
the quality of the count estimation show improvement from
using the deeper architecture. Therefore, DenseNet has been
selected for identifying siliques, as it appeared to be more ro-
bust to the variations in shape and size. This is probably in part
a consequence of using a training set of images from diverse
individuals harvested at di�erent stages of silique maturation.

Results on the separate test data

To further evaluate the the proposed framework, we used a sep-
arate large dataset of 2,408 images available within the NPPC.
The scatter plot in Figure 11 shows a high positive correlation
(R2 = 0.90) between the manual counts and automated counts.
A recent computer vision approach to measure growth dynam-
ics and fruit number consisted of skeletonization of the images
with cross-validation and linear regression models, resulted in
similar correlation (R2 = 0.91) between observed and automated
values on 100 individuals [2].
The CNN-based prediction tends to under-estimate com-

pared to actual manual counting. To better understand where
the problem lies, detailed detection results have also been vi-
sualised, see Figure 12 for some random examples. It seems
that the current post processing method might have di�culty
in detecting some small or overlapping siliques.

Discussion

Based on our test results on silique counting, we expect our
method to be useful for species with similar fruit morphol-
ogy such as Canola (Oilseed Rape) and other brassicas. How-
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Figure 8. Three example results of labelling on the reconstructed plant images based the DenseNet patch based classi�cation. Tips, bodies, bases and stems are
indicated in red, green, blue and white, respectively.

ever, the CNN will most likely need to be �ne-tuned for diverse
silique morphology and imaging conditions.
There are several promising directions for future work for

which the developed software can be improved such as the de-
tection of other traits like silique length or branch number.
These two traits have been reported to be a good proxy of seed
number and therefore could be important for estimating pro-
ductivity [44]. The following considerations should be taken
into account in future to improve the classi�cation and detec-
tion performance:
i. The robustness of the representations in both networks
relied largely on the quality and quantity of the training and
test data. Increased variety in the training samples (along
with arti�cial augmentation) should provide more robust
learned representations and may facilitate extension to other
species.
ii. Deep learning models can take the whole image or the
patches as input. In this study, a patch based classi�er was
used and the image was scanned over with a sliding window,
classifying the patches. However, feeding all patches to the
networkwas time-consuming and the designated patch over-

lap produces substantial redundancy. To overcome these is-
sues, deep neural networks taking the whole image as input
for object detection can be explored.
iii. Generative adversarial networks (GANs) [45] have been
widely used in segmentation problems on real world [46, 47]
and medical data (see our recent application of these models
on medical images [48, 49]). To avoid the need for post-
processing (which a�ects the performance), di�erent types
of GANs should be investigated.
iv. DeepPod can be used to accelerate the development of
even more robust fruit recognition approaches. DeepPod can
rapidly provide more annotated images as the output of the
proposed DenseNet model can be used to automatically gen-
erate detailed fruit annotation suggestions. A human annota-
tor would then focus on correcting false negatives (by adding
missed siliques) and false positives (or removing falsely de-
tected ones) instead of spending so much time on marking
each fruit contour individually.
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Table 5. Performance for silique count prediction compared to manual counting on the 22 test images for model development.
Metric LeNet DenseNet

Correlation coe�cient 0.932 0.954
Root mean squared error 20.35 12.45

Figure 9. Automated counts using the twomodels using validation and testing samples. R2 = 0.90 for the LeNet-basedmodel and R2 = 0.95 for the DenseNet-based
model.

(a) Actual (manual) counts – LeNet based Prediction (b) Actual (manual) counts – DenseNet based Prediction

Figure 10. The histograms of errors in silique count prediction for the LeNet and DenseNet models.

Conclusion

In summary, we have developed DeepPod, an image-based
deep learning framework for fruit counting. We have demon-
strated DeepPod’s e�ectiveness in silique detection and count-
ing for Arabidopsis, as well as challenges due to presence of
overlapping siliques and variability in fruit morphology. The
pipeline developed has been shown to be cost e�ective in im-
age annotation for model development. To further improve
the pipeline, more robust and scale invariant methods will be
investigated for object detection and for extraction of more
morphological traits. Additionally active learning and transfer
learning could be applied for more e�ective data annotation
and machine learning modelling.

Availability of source code and requirements

• Project name: DeepPod
• Project home page: https://github.com/AzmHmd/DeepPod.git

• Operating system(s): Platform independent
• Programming language: MATLAB, Python
• Other requirements: CUDA version: 8.0, CuDNN version:
v5.1, BLAS: atlas, CAFFE version: 1.0.0-rc3, DIGITS version:
5.1-dev, Python version: 2.7, MATLAB version: 9.3 or above

• License: MIT

Availability of supporting data and materials

The dataset for model development (Set-1, including 144 raw
images and their annotations, and manual silique counts), and
the dataset for testing (Set-2, including 2,408 raw images
and their manual silique counts), are available in the Aberys-
twyth research data repository, DOI:10.20391/21154739-f718-
457b-96�-838408f2b696
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Figure 11. Automated silique count and manual counting from data Set-2 test-
ing samples including 2,408 images. R2 = 0.90
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(a) automated count = 27, actual count = 32

(b) automated count = 78, actual count = 92

(c) automated count = 40, actual count = 52
Figure 12. Results of the DenseNet framework applied to some random samples
from the larger testing dataset. From left to right: original plant images, sub-
patch labelling and image reconstruction (Tips, bodies, bases and stems are
indicated in red, green, blue and white, respectively), silique region detection
(in white).
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