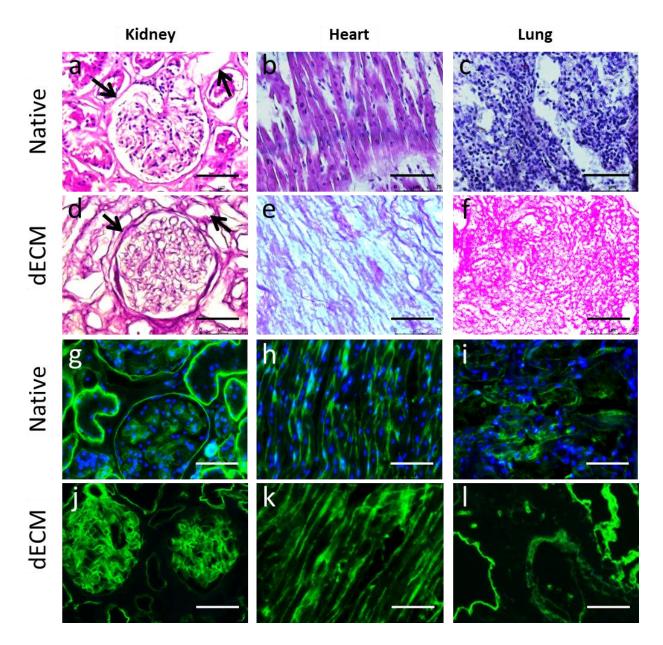
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201901198

Adult Tissue Extracellular Matrix Determines Tissue Specification of Human iPSC-Derived Embryonic Stage Mesodermal Precursor Cells


Imran Ullah, Jonas Felix Busch, Anja Rabien, Bettina Ergün, Christof Stamm, Christoph Knosalla, Stefan Hippenstiel, Petra Reinke, and Andreas Kurtz*

SUPPLEMENTARY FIGURES AND TABLES

Supplementary Video S1 (see in the supporting information)

Beating cardiomyocytes develop from P-meso cells at day 7 post seeding only on heart dECM.

Figure S1

Figure S1. Characterization of decellularized human kidney, heart and lung tissue slices. (**a-f**) H&E staining of a section of human renal, cardiac and lung tissue of native (upper panel; **a,b,c**) and decellularized tissue (lower panel; **d,e,f**). (**g-l**) Laminin (green) and nuclei (blue) staining in native kidney, heart and lung tissues (**g,h,i**) and corresponding decellularized tissues (**j,k,l**). Scale bar: 75μm

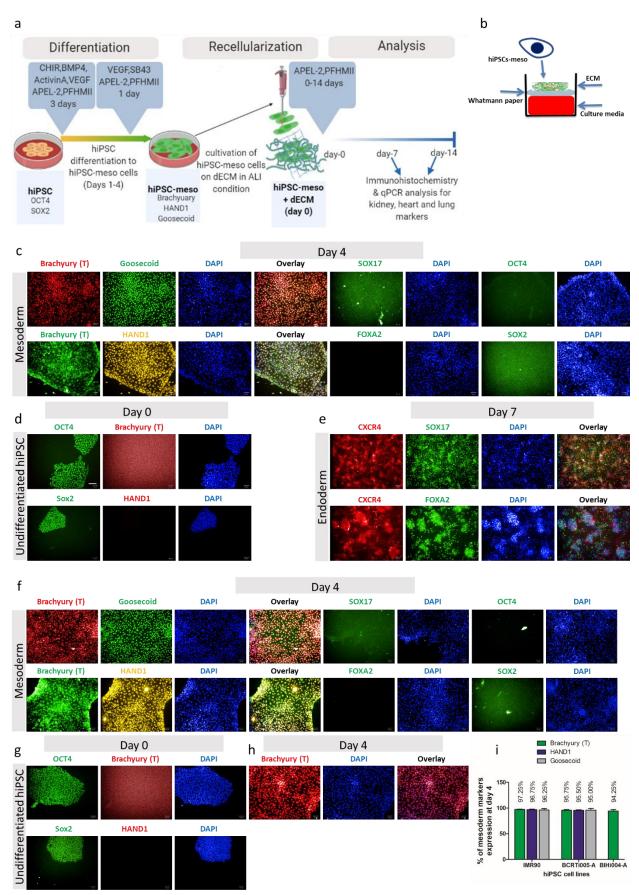


Figure S2. Differentiation, re-cellularization scheme and characterization of human iPSC derived mesodermal cells (P-meso). (a) Schematic presentation of time line and media composition used for mesodermal induction of hiPSC (Differentiation section) and seeding conditions and time points of analysis of P-meso cells on dECM preparations (Recellularization and analysis section). (b) Schematic depiction of air-liquid interphase cultivation model. The assays were performed with three hiPSC - lines (WISCi004-A, BCRTi005-A, BIHi004-A). (ce) Data obtained with hiPSC-line WISCi004-A (IMR90): (c) Characterization of hiPSC-derived mesodermal cells (P-meso) at day 4 post differentiation induction. Cells express mesodermal markers Brachyury (T), HAND1 and goosecoid, but not endodermal markers FOXA2 and Sox17 nor pluripotency markers Oct4 and Sox2. (d,e) To show utility of the used detection methods, expression of pluripotency and mesodermal markers was analysed in undifferentiated hiPSC, and of endodermal markers in hiPSC-derived endodermal cells. (d) Oct4 and Sox2 are expressed in undifferentiated hiPSC. (e) Endodermal markers Sox17, FOXA2 and CXCR4 are expressed in hiPSC – derived endodermal cells at day 7 post endodermal induction. (f,g) Data from hiPSC - line BCRTi005-A: (f) hiPSC-derived mesodermal cells (P-meso) at day 4 post differentiation express mesodermal markers Brachyury (T), HAND1 and goosecoid, but not endodermal markers FOXA2 and Sox17 nor pluripotency markers Oct4 and Sox2. (g) Oct4 and Sox2 are expressed in undifferentiated hiPSC. (h) Data confirmed with hiPSC-line BIHi004-A with hiPSC-derived mesodermal cells (P-meso) at day 4 post differentiation express mesodermal markers Brachyury (T). (i) Quantitative analysis of mesoderm induction based on T, HAND1 and Goosecoid expression at day 4 post differentiation. Scale bar: $50\mu m$. Mean \pm SEM, n=6 (two for each cell line).

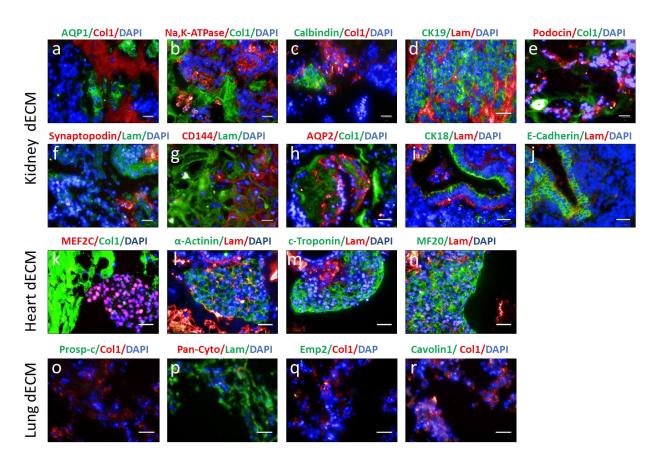


Figure S3. Characterization of P-meso cells at day 7 post seeding on kidney, heart and lung dECM. Kidney and heart cell markers were selected to identify different renal cell types (a-j) and immature and mature cardiac cells (k-n): (a,b) AQP1 and Na,K-ATPase for proximal tubules, (c) Calbindin for distal tubules (d) CK19 for loop of Henle, (e,f) podocin and synaptopodin for glomerulus, (g) CD144 for endothelial cells, (h) AQP2 for collecting duct, (i,j) CK18 and E-Cadherin for nephron epithelia. (k-n) MEF2C as cardiac progenitor marker, (l-n) α -actinin, c-Troponin and MF20 as more mature cardiomyocyte markers. (o-r) none of the tested lung cell markers are expressed on lung dECM. Images are from different depths of the 800µm thick ECM showing uniform cellular penetration. Scale bars: 20µm

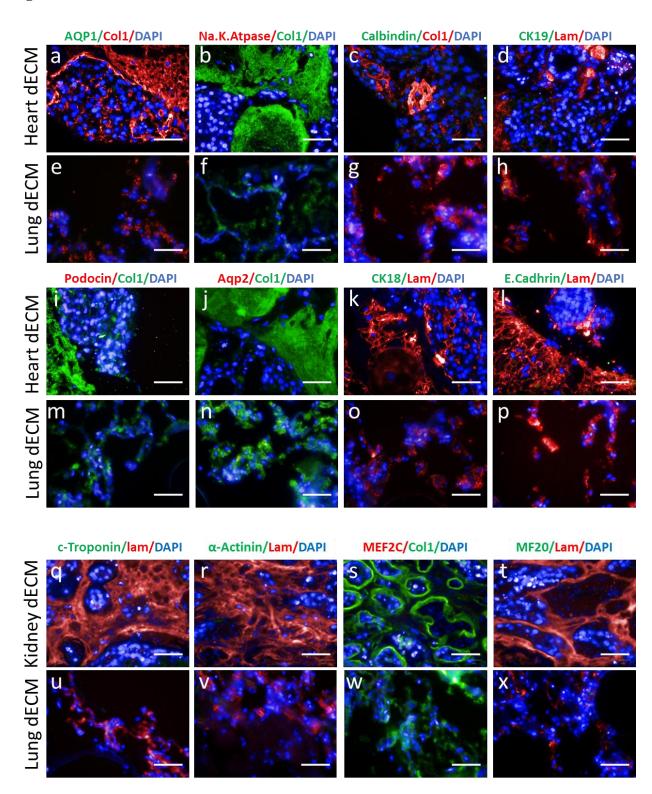
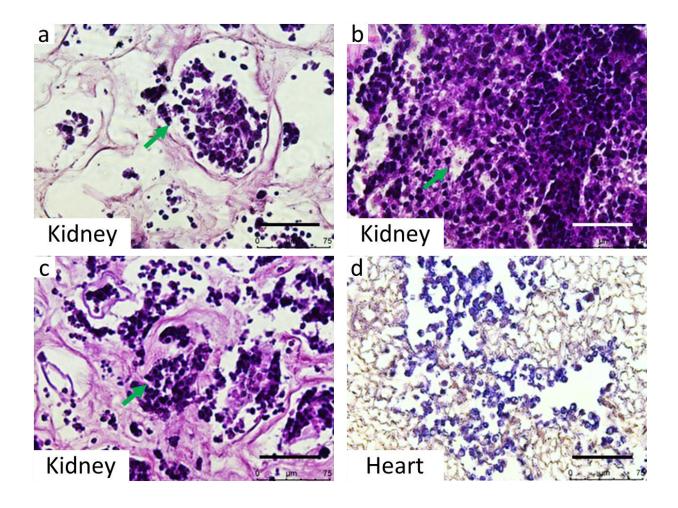
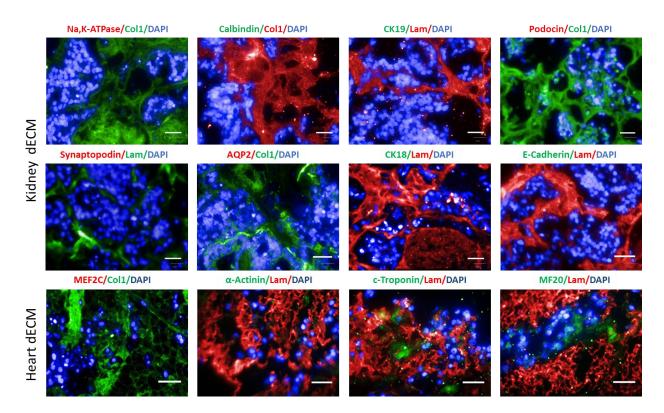




Figure S4. Expression of tissue specific markers in P-meso cells is restricted to the source tissue of dECM and not detectable on ectopic dECM. Human iPSC-meso cells were seeded on kidney, heart and lung ECM and expression of markers for kidney, heart and lung cell types

was assessed on the ectopic matrices. Expression of kidney markers by P-meso cells was not detectable on days 7 (not shown) or day 14 when seeded on heart dECM (**a-h**), or on lung dECM (**i-p**). Similarly, no expression of cardiac markers was detected in P-meso cells seeded on kidney dECM on day (**q-t**) or on lung dECM (**u-x**). Images are from different depths of the 800 μ m thick ECM showing uniform cellular penetration. Scale bar: 20 μ m

Figure S5. Histological characterization of kidney, heart and lung dECM-HBGF repopulated with P-meso cells. Representative hematoxylin and eosin (H&E) staining of kidney and heart dECM-HSPG sections at day 3, day 7 and day 14 post seeding with P-meso cells. (**a-c**) P-meso cells seeded on kidney and (**d**) on cardiac dECM-HSPG. (**a**) Cells form a cluster like aggregate on a glomerular structure (arrow). (**b**) Cells are generally disorganized and scattered on scaffold until day 14 (**c**) Cells close to the tubules/vessel - like structures (arrow) do not arrange as observed in non-heparitinase treated dECM (see figure 1). (**d**) On heart dECM-HSPG, the cells are distributed evenly, and the cells do not assemble into tightly packed clusters as observed in non-heparitinase treated dECM (see figure 1). Scale bar: 75µm

Figure S6. Tissue specific differentiation of P-meso cells was not induced by dECM-HSPG. None of the indicated renal or cardiac specific cell markers were detected by immunohistochemistry in P-meso cells seeded on kidney or heart dECM-HSPG.

Name	Species	Description	Company	Cat.Nr	
AQP 1	Rabbitpolyclonal	Proximal tubule	Proteintech	20333-1-AP	
Na,K-ATPase	Rabbitpolyclonal	Proximal tubule	Abcam	AB58475	
СК19	Mouse monoclonal	Loop of Henle	Santa Cruz	SC-6278	
Calbindin	Rabbitpolyclonal	Distal tubule	Temecula California	AB1778	
NPHS2	Rabbitpolyclonal	Podocyte	Abcam	ab50339	
SYNPO	Mouse monoclonal	Podocyte	Progen	65294	
CD144	Mouse monoclonal	Endothelial cells	BD Biosciences	555661	
Aqp2	Rabbit polyclonal	Collecting duct	Novus Biologicals	NB110-74682	
CK18	Mouse monoclonal	Whole nephron	Santa Cruz	SC -6259	
E-Cadherin	Mouse monoclonal	Whole nephron	BD Biosciences	610181	
Alpha actinin	Mouse monoclonal	Cardiac actinin	Sigma	A7811	
MF-20	Mouse monoclonal	Myosin filament	DSHB	AB_2147781	
RV-C2	Mouse monoclonal	Cardiac troponin	DSHB	NS0	
MEF2C	Rabbitpolyclonal	Myocyte enhancer	CellSignaling technology	5030	
Anti proSP-C	Rabbitpolyclonal	Type II Pneumocyte	Millipore	AB3786	
Anti Caveolin1	Rabbitpolyclonal	Type I Pneumocyte	Santa Cruz	SC-894	
EMP2	Rabbitpolyclonal	Type I Pneumocyte	Sigma	HPA014711	
pan-Cytokeratin	Mouse monoclonal	Epithelial	Santa Cruz	sc-8018	
EG-VEGF	Goatpolyclonal	VEGF marker	Santa Cruz	SC-30343	
Laminin	Rabbitpolyclonal	ECM laminin	Abcam	Ab11575	
Col1	Mouse monoclonal	ECM Collagen	Abcam	ab6308	
OCT4	Mouse conjugated	Pluripotency	BD Bioscience	560217	
SOX2	Mouse conjugated	Pluripotency	BD Bioscience	560292	
Brachyuary	Rabbit Polyclonal	Definitive mesoderm	Santa Cruz	SC-20109	
Brachyuary	Mouse monoclonal	Definitive mesoderm	Santa Cruz	SC-166962	
HAND1	Rabbit polyclonal	Definitive mesoderm	Abcam	Ab196622	
Goosecoid	Goat polyclonal	Definitive mesoderm	R&D systems	AF4086	

Supplementary Table 1: List of antibodies used for Immunofluorescence

CXCR4-APC	Mouse conjugated	Definitive endoderm	Miltenyi Biotec	130-098-357
FOXA2	Goat conjugated	Definitive endoderm	R&D systems	IC2400G
SOX17	Mouse monoclonal	Definitive endoderm	R&D systems	MAB1924

Supplementary Table 2: List of Primer used for qPCR

Target	et Description FORWARD PRIMER		REVERSE PRIMER		
AQP1	Proximal tubule	AAGCTCTTCTGGAGGGCAG	CACCTTCACGTTGTCCTGGACCG		
NCCT	Distal tubule	CACCAAGAGGTTTGAGGACAT	GACAGTGGCCTCATCCTTGA		
Na,K-Atpase	Proximal tubule	GCTGACCCGCCATCGCCA	ACCAACTGCCACCGGTCCT		
NKCC2/SLC12A1	Loop of Henle	TTTGGAGCTGTTTTGTGCTG	ATGGGTCCCCCTGTTAAGAC		
СК-7	Collecting duct	TCCGCGAGGTCACCATTAAC	GCTCTGTCAACTCCGTCTCAT		
Podocin	Podocyte	CCTGCCTGGATACCTACCACA	GCACAGCTTTAGATACATGAGCA		
E-Cadherin	Whole nephron	GAGGACCAGGACTTTGACTT	AGATACCGGGGGGACACTCA		
CD144	Endothelial cells	AACTTCCCCTTCTTCACCC	AAAGGCTGCTGGAAAATG		
MEF2C	Cardiac progenitor	CGAAACTCACCAGGTCTGCT	TAGCCAATGACTGAGCCGAC		
GATA4	Cardiac progenitor	CAACTGCCAGACCACCACC	CCCTCTTTCCGCATTGCAAG		
Nkx2.5	Cardiac progenitor	CCCGCCTTCTATCCACGTG	GCCTCTGTCTTCTCCAGCTC		
b-MHC	Cardiac mature	GAAGCCCAGCACATCAAAAG	GATCACCAACAACCCCTACG		
cTNI	Cardiac mature	TTTGACCTTCGAGGCAAGTTT	CCCGGTTTTCCTTCTCGGTG		
MLC-2V	Cardiac mature	TGAGAGACACCTTTGCTGCC	CTCCCCAAACATTGTGAGGAAC		
GAPDH	Control	TTGCCATCAATGACCCCTTCA	CGCCCCACTTGATTTTGGA		
HPRT	Control	AGTCTGGCTTATATCCAACACTTCG	GACTTTGCTTTCCTTGGTCAGG		

Kidney		Heart		Lung	
Age	Sex	Age	Sex	Age	Sex
74	m	64	m	39	m
72	m	64	m	42	m
56	f	58	m	71	f
81	m	52	m	69	m
61	m	70	f		·
55	m				
68	m				
63	m				
65	m				
54	f				
64	m				
66	f				
44	m				
84	m				

Supplementary Table 3: Age and sex of tissue donors