
The authors have successfully addressed my comments. I recommend the article for 
publication. 
 
I had suggested to the authors to do a careful copy-edit. There were some small edits that I still 
recommend, which are in bold in the text below. 
 
=============================== 
 
Introduction 
 
The high-throughput chromosome conformation capture (Hi-C) technique [1] is a genome-wide 
technique used to investigate three-dimensional (3D) chromatin conformation inside the 
nucleus. It has facilitated the identification and characterization of multiple structural elements, 
such as the A/B ​compartments​ [1], topological associating domains (TADs) [2, 3], 
enhancer-promoter ​interactions​ [4] and stripes [5] over recent decades. In practice, Hi-C data 
is conventionally stored as a pairwise read count matrix 𝑀𝑛×𝑛, where 𝑀𝑖𝑗 is the number of 
observed interactions (read-pair count) between genomic regions 𝑖 and 𝑗, and the genome is 
partitioned into 𝑛 fixed-size bins (e.g., 25 kb). Bin size (i.e., resolution), is a crucial parameter for 
Hi-C data analysis, as it directly affects the results of downstream analysis, such as predictions 
of enhancer-promoter interactions [6-11] or identification of TAD boundaries [6, 12-16]. 
Depending on sequencing depths, the size of commonly used bins ranges from 1 kb to 1 Mb. 
Because of the high cost of sequencing, most available Hi-C datasets have relatively low 
resolution, such as 25 kb or 40 kb [17]. Sequencing high-resolution Hi-C matrices demands 
sufficient sequencing coverage; otherwise, the contact matrix would be extremely sparse and 
contain excessive stochastic noise. When sequencing Hi-C data, billions of read-pairs are 
typically necessary to achieve truly genome-scale coverage at kilobase-pair resolution [18], and 
the cost of Hi-C experiments generally scales quadratically with the desired level of resolution 
[19]. Low-resolution data may be sufficient for detecting large-scale genomic patterns such as 
A/B compartments, but the decrease in resolution when analyzing Hi-C data may prevent 
identification of fine-scale genomic elements such as sub-TADs [20, 21] and enhancer-promoter 
interactions, ​and ​even lead to inconsistent results when detecting interactions and TADs in 
replicated samples [22]. Therefore, developing a computational model to impute a 
higher-resolution Hi-C contact matrix from currently available Hi-C datasets show its potency 
and usefulness. 
Several pioneering works on solving problems related to low-resolution Hi-C data have recently 
emerged. Li et al. proposed deDoc for detecting megabase-size TAD-like domains in ultra-low 
resolution Hi-C data [23]. Zhang et al. proposed a deep learning model called HiCPlus to 
enhance Hi-C matrices from low-resolution Hi-C data [17]. HiCPlus showed that chromatin 
interactions can be predicted from their neighboring regions, by using the convolutional neural 
network (CNN) [24]. Carron et al. proposed a computational method called Boost-HiC for 
boosting reads counts of long- range contacts [25]. And Liu et al. proposed HiCNN [26] which is 
a 54-layer CNN and achieved better performance than HiCPlus. While these results were 
encouraging, three problems still exist in Hi-C data resolution enhancement algorithms. First, 



Hi-C data contain numerous high-frequency details (𝑀𝑖𝑗 and its nearby values are very large, 
while values in neighboring regions are small) and sharp edges, which are usually considered to 
indicate the presence of enhancer-promoter loops, stripes, and TAD boundaries. Models ​that 
rely ​on regression and mean squared error (MSE) loss, which is thought to yield solutions with 
overly smooth textures [27], are likely to smooth these features. Thus, we seek to develop a 
model which is capable of predicting data with a sharp or degenerated distribution. Second, the 
structural patterns and textures of Hi-C data are abundant. The hypothesis 
  
space, which is controlled by the number of parameters, should be able to capture richer 
structures as it grows [28]. It is possible that increasing the depth of network would increase 
accuracy [29], while ensuring the model’s generalizability and restraining the overfitting problem. 
The final critical problem is the stochastic noise in Hi-C data. An effective model should be able 
to predict solutions resides on the manifold of target data and thus diminish stochastic noise 
(i.e., capability for denoising) [30, 31]. 
In order to make accurate prediction of high-resolution Hi-C data from low-coverage sequencing 
samples against these three problems. We developed a deep learning model which employed 
the state-of-the-art generative adversarial network (GAN), in combination with some advanced 
techniques in deep learning field. Goodfellow et al. first introduced the GAN model for 
estimating generative models with an adversarial process [32]. The GAN architecture allows the 
generative net to easily learn target data distribution, even sharp or degenerated distribution. 
GAN has been used for various applications and is showing its huge potency. For instance, 
Mirza et al. proposed the conditional GAN (cGAN) of which the generator learns the data 
distribution upon conditional inputs [33]. Li and Wand described the usage of GANs to learn a 
mapping from one manifold to another [34]. Another inspiring work for us was described by 
Ledig et al. [35], who proposed SRGAN to generate photo-realistic super-resolution images. 
Besides, He et al. introduced the concept of residual learning and proved that an ultra-deep 
neural network could be easily trained via residual learning and achieve superior performance 
[36]. Also, researchers started to design task-specified loss functions, using not only MSE loss 
(i.e., L2 loss) but other losses like perceptual loss [37] as well, and gain surprising 
advancements [38]. 
In this paper, we propose a GAN-based method DeepHiC to enhance the resolution of Hi-C 
data. Using low-coverage Hi-C matrices (obtained by downsampling original Hi-C reads) as 
input, we demonstrate that DeepHiC is capable of reproducing high-resolution Hi-C matrices. 
DeepHiC-enhanced data achieve high correlation and structure similarity index (SSIM) 
compared with original high-resolution Hi-C matrices. And even using as few as 1% original 
reads, while no previous methods enhancing data of this depth, DeepHiC is still capable of 
inferring high-resolution data and achieves the correlation and SSIM score as good as the real 
high-resolution replicated assay. Compared with previous methods, our method is more 
accurate in predicting high-resolution Hi-C data, even in fine-grained details, and performed 
better when ​applied ​to different cell lines. Enhancements of DeepHiC improve the accuracy of 
downstream analysis such as identification of chromatin loops and detection of TADs. In this 
study, we applied DeepHiC to Hi-C data in mouse embryonic development and demonstrated 
that, compared with the original low-coverage Hi-C data, DeepHiC-enhanced Hi-C data enables 



the identification for chromatin loops that are similar to those identified in deeply sequenced 
Hi-C data. Besides, we also develop a web-based tool (DeepHiC, http://sysomics.com/deephic) 
that allows researchers to enhance their own Hi-C data with just a few clicks. In summary, this 
work introduces an effective model for enhancing Hi-C data resolution and establishes a new 
framework for prediction of a high-resolution Hi-C matrix from low-coverage data. 
 
Parameters training of DeepHiC model 
  
In ​the ​current study, we propose a conditional generative adversarial network (cGAN), 
DeepHiC, for enhancing Hi-C data from low-resolution samples. It contains a generative network 
𝐺 and a discriminative network 𝐷. The former takes low-resolution data as ​input​ and imputes 
the enhanced ​output​, while the latter is only employed during training process as a 
discriminator for reporting the differences between enhanced outputs and real high-resolution 
Hi-C data to the network 𝐺, which form the adversarial training (Fig 1a). Also, in order to 
alleviate the overly-smooth problem caused by MSE loss, we utilized the perceptual loss to 
capture structure features in Hi-C contact maps and the total variation (TV) loss for suppressing 
artifacts [39]. The detailed architecture of DeepHiC is depicted in S1 Fig. The GAN framework 
benefits 𝐺 network by efficiently capturing the distribution of target data (even very sharp or 
degenerate distributions) [32] and favors solutions ​residing​ on the manifold of target data. 
We trained DeepHiC on chromosomes 1-14 and tested on chromosomes 15-22 in the GM12878 
cell line dataset during the training process (see Materials and Methods: Implementation of 
DeepHiC and evaluation). For low-resolution (low-coverage) data with different downsampling 
ratios, we obtained their corresponding trained models separately. We evaluated the structure 
similarity index (SSIM) scores in the test set during training. Higher SSIM scores between 
enhanced output and real high-resolution Hi-C indicate greater structural similarity. For 
low-resolution data from different downsampling ratios, SSIM scores in the test set increased 
gradually and converged when DeepHiC was trained in 200 epochs (S2 Fig), as well as another 
metric related to MSE (S3 Fig). Generator loss in both the training and test sets decreased 
simultaneously during the training process (S4 Fig). These results indicate that the model 
converged successfully in training without overfitting. Furthermore, we tested various splits of 
training and test sets, like a 5-fold cross validation. Performances in ​the ​test set were consistent 
across different dataset splits, showing that our model is capable of capturing common 
information from the different training sets and its parameters could be stably derived with no 
relation to training/test set we used (S5 Fig). We also trained the generator net as a regression 
model without the adversarial part, but SSIM scores in the test set vibrated substantially (S6 
Fig). These results suggest that the GAN-based framework efficiently restrains the over-fitting 
phenomenon and its necessity for prediction. Besides, DeepHiC is also could be trained in 
IMR90 or K562 dataset (S7 Fig). 
In ​the ​prediction step, we divided the large Hi-C matrix into small squares as model inputs. For 
a ​fair comparison in​ the​ following analysis, we divided the low-resolution Hi-C matrix into 0.4 Mb 
× 0.4 Mb sub- regions (40 × 40 bins in 10-kb resolution) same with what HiCPlus does. Then 
the completed enhanced Hi-C matrix could be obtained by reconstructing all enhanced 
sub-regions after prediction (Fig 1b) (see Methods: dividing and reconstructing matrices). 



 
DeepHiC reproduces high-resolution Hi-C from as few as 1% downsampled reads 
 
We used the high-resolution Hi-C data in the GM12878, K562 and IMR90 cell lines from Rao’s 
Hi-C (access code GSE63525) in our experiments. Datasets pertaining to different cell types are 
denoted as GM12878, GM12878R, K562, and IMR90 for convenience (GM12878R represents 
the replicated assay in the GM12878 cell line). First, we constructed high-resolution (10-kb) 
contact matrices using all the reads from the raw data. Then we downsampled the reads to 
different ratios (ranges from 1:10 to 1:100) of the original reads to simulate the low-resolution 
Hi-C data. We also constructed contact matrices at the same bin size. Therefore, we obtained 
paired high-resolution and low-coverage Hi-C data (both were binned at 10-kb). The original 
experimental high-resolution data were regarded as ground truth in the following analysis, while 
the low-coverage data were enhanced by DeepHiC using the trained model. 
Fig 1c shows the model’s enhancements in a 1Mb sub-region (100 bins) on chromosome 22 in 
the test set (GM12878 cell line). Comparing with the real 10-kb Hi-C data, DeepHiC-enhanced 
matrices recover patterns such as chromatin loops and TADs successfully from low-coverage 
inputs. Quantitatively, DeepHiC-enhanced data achieve the correlations as good as the 
experimental replicate (i.e., GM12878R), even ​though ​they were predicted from 1% 
downsampled data (Fig 1d). It also shows the same result in SSIM measure (S8 Fig). These 
results indicate that the DeepHiC model is capable of reproducing high-resolution Hi-C data with 
high similarity even using 1% downsampled reads. Because the high-resolution data we used is 
at 10-kb resolution, it implies that our method could enhance 1Mb resolution Hi-C data to 10-kb 
resolution with high quality. And there is no available imputation algorithm for enhancing Hi-C 
data from such a sequencing depth before. 
In the following analyses, we trained DeepHiC in 1/16 downsampled data for fairly comparing 
with other baseline methods such as HiCPlus, Boost-HiC, and HiCNN (see Methods). The 
trained model we used was trained on data of chromosome 1-14 in GM12878 dataset. SSIM 
scores converged at 0.9 in remaining chromosomes (S9 Fig). For remaining chromosomes’ data 
in GM12878 dataset, as well as the whole GM12878R, K562, and IMR90 datasets, we applied 
the trained model to their downsampled data, then evaluated the performance with taking the 
real high-resolution data as the ground truth. 
 
 
Enhancements of low-resolution data 
 
We first investigate the enhancements afforded by DeepHiC by visualizing data in the form of 
heatmaps (see S1 Note for colorbar settings). Fig 2a shows three 1-Mb-width sub-regions 
(arranged by rows) on chromosomes 16, 17, and 22 which ​were​ extracted from the test set in 
the GM12878 dataset. The real high-resolution examples marked as “Original” in the first 
column contain clear individual chromatin loops and TAD structures, while low-coverage 
examples marked as “Downsampled” (second column) have abundant noise and less clear TAD 
structures. We found that DeepHiC-enhanced data (last column) could accurately restore the 
patterns and textures which are exactly ​the ​same as those in real high-resolution data. Baseline 



models’ results are shown in the third to fifth columns. Noting that Boost-HiC was specifically 
developed for enhancing long-range contacts [25]. So, it makes sense that Boost-HiC ​has​ slight 
changes in short-range contacts (third column). The HiCPlus-enhanced data marked as 
“HiCPlus” (fifth column) contains much less noise and more visible TAD structures, but refined 
structures such as chromatin loops are replaced by smooth textures. So does the HiCNN (fifth 
column), which is a deeper CNN and relies on MSE loss as well. ​In terms of fine-grained 
details, we ​scrutinized smaller 0.3 Mb × 0.3 Mb (30 × 30 bins) sub-regions from these three 
examples in real high-resolution Hi-C and DeepHiC-enhanced Hi-C, as illustrated in Fig 2b. High 
similarity between experimental high-resolution data and DeepHiC-enhanced data was 
observed. Sharp edges in heatmaps, which are deemed difficult to recover in practice, were 
accurately recovered by DeepHiC. We also visualized three sub-regions from the GM12878R 
dataset (S10 Fig), three sub-regions from the K562 dataset (S11 Fig), and three sub-regions 
from the IMR90 dataset (S12 Fig). And DeepHiC outperforms baseline models in all four 
datasets. The SSIM scores for downsampled, HiCPlus-enhanced, HiCNN-enhanced, and 
DeepHiC-enhanced data, as compared with real high-resolution data for these three 
sub-regions were 0.20, 0.64, 0.59, and 0.89 on average, respectively. 
 
DeepHiC outperformed other methods in terms of genome-wide similarity ​to ground truth 
deeply sequenced data 
 
Furthermore, we quantitatively investigated genome-wide performance for all four datasets. We 
calculated SSIM scores for downsampled and various model-enhanced data, as compared with 
real high-resolution data for all 1 Mb × 1 Mb (100 × 100 bins) sub-regions with non-overlap at 
the diagonal across the entire genome (S13 Fig). Fig 3a shows that DeepHiC-enhanced 
matrices had the highest SSIM scores for all 23 chromosomes in the GM12878 dataset. 
Average values for downsampled, HiCPlus-enhanced, HiCNN-enhanced, and 
DeepHiC-enhanced data were 0.15, 0.71, 0.66, and 0.89, respectively. SSIM scores derived 
from DeepHiC, HiCPlus, and HiCNN are denoted as 𝑆𝑆𝐼𝑀𝑑𝑒𝑒𝑝h𝑖𝑐, 𝑆𝑆𝐼𝑀h𝑖𝑐𝑝𝑙𝑢𝑠 and 𝑆𝑆𝐼𝑀h𝑖𝑐𝑛𝑛, 
respectively. Fig 3b shows the differences between these scores for all 4 datasets covering all 
chromosomes. Their absolute values are shown in S14 Fig. The comparison results show that 
DeepHiC achieves greater similarity than HiCPlus and HiCNN. 
We also computed the Pearson correlation coefficients between the experimental 
high-resolution, downsampled, baselines-enhanced, and DeepHiC-enhanced matrices at each 
genomic distance, which also performed in previous studies. As shown in Fig 3c, the 
DeepHiC-enhanced matrices obtained higher correlation coefficients (~5%) than the 
HiCPlus-enhanced matrices at all genomic distances of interest from 50 kb to 1 Mb. This region 
included proximal and distal regions. We also computed the differences between correlations 
derived from DeepHiC with those derived from HiCPlus/HiCNN, which are denoted as 𝑟𝑑𝑒𝑒𝑝h𝑖𝑐 
and 𝑟h𝑖𝑐𝑝𝑙𝑢𝑠 / 𝑟h𝑖𝑐𝑛𝑛, respectively. Then we investigated the distribution of differences in all four 
datasets by boxplots, with extremely small p-values obtained for that 𝑟𝑑𝑒𝑒𝑝h𝑖𝑐 are significantly 
higher than 𝑟h𝑖𝑐𝑝𝑙𝑢𝑠 / 𝑟h𝑖𝑐𝑛𝑛 (paired t-test, pair number = 96), as shown in Fig 3d. Their absolute 
values are shown in S15 Fig. The results of similarity and correlation comparison revealed our 
model’s advantages in restoring high-resolution Hi-C. More importantly, advantages across 



various cell lines revealed that DeepHiC can be used to enhance the Hi-C matrix for other cell 
types. 
We omitted comparison with Boost-HiC considering that it aims to enhance long-range contacts. 
Evaluation of Boost-HiC is plotted in S14 Fig and S15 Fig. Besides, we also investigated the 
performance of detecting A/B compartments for DeepHiC and Boost-HiC, because the latter is 
reported for it. S16 Fig shows our model achieves comparative performance in detecting A/B 
compartments, considering our model is trained using short-range contacts. 
Besides, we applied DeepHiC to data from various downsampled ratios (e.g., 1/25, 1/36), while 
still using the trained model derived from 1/16 downsampled data. S17 Fig shows that DeepHiC 
still achieves greater correlation coefficients. These results suggest that DeepHiC could be 
employed to enhance low-coverage sequencing data, rather than just enhancing data with a 
particular ratio. Thus, we used the same downsampling and predicting procedure to make 
predict on more cell types’ data (including mouse cell line CH12-LX) from Rao et al [4], as 
shown in S18 Fig. And correlations across cell types suggest that our model also preserve the 
specificities between cell lines (S18 Fig. d). Further, performances on Hi-C data prepared using 
6-cutter enzyme revealed that our model is also applicable to 6-cutter enzyme prepared Hi-C 
data (S19 Fig). 
 
 
Significant interactions in high-resolution Hi-C were accurately recovered from 
DeepHiC-enhanced matrices 
 
After demonstrating that DeepHiC can restore high-resolution Hi-C from low-resolution data, we 
investigated whether these enhanced high-resolution matrices could facilitate the identification 
of significant chromatin interactions. For this purpose, we used Fit-Hi-C software to obtain 
significant intra-chromosomal interactions. We applied Fit-Hi-C to Hi-C data present above, in 
four datasets, using the same parameters (Methods). Statistical confidence values (i.e., 
q-values) for all loci-pairs were acquired by Fit-Hi-C. We kept the predicted significant 
interactions (q-value < 1 × 10−6) for genomic distances from 20 kb to 1 Mb for further 
comparative analysis. At first, we visualized three 1 Mb-wide sub-regions. Significant 
interactions are presented in yellow in the upper triangles of heatmaps (Fig 4a). Compared with 
the real high-resolution data, only DeepHiC-enhanced matrices yield consistent results in 
recognizing significant interactions. And the yellow-marked anchors are indeed significant 
interactions by observing the lower triangular parts of heatmaps. The numbers of interactions in 
these three sub- regions (denoted as I, II and III) derived from various contact matrices are 
presented in S20 Fig. HiCNN and HiCPlus-enhanced matrices identified few loci-pairs, while the 
experimental and DeepHiC-enhanced matrices identified about 40 loci-pairs, respectively. Fig 
4a presents the significant interactions identified in real high-resolution Hi-C gathered in 8, 20, 
and 11 clusters, respectively. However, for low-resolution Hi-C, few interactions were identified. 
For HiCPlus-enhanced Hi-C, only six clusters were recovered. Surprisingly, DeepHiC-enhanced 
Hi-C recovered nearly all clusters (35 in total) and no false-positive cluster was added. 
Because Fit-Hi-C calculated the significance of all loci-pairs within the genomic distance of 
interest, we performed a genome-wide comparative analysis by analyzing the significance 



matrices formed with q-values. We calculated the similarity of significance matrices, as 
previously performed for Hi-C matrices. Fig 4b shows the Pearson correlation coefficients for 
significance matrices in the GM12878 dataset at each genomic distance. Same results of 
comparisons between the other three datasets are presented in S21 Fig. We observed that 
q-values derived from DeepHiC-enhanced data were more similar to the real high-resolution 
data than any others for the entire dataset. We also compared the overlap of identified 
interactions with real high-resolution data at each genomic distance, as shown in Fig 4c. The 
Jaccard index (𝐽𝐼) of identified interactions between DeepHiC-enhanced data and real 
high-resolution data was higher at each genomic distance. In addition to using the 
aforementioned threshold for q-values, we tried more thresholds by scanning various false 
discovery rates (FDR), ranging from 0.001 to 0.05, with step size of 0.001. We evaluated the 
overlap of identified interactions according to FDR scanning. We found that DeepHiC 
outperformed others (Fig 4d). These results suggested that DeepHiC-enhanced Hi-C data are 
more accurate in predicting chromatin loops and yield less artifact noise. 
Next, we compared the ​significant interactions ​identified in these Hi-C matrices with the 
identified ​interactions ​by CTCF chromatin interaction analysis by paired-end tagging 
sequencing (ChIA- PET) in the K562 cell line, ​for​ which related data is available in the 
ENCODE project. ROC analysis was performed ​in the ​same ​way as is described​ in HiCPlus, 
using ​the identified CTCF-mediated chromatin ​interactions ​from ChIA-PET as true positives. 
As for negatives, we randomly selected ​the ​same number of loci pairs that were not predicted to 
be interacting pairs by ChIA-PET and ​that had the ​same ​distance ​distribution with positives (10 
repeats). We then plotted the ROC (receiver operating characteristic) curve and calculated the 
area under the ROC curve (AUC) for each. As shown in Fig 4e, CTCF interacting pairs and 
non-interacting pairs were separated from the DeepHiC-enhanced matrix in the predicted 
results (average AUC = 0.825). We also observed that the AUC score for the 
DeepHiC-enhanced matrix was significantly higher than both the AUC derived from the 
HiCPlus/HiCNN-enhanced matrix (p-value = 0, paired t-test) as well as the AUC derived from 
the downsampled matrix (p-value = 0, paired t-test). 
 
DeepHiC is more precise in detecting TAD boundaries 
 
The detection of TADs is not as sensitive to resolution decline as algorithms for detecting TADs, 
we obtained roughly the same results when using the Hi-C data with various downsampling 
ratios [23]. However, we found that some refined TAD structures were shifted-even wrongly 
detected-in low- resolution data. Therefore, we continually assessed the performance of 
DeepHiC in recovering TADs, especially in fine-scale TADs. We calculated the Δ score of 
insulation scores across the entire genome for all four datasets (Methods). The zero-points 
within monotonic rising intervals are considered to be TAD boundaries. Fig 5a illustrates the 
insulation Δ scores derived from experimental high-resolution, downsampled, 
HiCPlus/BoostHiC/HiCNN-enhanced, and DeepHiC-enhanced Hi-C matrices, on chromosome 
22, in the region between 20-22.7 Mb, from the GM12878 dataset. The trends seemed similar, 
but enlarged views around the zero-points revealed that DeepHiC obtained the closest location 
of zero-points, while downsampled Hi-C and HiCPlus-enhanced Hi-C had bias of 20-50 kb. The 



Pearson correlation coefficients between Δ scores derived from experimental Hi-C and those 
derived from non-experimental Hi-C were 0.937, 0.953, and 0.992 for downsampled, HiCPlus- 
enhanced, and DeepHiC-enhanced data, respectively. 
As for the two segmentations formed by TAD boundaries, we calculated all split points’ 
distances and all intervals’ overlap with another segmentation (see Methods), then ​investigated 
the properties of the resulting arrays. As shown in Fig 5b, we illustrated the distribution of all 
boundaries’ distances from 𝑆𝑑𝑜𝑤𝑛, 𝑆𝑏𝑜𝑜𝑠𝑡h𝑖𝑐, 𝑆h𝑖𝑐𝑝𝑙𝑢𝑠, 𝑆h𝑖𝑐𝑛𝑛, and 𝑆𝑑𝑒𝑒𝑝h𝑖𝑐 to 𝑆𝑜𝑟𝑖𝑔𝑖𝑛 in the 
GM12878 dataset via box plot. Boundary segmentations were derived from corresponding data. 
The distances of DeepHiC- enhanced data were significantly smaller than those of 
Boost-HiC-enhanced data (p-value = 1.4 ×10−40,, Wilcoxon rank-sum test), those of 
HiCPlus-enhanced data (p-value = 7.1 × 10−14, Wilcoxon rank-sum test), those of 
HiCNN-enhanced data (p-value = 0.035, Wilcoxon rank-sum test) and those of downsampled 
data (p-value = 1.3 × 10−193, Wilcoxon rank-sum test). We also investigated the distribution of 
the overlap of segmentations vs. experimental high-resolution data (Fig 5c). The results showed 
that our model had a high proportion of high 𝐽𝐼 (p-value < 1 × 10−20 for 
downsampled/BoostHiC-enhanced/HiCPlus-enhanced data, < 0.001 for HiCNN-enhanced data, 
Mann Whitney U-test), which indicates that more TADs are precisely matched with those in real 
Hi-C data. Same results of comparisons for other cell types are illustrated in S22 Fig. 
 
DeepHiC​ enhances ​prediction of chromatin loops in mouse early embryonic 
developmental stages 
 
DeepHiC can be used to enhance the resolution of existing time-resolved Hi-C data obtained 
through early embryonic growth. These data are prone to low resolution due to limited cell 
population (40-kb in [40]). Therefore, algorithms for detecting significant interactions, when 
applied to these data, may produce results with a relatively high false positive rate. We 
demonstrate that DeepHiC can be applied to Hi-C data of mouse early embryonic development 
to enable identification of significant chromatin interactions with a considerably lower false 
positive rate. We applied Fit-Hi-C to both original low-resolution Hi-C contact matrices and 
DeepHiC-enhanced contact matrices (Fig 6a) and kept pairs of loci with q-values lower than a 
preset cut-off (0.5 percentile) as significant interactions (predicted loops). Chromatin loops 
regulate spatial enhancer-promoter contacts and are relevant to domain formation [4, 41], and 
anchors of Fit-Hi-C predicted significant interactions co-localize with open chromatin regions 
including insulators, enhancers, and promoters. In deeply sequenced Hi-C data of GM12878 
cell line, significant interactions identified by Fit-Hi-C are significantly enriched in gene promoter 
and open chromatin regions compared to shuffled control (S23 Fig). Therefore, we evaluate the 
similarity of Fit-Hi-C significant interactions identified on mouse embryonic development Hi-C 
data to those identified in high-resolution Hi-C data according to the fraction of all significant 
interactions that connect promoter regions, as well as by the fraction connecting two accessible 
chromatin regions marked by ATAC-seq peaks. As shown in Fig 6b, significant interactions 
identified using DeepHiC enhanced Hi-C data are more likely to anchor at gene promoters than 
those identified using original Hi-C data. They are also more likely to co-localize with open 
chromatin regions at both of their anchoring loci than those predicted with original Hi-C data (Fig 



6c). We mainly focused on the 8-cell stage and beyond because Hi-C data from earlier stages 
only demonstrate weak TADs and depleted distal chromatin interactions [40]. To generate 
control datasets, we randomly repositioned all predicted significant interactions for original Hi-C 
data, while maintaining the distance between anchors of each significant interaction, using the 
“shuffle” command in Bedtools [42]. We repeated this process 20 times to generate 20 random 
significant interaction datasets. We found that the fraction of predicted significant interactions 
that connected accessible loci was significantly higher for DeepHiC-enhanced Hi-C data, 
compared with random control data. Using an example at chromosome 5, we showed that 
significant interactions predicted using original Hi-C data were highly separated (Fig 6d). This is 
inconsistent with the known characteristics of significant interactions, as they are mostly located 
within TADs and are frequently observed as strong apexes of TADs and sub- TADs [4, 43]. 
Figure 6c shows that significant interactions as predicted using DeepHiC-enhanced Hi- C data 
are predominantly located within TADs, and at the apexes of TADs, where they co-localize with 
open chromatin regions. Therefore, DeepHiC is a powerful tool for studying chromatin structure 
during mammalian early embryonic development. 
 
 
Discussion 
 
Hi-C is commonly used to map 3D chromatin organization across the genome. Since its 
introduction in 2009, this method has been updated many times in order to improve its accuracy 
and resolution. However, owing to the high cost of sequencing, most available Hi-C datasets 
have relatively low resolution (40-kb to 1-Mb). The low-resolution representation of Hi-C data 
limits its application in studies of genomic regulatory networks or disease ​mechanisms​, which 
require robust, high-resolution 3D genomic data. 
In this study, we proposed a deep learning method, DeepHiC, for predicting experimentally- 
realistic high-resolution data from low-resolution samples. Our approach can produce estimates 
of experimental high-resolution Hi-C data with high similarity, using 1% sequencing reads. 
DeepHiC is built on state-of-the-art techniques from the deep learning discipline, including the 
GAN framework, residual learning, and perceptual loss. With using of the GAN framework, 
carefully designed net architecture, and loss functions in DeepHiC, it becomes possible to 
predict high-resolution Hi-C with high structural similarity of 0.9 to real high-resolution Hi-C. This 
approach may be used to accurately predict chromatin interactions, even in fine detail. Because 
of the huge quantity of parameters (~121,000) included in the network, DeepHiC may be used 
to approximate the real data, and to make predictions in other cell or tissue types. More 
importantly, enhancements afforded by DeepHiC favor the identification of significant chromatin 
interactions and TADs in Hi-C data. Finally, we also applied DeepHiC to Hi-C data pertaining to 
mouse early embryonic developmental stages, ​for which ​only low- coverage sequencing data 
were available, and enhancements afforded by DeepHiC facilitated identification of significant 
chromatin contacts for these data. 
DeepHiC provides a GAN-based framework with which to enhance Hi-C data, and even other 
omics data. ​The ​GAN framework is a state-of-the-art technique in ​the ​deep learning field in 
recent years. The idea of adversarial training ​allows ​the deep model to capture learnable 



patterns efficiently and stably. DeepHiC is trained with real high-resolution data as target and is 
therefore a supervised learning paradigm. The quality of ​the ​target determines the upper-bound 
efficiency of the model. Here we used the ​most deeply sequenced GM12878 cell line data​ as 
a training set. It would be possible to retrain or fine-tune the model if more accurate Hi-C data 
were available, potentially reaching restriction- fragment resolution. Besides, we also performed 
a quasi-autoencoder training by taking low-coverage data to be both input and target, like an 
auto encoder, for ensuring that our model improves the sequencing depth rather than simply 
cleaning​the data (S24 Fig). DeepHiC could be used not only to enhance existing low-resolution 
Hi-C data but also to reduce the experimental cost of sequencing in future Hi-C assays. As our 
method outperforms baseline methods, current low coverage Hi-C data could benefit from this 
improvement in performance. For example, Hi-C data imputed by our method can be used to 
identify significant interactions and TADs more similar to those identified with deeply sequenced 
Hi-C data. In some ​circumstances, in which​ the limitation on the number of cells stands in the 
way of producing high resolution Hi-C data, our method could provide an alternative solution to 
this problem. ​In addition​, we develop a web-based tool (DeepHiC, 
http://sysomics.com/deephic) that allows researchers to enhance their own Hi-C data with just a 
few clicks. And the enhancement procedure ​runs ​in 3-5 minutes using single CPU (for example, 
enhancement on chromosome 1 of human will cost 4.7 minutes using a Xeon CPU E5-2682 v4 
@ 2.5GHz). It will be faster when using a GPU (22s for Nvidia 1080ti). ​We ​trained several 
models based on various downsampled data. Translating the downsampling ratios to read 
coverage or data distribution is indispensable for users. We discuss the strategy of choosing 
between models​ in S2 Note. A caveat is that the low-coverage Hi-C data of input​ should have 
more than 10% non-zero ​entries​. 
In conclusion, DeepHiC introduced the GAN framework for enhancing the resolution of Hi-C 
interaction matrices. By utilizing the GAN framework and other techniques such as residual 
learning, DeepHiC can generate high-resolution Hi-C data using a low fraction of the original 
number of sequencing reads. DeepHiC can easily be used in a number of Hi-C data analysis 
pipelines, and prediction could be executed quickly in minutes on ​the​ human genome. 
 
Materials and methods 
 
Hi-C data sources and processing 
 
The high-resolution (10-kb) Hi-C data used for training and evaluating were obtained from GEO 
(https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE63525. The primary Hi-C data 
in GM12878 cell line (HIC001-018) is denoted as GM12878 dataset in this paper, and the 
corresponding replicate (HIC019-029) is denoted as GM12878R dataset for convenience. The 
high-resolution Hi-C contact maps for each dataset were derived from reads with mapping 
quality > 30. And we used the KR-normalization scheme [44] for normalized data. 
Corresponding low-resolution data were simulated by randomly downsampling the sequencing 
reads to different ratios range from 1:10 to 1:100 (i.e., 1% reads). Downsampled data would 
typically be processed at lower resolution because of the shallower sequencing depths. In our 
experiments, low-resolution contact maps were built using the same bin size as used for 



high-resolution Hi-C to fit the models’ requirement. All resolution enhancing methods compared 
in our study used this same procedure as reported in HiCPlus [17] to ensure fair comparisons. 
Hi-C data pertaining to mouse embryonic development were obtained from GEO under 
accession number GSE82185. Hi-C matrices of 10-kb bin size were created using the HOMER 
(http://homer.ucsd.edu/homer/) analyzeHiC command with the following parameters: -res 10000 
– window 10000. 
ChIA-PET data for the CTCF target in the K562 cell line was obtained from ENCODE 
(https://encodeproject.org) under accession number ENCSR000CAC (file: 
ENCFF001THV.bed.gz). Chromosome regions were mapped to Hi-C bins with which they 
overlapped in ROC analysis. ATAC-seq data on mouse early embryonic development was 
obtained from GEO under accession number GSE66390. Data of DNase-seq peaks on 
GM12878 cell line was obtained from ENCODE under accession number ENCSR000EMT. 
For Hi-C matrices in training, outliers are set to the allowed maximum by setting the threshold 
be the 99.9-th percentile. For example, 255 is about the average of 99.9-th percentiles for 10-kb 
Hi-C data, so all values greater than 255 are set to 255 for 10-kb Hi-C data. Then all Hi-C 
matrices are rescaled to values ranging from 0 to 1 by min-max normalization [45] to ensure the 
training stability and efficiency. Besides, cutoff values for downsampled inputs of our model 
were 125, 100, 80, 50, and 25 for 1/10, 1/16, 1/25, 1/50, and 1/100 downsampled ratios. 
 
DeepHiC architecture 
 
In general, DeepHiC is a GAN model that comprises a generative network called generator and 
a discriminative network called discriminator. The generator tries to generate enhanced outputs 
that approximate real high-resolution data from low-resolution data, while the discriminator tries 
to tell generated data apart from real high-resolution data and reports the difference to the 
generator. The contest (hence “adversarial”) between generator and discriminator promotes the 
generator learns to map from conditional input to a data distribution of interest. 
As depicted in S1 Fig, the generator net (𝐺) is a convolutional residual network (first row), while 
the discriminator net (𝐷) is a convolutional neural network (second row). The 𝐺 net takes 
low-resolution matrices (𝑋) as input and outputs enhanced matrices (𝑌̂) with identical size. The 
adversarial component, the 𝐷 net, takes the enhanced output 𝑌̂ and the real high-resolution 
data (𝑌) as input and outputs 0-1 labels. The green arrowed lines describe how data are 
processed in DeepHiC. The 𝐺 net, employs two layers: the convolutional layer (blue block) and 
the batch normalization (BN) layer [46] (yellow block). Together with elementwise sum operation 
(green ball) and skip-connection operation (green polyline), some of these layers form the 
residual blocks (ResBlocks) [47]. There are five successive ResBlocks in 𝐺. As for the activation 
function (pink block), we elected to use the Swish function [48] instead of the Rectified Linear 
Unit (ReLU) for activating some layers. The Swish function is defined as: 
𝑓(𝑥) = 𝑥 ⋅ 𝜎(𝛽𝑥), 
where 𝛽 = 1 and 𝜎 is the sigmoid function. Swish has been shown to works better than ReLU in 
deep 
models [49]. Note that the final outputs of 𝐺 are scaled by: 
𝑔(𝑥) = tanh(𝑥) + 1. 2 



Thus, elements in output matrices range from 0 to 1. In general, the 𝐺 net contains about 
121,000 parameters. The 𝐷 network is a convolutional network similar with the VGG network 
[50]. The number of kernels in a convolutional layer is depicted via block width: the more 
kernels, the wider the width of the block. The final output of 𝐷 is a scalar value ranges from 0 to 
1 by a sigmoid function. More details of the hyperparameters of network architectures, such as 
kernel size and filter numbers, are summarized in S1 Table and S2 Table. 
To establish the GAN paradigm for training (Fig 1a), we employed both the generator net 𝐺 and 
the discriminator net 𝐷. The 𝐺 net aims to generate enhanced outputs by approximating to the 
real high-resolution matrices 𝑌, while the 𝐷 net attempts to distinguish the real 𝑌 from the 
generated 𝑌̂. In the 𝐷 net, the value of output 𝑦̂ = 𝐷(𝑌̂) is considered to be the probability of 
𝑌̂ to be real data. Divergences between 𝑌̂ and 𝑌, as well as the probability of 𝑌̂ to be real 
data, are minimized according to a carefully designed loss function. Besides, these two 
networks are trained alternatively by the backpropagation algorithm. 
 
Loss functions in DeepHiC 
 
A critical point when designing a deep learning model is the definition of the loss function. Many 
methods have recently been proposed to stabilize training [51, 52] and improve the quality of 
synthesized images [37] by the GAN model. For DeepHiC, the binary cross entropy loss 
function for the 𝐷 network was used to measure the error of output, as compared with the 
assigned labels. Because real and generated high-resolution data are paired in practice, it can 
be described as: 
𝐿𝐷 =𝑁1∑log(𝑦̂𝑖)+log(1−𝑦𝑖), 𝑖 
where 𝑖 is the index for pairs of real and generated data, and 𝑁 is the number of pairs. Here we 
used 𝑦 = 𝐷 ( 𝑌 ) a n d 𝑦̂ = 𝐷 ( 𝑌̂ ) . 
For generator loss, we used four loss functions, which were added to yield a final objective 
function. Firstly, we used MSE to measure the pixel-wise error between predicted Hi-C matrices 
and real high-resolution matrices, defined as: 
𝑁 
𝑖=1 
which is also called L2 loss. The 𝑀𝑆𝐸 loss function is broadly used for regression problems, 
while the 
fact that 𝑀𝑆𝐸 loss does not correlate well with the human perception of image quality [53] and 
overly smooths refined structures in images [27]. We also employ perceptual loss [37], however, 
based on the feature layers of the VGG16 network. We used total variation (TV) loss , derived 
from the total variation denoising technique, so as to suppress noise in images [54]. Final 
generator loss is yielded in combination with adversarial (AD) loss derived from 𝐷 network and 
defined as: 
𝐿𝐺 =𝑙𝑀𝑆𝐸 +𝛼⋅𝑙𝑉𝐺𝐺 +𝛽⋅𝑙𝑇𝑉 +𝛾⋅𝑙𝐴𝑑. 
Note that 𝑙𝐴𝑑 = (∑𝑖 𝑦̂𝑖)/𝑁 without logarithmic transformation, which allows for fast and stable 
training 
of the 𝐺 net [51]. Hyperparameters 𝛼, 𝛽, 𝛾 are scale weights that range from 0 to 1. 
Implementation of DeepHiC and performance evaluation 



DeepHiC is implemented in Python scripts with PyTorch 1.0 [55]. After splitting GM12878 
dataset into a training set and a test set, the model was trained on the training set and tested on 
the test set during training process. The final model we used was trained on chromosomes 
1-14. We divided contact matrices where the genomic distance between two loci is < 2 Mb, as 
the average size of TAD is < 1 Mb and there are few significance interactions outside TADs, 
thus could be omitted for training. The Adam optimizer [56] is used with a batch size of 64, and 
all networks are trained from scratch, with a learning rate of 0.0001. We trained the networks 
with 200 epochs. In order to yield loss terms on the same scale, the hyperparameters for 
generator loss were set as 𝛼 = 0.006, 𝛽 = 2 × 10−8, and 𝛾 = 0.001. All training process were 
performed using an NVIDIA 1080ti GPU. A python code for model training and prediction is 
available at https://github.com/omegahh/DeepHiC. 
In order to assess the efficiency of DeepHiC during training, we performed an improved 
measure called structure similarity index (SSIM) [57] to measure the structure similarity between 
different contact matrices. The SSIM score is calculated by sliding sub-windows between 
images. The measure for comparison of two identically sized sub-windows, 𝑥 and 𝑦 (from two 
images) is: 
𝑆𝑆𝐼𝑀(𝑥,𝑦)= (2𝜇𝑥𝜇𝑦+𝐶1)⋅(2𝜎𝑥𝑦+𝐶2) , (𝜇𝑥2 +𝜇𝑦2 +𝐶1)⋅(𝜎𝑥2 +𝜎𝑦2 +𝐶2) 
where mean (𝜇), variance (𝜎), and covariance (𝜎𝑥𝑦) are computed with a Gaussian filter. They 
measure the differences of luminance, contrast, and structure between two images, 
respectively. 
𝐶1, 𝐶2 are constants to stabilize the division with a weak denominator. In our experiments, the 
size of sub-windows and the variance value of Gaussian kernel are set as 11 and 3, 
respectively. And all compared matrices are rescaled by min-max normalization to same range 
to eliminate the differences of luminance in order to compare the contrast and structure 
differences. 
 
Dividing and reconstructing matrices 
 
We divided the whole Hi-C contact maps into equal-sized square submatrices to be used as 
model inputs. It reduces the time and memory cost in batch training. The size of submatrices 
determines the features’ dimension of each sample. Here we used the same size of 0.4 Mb × 
0.4 Mb as described in HiCPlus, note that other choices such as 0.3Mb or 0.5Mb is also 
applicable in our workflow. So, each submatrix contains 40 × 40 = 1600 pixels at 10 kb 
resolution. As shown in Fig 1b, the intact low-resolution Hi-C matrix was divided into 
non-overlapping sub-regions, then enhanced sub-regions were predicted from them (with outlier 
squashed and min-max normalization performed) by the generator network of DeepHiC. Finally, 
the high-resolution sub-matrices predicted were merged into a chromosome-wise Hi-C matrix, 
as the final enhanced output. Because our model is trained based on the contact maps where 
two bins < 2Mb genomic distance, we made the genome-wide predictions also on data where 
two bins < 2Mb. 
 
Identifying chromatin ​interactions ​and detecting TAD boundaries 
 



Chromatin ​interactions ​[7] are identified using the commonly used software: Fit-Hi-C. We 
parallelized the software for faster running speed and suitable for our data. The modified code is 
available in https://github.com/omegahh/pFitHiC. Fit-Hi-C parameters were set as follows: 
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 10𝑘𝑏, 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 2, 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 120, 𝑝𝑎𝑠𝑠𝑒𝑠 = 2, 𝑛𝑜𝑂𝑓𝐵𝑖𝑛𝑠 = 100. Significance was 
calculated only for intra-chromosome interactions. Since our model’s output ranges from 0 to 1, 
we converted them to integer by multiplying 255 to be Fit-Hi-C inputs. 
TADs were detected using the insulation score algorithm [14] with minor modifications: the width 
of the window used when calculating insulation score was set to 5 times of Hi-C matrix 
resolution to better detect the boundaries of finer-domain structures. We computed the delta 
score using insulation score of 5 nearest loci upstream and of 5 nearest loci downstream. We 
identified TADs as the genome region between center of 2 adjacent boundaries and regions 
containing low-coverage bins were excluded. 
 
Measurements for two TAD segmentations 
 
We investigated the consistency of segmentations formed by different TAD boundaries in the 
genome. Here we calculated the distance of two segmentations and the corresponding overlap, 
defined as follows. We denote the two segmentations as 𝑆 and 𝑇, which are formulated in sets 
consisting of their split points: 
𝑆 = {𝑠1,𝑠2,...,𝑠𝑛}, 𝑇 = {𝑡1,𝑡2,...,𝑡𝑚}, 
where 𝑚, 𝑛 are numbers of split points. Thus, we could calculate the distance from one split 
point 𝑠𝑖 ∈ 𝑆 to segmentation 𝑇, as follows: 
𝑑(𝑠𝑖,𝑇) = min𝑑(𝑠𝑖,𝑡𝑗), ∀𝑗 = 1,2,...,𝑚. 
The overlap of an interval 𝐼𝑆 = (𝑠𝑖,𝑠𝑖+1) from 𝑆, compared with T, could be measured as follows: 
𝐽𝐼(𝐼𝑆,𝑇)=max𝐽𝐼(𝐼𝑆,𝐼𝑇), 𝑤𝑖𝑡h𝐼𝑇 =(𝑡𝑗,𝑡𝑗+1), ∀𝑗=1,2,...,𝑚−1, 
 
Implementation of baseline models 
For baseline models, we only performed comparisons on data downsampled to 1/16 ​reads​ as 
they commonly used in their study [17, 25, 26]. The python source code for HiCPlus was 
obtained from https://github.com/zhangyan32/HiCPlus_pytorch, together with the codes for data 
processing and pre-trained model parameter file. We obtained HiCPlus results using the 
downloaded source code and pre-trained model parameter file. The scheme of data 
downsampling and reconstructing were implemented according to the description in its paper 
[17]. For Boost-HiC, the python source code was obtained from 
https://github.com/LeopoldC/Boost-HiC and implemented with 𝑎𝑙𝑝h𝑎 = 0.2. For HiCNN, we 
obtained its implementation code from http://dna.cs.miami.edu/HiCNN/ and pretrained model 
parameters from http://dna.cs.miami.edu/HiCNN/checkpoint_files/. We used the “HiCNN_16” for 
experiments for 1/16 downsampled data. 
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