Cannabinoid Exposure via Lactation in Rats Disrupts Perinatal Programming of the Gamma-Aminobutyric Acid Trajectory and Select Early-life Behaviors

Supplemental Information

Supplementary Figure S1: The delayed excitatory/inhibitory switch in progeny of dams exposed to WIN is mediated by CB1R. Action potentials were recorded in cell-attached (I=0) layer 5 pyramidal neurons in standard aCSF. After 10 min of baseline recording, picrotoxin (20 μ M; GABA-A receptor antagonist, PTX) or isoguvacine (7 μ M; GABA-A receptor agonist, ISO) was bath-applied. Spiking activity was calculated as an average of spikes per minute (10 min baseline) compared to the last 10 min of drug application. AM251 co-administration prevents the delayed GABA shift induced by perinatal WIN treatment. **A**, **B**: GABA-A receptor antagonism is inhibitory at P09-10 in AM+WIN-exposed rats. At P09-10, PTX decreased spike frequency in slices obtained from AM+WIN rats (N=5 cells/3 rats). At P15-16 however, PTX increased spike frequency in AM+WIN-exposed progeny (N=6 cells/4 rats). *P<0.0001, Student's t-test with Welch's correction. **C**, **D**: At P09-10, ISO application decreased spike frequency in AM+WIN (N=6 cells/4 rats) rats. Conversely, at P15-16 ISO application decreased spiking in slices obtained from AM+WIN exposed rats). *P=0.0084, Student's t-test with Welch's correction. Example traces shown in supplementary Figure S7.

Supplementary Figure S2: The delayed excitatory/inhibitory switch in progeny of dams exposed to WIN is prevented by perinatal (P1-P15) bumetanide treatment. Action potentials were recorded in cell-attached (I=0) layer 5 pyramidal neurons in standard aCSF. After 10 min of baseline recording, picrotoxin (20 μ M; GABA-A receptor antagonist, PTX) or isoguvacine (7 μ M; GABA-A receptor agonist, ISO) was bath-applied. Spiking activity was calculated as an average of spikes per minute (10 min baseline) compared to the last 10 min of drug application. **A**, **B**: GABA-A receptor antagonism is inhibitory at P09-10 in WIN+bumetanide, but excitatory at P15-16. At P09-10, PTX decreased spike frequency in slices obtained from WIN+bumetanide rats (N=5 cells/3 rats). Conversely, at P15-16 PTX decreased spike frequency in WIN+bumetanide-exposed progeny (N=6 cells/4 rats). *P=0.0012, Student's t-test with Welch's correction, P=0.0156. **C**, **D**: At P09-10, ISO application increased spike frequency in WIN+bumetanide rats (N=6 cells/4 rats). However, at P15-16 ISO application increased spike frequency in slices obtained from WIN+bumetanide rats (N=6 cells/4 rats). However, at P15-16 ISO application increased spike frequency in slices obtained from WIN+bumetanide rats (N=6 cells/4 rats). However, at P15-16 ISO application increased spike frequency in slices obtained from WIN+bumetanide rats (N=6 cells/4 rats).

Supplementary Figure S3: Homing behavior is unaffected in pups exposed to WIN during the lactation period. a: The latency to reach the nest in the homing apparatus does not differ between pups from Sham- or WIN-treated dams at P10 (P=0.8754, Mann-Whitney) or P13 (P=0.8707, Mann-Whitney). **b:** Similarly, no significant difference was found for the total time spent in the nest between pups from Sham- or WIN-treated dams at P10 (P=0.8411, Mann-Whitney) or P13 (P=0.2318, Mann-Whitney). **c:** Finally, no difference was found in the total number of crossings made during the test by pups from Sham- vs WIN-treated dams at P10 (P=0.0586, Mann-Whitney) or P13 (P=0.1364, Mann-Whitney). P10: Sham, N=11 pups/4 litters; WIN, N=14 pups/3 litters. P13: Sham, N= 21 pups/2 litters; WIN, N= 22 pups/2 litters). Data are shown as median with interguartile ranges and minimal to maximal values.

Supplementary Figure S4: Example traces for cell-attached recordings in Figure 1 (Sham recordings). Scale bars represent 50pA x 1min.

Supplementary Figure S5: Example traces for cell-attached recordings in Figure 2 (WIN recordings). Scale bars represent 50pA x 1min.

Scheyer et al.

Supplementary Figure S6: Example traces for cell-attached recordings in Figure 2 (THC). Scale bars represent 50pA x 1min.

Supplementary Figure S7: Example traces for cell-attached recordings in Figure 3 (AM+WIN). Scale bars represent 50pA x 1min.

KCC2/GAPDH	P10	P15	P21	
Male	N=4	N=4	N=4	
Sham	1.227	3.033	4.098	
Female	N=4	N=4	N=4	
Sham	1.164	3.805	4.581	
Student's	M vs F	M vs F	M vs F	
T-test (P)	P=0.8114	P=0.4325	P=0.2321	
Male	N=3	N=4	N=5	
WIN	1.363	2.011	2.977	
Female	N=3	N=4	N=5	
WIN	1.409	2.679	3.315	
Student's	M vs F	M vs F	M vs F	
T-Test (P)	P=0.9382	P=0.3912	P=0.3296	

NKCC1/GAPDH	P10	P15	P21	
Male	N=4	N=4	N=4	
Sham	1.000	0.983	1.000	
Female	N=4	N=4	N=4	
Sham	1.000	1.022	0.999	
Student's	M vs F	M vs F	M vs F	
T-test (P)	P>0.9999	P=0.6065	P>0.9999	
Male	N=3	N=4	N=5	
WIN	0.941	0.917	0.989	
Female	N=3	N=4	N=5	
WIN	0.904	0.872	0.877	
Student's	M vs F	M vs F	M vs F	
T-Test (P)	P=0.6885	P=0.6912	P=0.1990	

Supplementary Table S1: Sex-distribution of KCC2 and NKCC1 Western Blot analyses. Samples used in Western blot analyses were collected from both male and female rats at all ages. Values for individual groups are expressed as rats (N) and protein/GAPDH outcomes. No significant differences were found between sexes within treatment groups at any of the tested ages for either KCC2 or NKCC1.

KCC2	P10	P15	P21	
fold-change				
Male	N=6	N=5	N=5	
Sham	1.097	1.665	1.662	
Female	N=5	N=4	N=5	
Sham	1.233	1.516	1.667	
Student's	M vs F	M vs F	M vs F	
T-test (P)	P=0.2981	P=0.2873	P=0.9685	
Male	N=6	N=7	N=5	
WIN	1.158	1.671	1.541	
Female	N=4	N=4	N=5	
WIN	1.153	1.602	1.652	
Student's	M vs F	M vs F	M vs F	
T-Test (P)	P=0.9837	P=0.8342	P=0.5731	

Supplementary Table S2: Sex-distribution of qPCR data. Samples used in qPCR data were collected from both male and female rats at all ages. Values for individual groups are expressed as rats (N) and KCC2 fold-change. No significant differences were found between sexes within treatment groups responding to either ISO or PTX in slice conditions.

Behavior	Parameter	Treatment	Sex	n	Mean	SEM	P value
							(unpaired
							t test)
USV	Dominant	Sham P09	Male	21	39.59	0.44	0.7497
	frequency	Sham P15		6	42.09	0.89	0.8166
		Sham P09	Female	14	39.34	0.53	
		Sham P15		4	41.73	1.12	
		WIN P09	Male	13	41.84	0.47	0.7093
		WIN P15		8	38.59	0.84	0.3368
		WIN P09	Female	18	42.08	0.41	
		WIN P15		6	38.52	0.65	
		THC P09	Male	19	42.22	0.50	0.8882
		THC P15		5	39.05	1.16	0.9648
		THC P09	Female	17	42.12	0.58	
		THC P15		5	39.11	0.70	
		AM+WIN P09	Male	9	39.01	0.30	0.8396
		AM+WIN P09	Female	7	39.16	0.75	
		Bumetanide P09	Male	3	41.26	2.38	0.9898
		Bumetanide P09	Female	3	41.22	0.57	
		Bumetanide + WIN P09	Male	9	40.46	0.84	0.7482
		Bumatanide + WIN P09	Female	6	40.97	1.41	

Supplementary Table S3: Sex-distribution of USV data. Samples used in USV data were collected from both male and female rats at all ages. Values for individual groups are expressed as rats (N) and dominant frequency. No significant differences were found between sexes within treatment groups.

Behavior	Parameter	Treatment	Sex	n	Mean	SEM	P value (unpaired
				10	45.67	2.067	t test)
Homing	Latency (s)	Sham P10	Male	10	15.67	2.867	0.9421
		Sham P13		4	64.24	18.76	0.3337
		Sham P10	Female	11	15.39	2.510	
		Sham P13		7	42.17	6.785	
		WIN P10	Male	10	11.33	2.179	0.0622
		WIN P13		8	37.65	5.808	0.0090
		WIN P10	Female	10	18.01	2.551	
		WIN P13		6	65.23	6.515	
Homing	Time in	Sham P10	Male	10	205.3	7.881	0.8996
	nest (s)	Sham P13		4	176.1	18.76	0.3337
		Sham P10	Female	10	206.6	5.937	
		Sham P13		7	198.1	6.785	
		WIN P10	Male	10	220.8	5.022	0.1950
		WIN P13		8	202.7	5.808	0.0072
		WIN P10	Female	10	202.3	12.46	
		WIN P13		6	174.6	6.327	
Homing	Crossings	Sham P10	Male	10	62.70	7.025	0.6989
		Sham P13		4	11.50	1.936	0.0638
		Sham P10	Female	10	66.09	4.984	
		Sham P13		7	17.29	1.848	
		WIN P10	Male	10	51.30	3.232	0.2261
		WIN P13		8	11.63	1.762	0.8571
		WIN P10	Female	10	62.80	8.396	
		WIN P13		6	11.17	1.759	

Supplementary Table S4: Sex-distribution of homing data. Samples used in homing data were collected from both male and female rats at all ages. Values for individual groups are expressed as rats (N) and units (seconds for latency and time in nest or centimeters for distance travelled).

Scheyer et al.

Supplement

Supplementary Methods

Electrophysiology slice-preparation and acquisition: rats were anesthetized with isoflurane and 300 µm-thick coronal slices were prepared in a sucrose-based solution (in mM: 87 NaCl, 75 sucrose, 25 glucose, 2.5 KCl, 4 MgCl₂, 0.5 CaCl₂, 23 NaHCO₃ and 1.25 NaH₂PO4) at 4°C using an Integraslice vibratome (Campden Instruments). Slices were stored for one hour at 32°C in artificial cerebrospinal fluid (ACSF; in mM: 130 NaCl, 2.5 KCl, 2.4 MgCl₂, 1.2 CaCl₂, 23 NaHCO₃, 1.2 NaH₂PO₄ and 11 glucose), equilibrated with 95% O₂/5% CO₂. Slices were then stored at room temperature until recording. All experiments were conducted at 30–32°C in ACSF. Cell-attached patch-clamp recordings were made in PFC layer 5, collected using an Axopatch-1D amplifier (Molecular Devices) and acquired with Clampex 10.2 acquisition Software via a Digidata 1440A (Molecular Devices). Pyramidal neurons in PFC layer 5 were visualized using an infrared illuminated upright microscope (Olympus BX51WI). Slices were superfused at 2ml/min with ACSF.

Single-channel pipette solution, in mM: 120 NaCl, 20 TEA-Cl, 5 KCl, 5 4-Aminopyridine, 0.1 CaCl₂, 10 MgCl₂, 10 Glucose, 10 HEPES, 0.01 GABA.