Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.



### **Supporting Information**

for Adv. Sci., DOI: 10.1002/advs.201902547

N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries

Rong Chao Cui, Bo Xu, Hou Ji Dong, Chun Cheng Yang,\* and Qing Jiang\*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

#### Supporting Information

# N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries

Rong Chao Cui, Bo Xu, Hou Ji Dong, Chun Cheng Yang\*, and Qing Jiang\*

R. C. Cui, B. Xu, H. J. Dong, Prof. C. C. Yang, Prof. Q. Jiang Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University Changchun 130022, China E-mails: ccyang@jlu.edu.cn (C. C. Yang); jiangq@jlu.edu.cn (Q. Jiang)

#### **Supplementary Figures**



Figure S1.  $N_2$  adsorption-desorption isotherms of a) NOHC-600 and b) NOHC-1000. The insert shows the pore size distribution of the adsorption branch obtained by the Density Functional Theory (DFT) method.



Figure S2. FESEM images of a) NOHC-600 and b) NOHC-1000.



Figure S3. TEM images of a) NOHC-600 and b) NOHC-1000.



**Figure S4.** HRTEM images of a) NOHC-600 and b) NOHC-1000. Line profiles of c) NOHC-600 and d) NOHC-1000 acquired from the framed area in a) and b), respectively.





**Figure S5.** XPS survey spectra of NOHC-600. a) The survey spectrum. b-d) are high-resolution XPS spectra of C 1s, O 1s and N 1s, respectively.





**Figure S6.** XPS survey spectra of NOHC-1000. a) The survey spectrum. b-d) are high-resolution XPS spectra of C 1s, O 1s and N 1s, respectively.



Figure S7. a) CV and b) galvanostatic charge/discharge curves of NOHC-600.





Figure S8. a) CV and b) galvanostatic charge/discharge curves of NOHC-1000.





**Figure S9.** a) EIS spectra of NOHC-600, NOHC-800 and NOHC-1000, where the inset shows the equivalent circuit diagram. b) The electrolyte resistance ( $R_{el}$ ) and charge transfer resistance ( $R_{ct}$ ) values of NOHC-600, NOHC-800 and NOHC-1000.



Figure S10. Raman spectrum of acetylene black.



Figure S11. BET surface area of acetylene black.



**Figure S12.** Quantitative analysis of potassium-ion storage in acetylene black. a) Cyclic voltammetry curves at various scan rates from 0.2 to 1.2 mV s<sup>-1</sup>. b) The measurement of b-value. The b-values of anodic and cathodic are 0.68 and 0.75, respectively. c) Contribution of the capacitive and diffusion process at a scan rate of 0.8 mV s<sup>-1</sup>. d) Contribution ratios of the capacitive process at different scan rates.



Figure S13. XRD pattern of potassium prussian blue (KPB).



**Figure S14.** Electrochemical performance of KPB. a) Galvanostatic charge/discharge profiles at 0.1 A  $g^{-1}$  in a potential range of 0.01-3.0 V. b) Cycling performance at 0.1 A  $g^{-1}$ .

#### **Supplementary Tables**

| Sample                                    | Cycling performance                                              | Ref.                 |
|-------------------------------------------|------------------------------------------------------------------|----------------------|
| NOHC-800                                  | 189.5 mAh g <sup>-1</sup> (5000 cycles, 1 A g <sup>-1</sup> )    | This work            |
| N doped-porous carbon                     | 152 mAh g <sup>-1</sup> (3000 cycles, 1 A g <sup>-1</sup> )      | Ref. [35] of the txt |
| Amorphous ordered mesoporous carbon       | 146.5 mAh g <sup>-1</sup> (1000 cycles, 1 A g <sup>-1</sup> )    | Ref. [15] of the txt |
| S/O dual-doped porous carbon microspheres | 108.4 mAh g <sup>-1</sup> (2000 cycles, 1 A g <sup>-1</sup> )    | Ref. [16] of the txt |
| P/N dual-doped porous carbon              | 270.4 mAh g <sup>-1</sup> (1000 cycles, 1 A g <sup>-1</sup> )    | Ref. [24] of the txt |
| N/O dual-doped hard carbon                | 124.8 mAh g <sup>-1</sup> (1100 cycles, 1.05 A g <sup>-1</sup> ) | Ref. [36] of the txt |
| N doped carbon nanosheets                 | 151 mAh g <sup>-1</sup> (1000 cycles, 1 A g <sup>-1</sup> )      | [1]                  |
| N doped bamboo-like carbon nanotubes      | 204 mAh g <sup>-1</sup> (1000 cycles, 0.5 A g <sup>-1</sup> )    | [2]                  |
| Highly N doped carbon nanofibers          | 146 mAh g <sup>-1</sup> (4000 cycles, 2 A g <sup>-1</sup> )      | Ref. [40] of the txt |
| Necklace-like N doped<br>hollow carbon    | 161.3 mAh g <sup>-1</sup> (1600 cycles, 1 A g <sup>-1</sup> )    | Ref. [13] of the txt |
| N rich hard carbon                        | 180 mAh g <sup>-1</sup> (4000 cycles, 0.5 A g <sup>-1</sup> )    | [3]                  |
| N/O dual-doped carbon<br>network          | 160 mAh g <sup>-1</sup> (4000 cycles, 1 A g <sup>-1</sup> )      | Ref. [17] of the txt |

**Table S1.** Comparisons of the cycling performance of NOHC-800 electrode with other carbon-based anode materials in PIBs reported in open literature.

#### References

- [1] L. Liu, Y. Chen, Y. H. Xie, P. Tao, Q. Y. Li, C. L. Yan, Adv. Funct. Mater. 2018, 28, 1801989.
- [2] Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang, X. Ou, F. Zheng, X. Xiong, M. Liu, Q. Zhang, J. Mater. Chem. A 2018, 6, 15162.
- [3] C. J Chen, Z. G. Wang, B. Zhang, L. Miao, J. Cai, L. F. Peng, Y. Y. Huang, J. J. Jiang, Y. H. Huang, L. N. Zhang, J. Xie, *Energy Storage Mater.* 2017, 8, 161.