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SUPPORTING FIGURES 
 
 

 
 
Fig. S1| 2D visualizations of the solution path using gradient descent. a, Visualization of the solution 
path (red line) when choosing the origin point (𝑥 = 0, 𝑦 = 0) as the initial point. The optimization result 
converges to the nearest local minimum. b, Zoomed-in visualization of the solution path. 
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Fig. S2| Comparisons of passive and active learning strategies. a, Top performance comparison for the 
composite system with a volume fraction of 12.5%. b, Top performance comparison for the composite 
system with a volume fraction of 25%. c, Top performance comparison for the composite system with a 
volume fraction of 50%. 
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Fig. S3| Optimized designs generated by gradient-based topology optimization method. a, Optimized 
designs obtained using a learning rate of 0.01  for volume fractions of 12.5% , 25% , and 50% , 
respectively. b, Optimized designs obtained using a learning rate of 0.1 for volume fractions of 12.5%, 
25%, and 50%, respectively. 
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Fig. S4| Convergence of optimizations using genetic algorithm. a, Highest fitness score (toughness) in 
a population versus the generation number using a mutation rate of 0.01 . b, Highest fitness score 
(toughness) in a population versus the generation number using a mutation rate of 0.1. Note that the 
optimization results will be different when running the optimization multiple times using a genetic 
algorithm. The same optimization is performed three times and the results are shown in different colors. 
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Fig. S5| Optimized designs obtained using genetic algorithm. a, Optimized designs obtained using a 
genetic algorithm with the mutation rate of 0.01. b, Optimized designs obtained using a genetic algorithm 
with the mutation rate of 0.1. Three optimized designs are generated by running the same optimization 
three times. 
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Fig. S6| Optimized designs obtained using logistic regression for volume fraction of 𝟏𝟐. 𝟓%. These 
designs are the top 9 best design for high toughness in our previous work[1]. 
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Fig. S7| Full histograms of training samples and inverse designs. a, Full histograms for the volume 
fraction of 12.5%. b, Full histograms for the volume fraction of 25%. c, Full histograms for the volume 
fraction of 50%. The subfigures from left to right are the histograms of the training samples and inverse 
designs for the first-iteration, second-iteration, and third-iteration. 
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Fig. S8| Statistical analysis results for composite system with volume fraction of 𝟏𝟐. 𝟓	%. a, Statistical 
analysis results for the first-iteration. b, Statistical analysis results for the second-iteration. c, Statistical 
analysis results for the third-iteration. The subfigures from left to right are the comparison of the ML 
predicted values and FEM values, the comparison of the ML predicted ranking and FEM ranking, and the 
histogram of the training samples and inverse designs. 
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Fig. S9| Statistical analysis results for composite system with volume fraction of 𝟓𝟎	%. a, Statistical 
analysis results for the first-iteration. b, Statistical analysis results for the second-iteration. c, Statistical 
analysis results for the third-iteration. The subfigures from left to right are the comparison of the ML 
predicted values and FEM values, the comparison of the ML predicted ranking and FEM ranking, and the 
histogram of the training samples and inverse designs. 
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Searching for peaks function’s global minimum using GIDNs 
 
The predictor and the designer consist of four fully-connected hidden layers with 64 neurons per layer. 
For the model, the rectified linear unit (ReLU) is used as the activation function. The input of the predictor 
is a vector of two variables (x and y) and the output is the predicted height (z). To reduce overfitting and 
improve the generalization of the predictor, the dropout regularization with a rate of 0.5 is implemented 
in the training process. 10,000 points from the peaks function are randomly generated, 8,000 of them are 
used as training samples to train the predictor, and the rest 2,000 are used as testing samples to evaluate 
its accuracy. The Adam optimizer with a batch size of 100 is used to train the predictor for 1,250 epochs. 
The comparison of the ML predicted height and ground truth is shown in Fig. S10. The training and testing 
errors are calculated as 0.00083 and 0.00085, respectivily. In the design process, 1,000 initial points are 
generated from a Gaussian distribution, in which the mean value is set to be zero and the standard deviation 
is set to be 1.5. Those initial points are then fed into the designer as inputs. The Adam optimizer is used 
to update the input variables to minimize the predicted height based on analytical gradients calculated 
using backpropagation. 
 
 

 
 

Fig. S10| Comparison of ML predicted height and ground truth. 
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Hyperparameter tuning for GIDNs 
 
Hyperparameters related to neural network structures including the numbers of hidden layers and neurons 
are tuned to balance the prediction accuracy and computational cost. Four different numbers of hidden 
layers are considered: 2, 4, 6, and 8. Seven different numbers of neurons per layer are considered: 16, 
32, 64, 128, 256, 512, and 1,024. Thus, a total of 28 neural network structures are created. Here, we use 
a composite system with a volume fraction of 25% to test the performance of those 28 ML models. 
1,000,000 composite designs are randomly generated and their toughness values are calculated using 
FEM. 800,000 of them are used as training samples and the rest 200,000 are used as testing samples. A 
batch size of 10,000 is used to train those ML models for 1,250 epochs. After training, their prediction 
accuracy is shown in Fig. S11. The statistical analysis results are shown in Fig. S12 to S15. As can be 
seen in the figures, the ML model with six hidden layers and 256 neurons per layer gives one of the lowest 
testing error ( 0.48 ) and outperforms other larger ML models. Therefore, we choose this set of 
hyperparameters to construct the GIDNs in the main paper. 
 
 

 
 
Fig. S11| Prediction accuracy of ML models with different neural network structures. a, Mean 
squared error for the training samples. b, Mean squared error for the testing samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 13|24 

 
 
Fig. S12| Comparisons of ML predicted values and FEM values for neural network structures with 
two hidden layers. The number in each subfigure represents the number of neurons used per layer. 
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Fig. S13| Comparisons of ML predicted values and FEM values for neural network structures with 
four hidden layers. The number in each subfigure represents the number of neurons used per layer. 
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Fig. S14| Comparisons of ML predicted values and FEM values for neural network structures with 
six hidden layers. The number in each subfigure represents the number of neurons used per layer. 
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Fig. S15| Comparisons of ML predicted values and FEM values for neural network structures with 
eight hidden layers. The number in each subfigure represents the number of neurons used per layer. 
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FEM analysis for composites using four-node elements 
 
The composite design domain is discretized by square elements as shown in Fig. S16. Four-node elements 
are implemented with an assumption that the failure of elements occurs in the linear elastic regime. The 
composites are considered to be made up of perfectly brittle linear elastic materials, in which materials do 
not exhibit yielding (plastic deformation) before failure. The toughness of such material can be quantified 
as the amount of elastic energy per unit volume that it can absorb prior to failure, which can be written as: 
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where T is the toughness, E is the modulus, 𝜀? is the failure strain, and 𝜎? is the failure stress (material 
strength). An edge crack, which is 25% of the specimen width in the y-direction, is created by the insertion 
of double nodes. Additionally, displacement boundary conditions are applied along the x-direction to 
simulate Mode I fracture. Geometrical symmetry is assumed in the system since the edge crack is located 
at the centerline of the specimen and the loading condition is symmetric. The modulus of the stiff material 
(𝐸ABC??) is set to 1 GPa and the failure strain (𝜀?) is set to 10%. Since the modulus ratio of base materials 
is set to 10, the modulus of the soft material (𝐸AD?B) is set to 0.1 GPa. To ensure the stiff and soft materials 
have the same toughness, the failure strain of the soft material is set to 10%. The Poisson ratio for both 
stiff and soft materials is set to 1 3. 
 
After applying displacement boundary conditions, the strain in the loading direction (𝜀EE) at the crack tip 
is used to calculate the toughness and strength of a composite. Once the strain reaches the failure strain 
(𝜀? ) of crack-tip elements, the composite is considered to have failed and its toughness (the area 
underneath the stress-strain curve) and strength (maximum stress) can be determined. The resistance of 
composites during crack propagation is not considered here; instead, due to computational limitations, we 
consider the resistance of composites to initiate crack propagation. 
 
The stiffness matrix of the four-node elements is: 
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where 𝑎 is the element length in the x-direction, 𝑏 is the element length in the y-direction, 𝜈 is the element 
Poisson ratio, E is the element modulus, and t is the element thickness. 
 
 

 
 
Fig. S16| Composite FEM model made up of stiff and soft elements. Stiff elements are shown in yellow 
and soft elements are shown in blue. An edge crack, which is 25% of the specimen width in the y-direction 
is created by the insertion of double nodes. Displacement boundary conditions are applied along the x-
direction to simulate Mode I fracture. 
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Gradient-based topology optimization 
 
To apply a gradient-based topology optimization method to the composite design problem, the design 
variables are set to be continuous with lower and upper bounds set to 0 (as the soft material) and 1 (as the 
stiff material), respectively. To ensure that the toughness of composites only depends on the geometrical 
configuration of base materials, the toughness of each element is set to be the same (independent of its 
modulus). A schematic diagram of the stress-strain curves for elements having different moduli is shown 
in Fig. S17. 
 
The objective function and constraints adopted in topology optimization are the same as those shown in 
Eq. 2. The objective function is evaluated using FEM. The optimization steps are as follows: 
 

1. Initialize design variables: The design variables are initialized based on the predetermined 
volume fraction constraint. For example, all the initial values are set to be 0.875 for the volume 
fraction of 12.5%. 

 
2. Calculate the gradient vector: The numerical gradient vector of the objective function with 

respect to the design variables is calculated using FDM with the central difference approximation: 
 

∇𝑓 𝐱 = 𝑔 𝐱 =
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where ℎ represents a small change in design variables. Here, ℎ is set to be 10dM. 

 
3. Normalize the gradient vector: The gradient vector is scaled to a range of 0 and 1 and then 

normalized to a mean of zero. 
 

4. Update the design variables: The design variables for the next optimization step (𝑖 + 1) is 
updated toward the negative of the normalized gradient vector: 

 
𝐱CfG = 𝐱C − 𝜆𝑔 𝐱C  

 
where 𝜆 is the step size, also known as the learning rate. Here, two 𝜆 values are considered: 10d= 
and 10dG. 

 
5. Repeat until convergence: Repeat steps 2, 3, and 4 until the optimization result is converged. 

Here, the number of iterations is set to be 10M. 
 

6. Convert to binary values: The optimized result is converted to binary values (0 and 1) based on 
the ranking of optimized design variables. 
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Fig. S17| Stress-strain curves of elements with different moduli. Each element can be the stiff material 
or soft material, or intermediate material, which has the modulus in between the stiff material and soft 
material. However, the toughness of each element, which is defined as the area underneath the stress-
strain curve, is set to be the same. 
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Gradient-free genetic algorithms  
 
A gradient-free genetic algorithm is applied to the composite design problem. The fitness function is set 
to be the toughness, which is evaluated using FEM. The optimization steps are as following: 
 

1. Initialize population: The individuals in the initial population are generated randomly, in which 
the genes (design variables) are either 0 or 1. Here, the population size is set to be 10I. 
 

2. Calculate the fitness scores: The fitness scores of the individuals are calculated using FEM. The 
fitness score determines the probability of an individual to be selected for reproduction. 

 
3. Select best individuals for mating: The individuals with the highest fitness scores are selected as 

parents to pass their genes to the next generation. Here, the number of parents is set to be 10=. 
 

4. Operate crossover: A center crossover point is selected and the tails of the two parents are 
swapped to produce new offspring. 

 
5. Operate mutation: A low mutation probability is applied to the genes of new offspring, which 

allows each of the genes to switch its value from 0 to 1 (switch from the soft material to the stiff 
material) and vice versa. Here, two mutation probabilities are considered: 10d= and 10dG. 

 
6. Repeat until convergence: Repeat steps 2, 3, 4, and 5 until the population is converged. Here, 

the number of iterations is set to be 10M . Additionally, we terminate the algorithm after 10I 
generations. 
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Performance of inverse designs for 8 by 8 composite system 
 
To estimate the amount of training data required for GIDNs to identify global minima of highly complex 
design problems. The 8 by 8 composite system with a volume fraction of 25%  is adopted for the 
investigation as the optimal designs of this system were already identified using a brute-force search in 
our previous work.[2] This composite system has a total of 10,518,300 possible combinations. The neural 
network structures of the GIDNs for this composite system consist of six fully-connected hidden layers 
with 64 per layer. Five different training groups are used to train the predictor. The numbers of training 
samples in each training group are 100 , 1,000 , 10,000 , 100,000 , 1,000,000 , respectively. The 
maximum and mean toughness values of the training groups are shown in Table S1 and Fig. S18a. Note 
that the toughness values are normalized by the toughness of a composite made up of all stiff (or soft) 
material. It can be seen that the maximum toughness value increases as the number of training samples 
increases. However, the mean toughness values are close to each other. Note that none of the training 
groups includes the optimal design (Composite-A in Fig. 3), which has a toughness value of 69.4. After 
training for 1,250 epochs, 1,000,000 initial designs generated from a Gaussian distribution are fed into 
the designer as inputs. The performance of the optimized designs generated by the designer when the 
predictor is trained with different training groups is shown in Table S2 and Fig. S18b. In general, the 
performance of the optimized designs increases with the number of training samples used to train the 
predictor. Furthermore, the designer is able to identify the optimal design when the predictor is trained 
with 1,000 or more samples. When the predictor is trained with only 100 samples, the designer has failed 
to identify the optimal design. However, the second-best design with a toughness value of 65.13 
(Composite-B in Fig. 3) is identified by the designer. The results show that the proposed inverse design 
approach only requires a small amount of training data in order to the optimal design of the 8 by 8 
composite system. 
 
 
Table S1. Performance of training samples in different training groups. The numbers of training 
samples in each training group are 100, 1,000, 10,000, 100,000, 1,000,000, respectively. The toughness 
values are normalized by the toughness of a composite made up of all stiff (or soft) material. 
 

 100 
samples 

1,000 
samples 

10,000 
samples 

100,000 
samples 

1,000,000 
samples 

Max value 11.75 29.00 31.58 62.68 62.68 
Mean value 1.91 1.92 1.89 1.91 1.91 

 
 
Table S2. Performance of optimized designs generated by designer when predictor is trained with 
different training groups. The values of top 1% and top 10% represent the mean toughness values of 
the top 1% and top 10% optimized designs, respectively. 
 

 100 
samples 

1,000 
samples 

10,000 
samples 

100,000 
samples 

1,000,000 
samples 

Max value 65.13 69.42 69.42 69.42 69.42 
Top 1% 61.61 62.68 62.73 64.85 65.18 
Top 10% 43.51 61.85 62.24 61.64 63.47 
Mean value 18.56 34.45 33.37 31.40 35.33 
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Fig. S18| Performance of optimized designs generated by using different numbers of training 
samples. a, Maximum and mean toughness values of different training groups. b Performance of the 
optimized designs generated by using different training groups. 
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