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SUMMARY

Tumor-associated macrophages (TAMs) are
frequently the most abundant immune cells in can-
cers and are associated with poor survival. Here,
we generated TAM molecular signatures from
K14cre;Cdh1flox/flox;Trp53flox/flox (KEP) and MMTV-
NeuT (NeuT) transgenic mice that resemble human
invasive lobular carcinoma (ILC) and HER2+ tu-
mors, respectively. Determination of TAM-specific
signatures requires comparison with healthy mam-
mary tissue macrophages to avoid overestimation
of gene expression differences. TAMs from the
two models feature a distinct transcriptomic pro-
file, suggesting that the cancer subtype dictates
their phenotype. The KEP-derived signature reliably
correlates with poor overall survival in ILC but not
in triple-negative breast cancer patients, indicating
that translation of murine TAM signatures to pa-
tients is cancer subtype dependent. Collectively,
we show that a transgenic mouse tumor model
can yield a TAM signature relevant for human
breast cancer outcome prognosis and provide a
generalizable strategy for determining and applying
immune cell signatures provided the murine model
reflects the human disease.
INTRODUCTION

The immune system plays an important role during tumor devel-

opment, progression, and therapy response, and immune cells

have evolved into attractive targets of therapeutic manipulation

(Chen and Mellman, 2013; Shalapour and Karin, 2015; Nobel

Media, 2018). Ongoing and future attempts to fine-map the im-

mune cell landscape of tumors will give us a full picture of the tu-
Cell Re
This is an open access article under the CC BY-N
mor microenvironment (TME) and may provide novel biomarkers

and therapeutic targets (Ruffell et al., 2012). Myeloid cells and, in

particular, tumor-associated macrophages (TAMs) are a major

component of the TME (Noy and Pollard, 2014). In the majority

of cancer types, TAMs are often described as pro-tumorigenic,

and an enrichment of TAMs, as defined by immunohistochem-

istry and flow cytometry, has been linked to poor clinical out-

comes in several cancers, including breast and lung cancer

(Quatromoni and Eruslanov, 2012; Zhao et al., 2017).

Large multi-omics datasets from different cancers consisting

of thousands of human samples have been used to classify tu-

mors on the basis of immune cell-derived molecular signatures

that could potentially be exploited to improve patient stratifica-

tion and therapeutic strategies (Gentles et al., 2015; Hoadley

et al., 2018; Thorsson et al., 2018). For example, in colorectal

cancer and T cell lymphomas, T cell gene signatures based on

transcriptomic data were successfully used to diagnose, clas-

sify, and prognosticate disease outcome (Iqbal et al., 2010;

Johdi et al., 2017).

Most recently, Cassetta et al. (2019) elegantly illustrated

that TAM transcriptomes are altered in human breast cancer.

Signature changes in aggressive breast cancer subtypes were

associated with shorter disease-specific survival. Alternative ap-

proaches using human level information to achieve outcome

predictors did not use TAMs specifically (Hironaka-Mitsuhashi

et al., 2017; Tran et al., 2018; Klimczak et al., 2019; McCart

Reed et al., 2019). Despite the enormous progress in the decon-

volution of the immune infiltrate in cancer (Lyons et al., 2017), the

use and value of TAM-derived signatures for clinical prognosis

are far from being understood.

Previous approaches in murine cancer models to define TAM-

associated transcriptome signatures might have been hampered

by the fact that macrophages possess a tissue-specific tran-

scriptional profile (Gosselin et al., 2014; Lavin et al., 2014; Mass

et al., 2016). TAM-associated transcriptome signatures have

often been determined by comparison of TAMs with classical

sources of macrophages, such as the spleen or the peritoneum

(Biswas et al., 2006; Ojalvo et al., 2009). In light of recent findings
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(Gosselin et al., 2014; Lavin et al., 2014; Mass et al., 2016), we

would hypothesize that such approaches would not lead to

TAM-specific signatures but would mainly reflect tissue-specific

differences. Consequently, the identification of TAM-specific sig-

natures would not be possible without access to healthy macro-

phages of the same organ. Such reference data are still very

limited, particularly in humans (Cassetta et al., 2019), and efforts

such as the Human Cell Atlas (Regev et al., 2017) are not yet

ready to provide such information. Whether the generation of

cell-type-specific signatures by single-cell transcriptomics (Tir-

osh et al., 2016; Lavin et al., 2017; Azizi et al., 2018; Lambrechts

et al., 2018; Savas et al., 2018) will be sufficient to infer TAM-spe-

cific signatures is currently not clear, considering the sparse na-

ture of single-cell RNA sequencing (RNA-seq) data.

In light of current shortcomings, we propose an alternative

approach to define TAM-specific signatures and test their clin-

ical applicability for outcome prognosis. We first defined TAM

signatures in well-defined murine tumor models by comparison

with macrophages from different organs, including the organ of

tumor origin. For proof of principle, we generated TAM signa-

tures from the K14cre;Cdh1flox/flox;Trp53flox/flox (KEP) murine

breast cancer model (Derksen et al., 2006), which recapitulates

human invasive lobular carcinoma (ILC), the second most com-

mon histotype in humans, accounting for 10%–15% of all

breast cancers, and the MMTV-NeuT (NeuT) breast cancer

model (Boggio et al., 1998), which has been indicated to

resemble HER2-positive breast cancers. Next to showing a

shared transcriptional profile, TAMs from the two models pre-

sent unique molecular signatures, illustrating the impact of

the tumor subtype on TAMs. Tumor model-specific TAM signa-

tures were then applied to clinical samples from large existing

multi-omics studies (Curtis et al., 2012; Ciriello et al., 2015) to

assess the value of these TAM-specific signatures for prognos-

ing clinical outcome.

RESULTS

Characterization of TAMs in Two Murine Breast Cancer
Models
We first characterized TAMs isolated from two spontaneousmu-

rine breast cancer models: the KEP (FVB background) (Derksen

et al., 2006) and the NeuT (BALB/c background) models (Boggio

et al., 1998; Figure 1A). Mammary tumorigenesis in KEPmice re-

sembles ILC in its pathology and progression (Derksen et al.,

2006), while mammary tumors arising in NeuT mice have previ-

ously been shown to resemble HER2+ breast tumors (Boggio

et al., 1998). Assessment of the myeloid cell compartment in
Figure 1. Mammary Tumorigenesis in Two Transgenic Mouse Models

(A) Schematic representation of the macrophage sample collection for RNA seq

(B and C) Representative dot plots of a KEP mammary tumor (B) and a NeuT tu

6G�Ly-6C+) and neutrophils (Ly-6G+Ly-6Clow) in the F4/80+CD11b+ TAM popula

(D) Representative images of immunohistochemical F4/80 staining of a mamma

4-month-old KEP mouse, and a KEP tumor (top row) and of a mammary gland o

NeuT mouse, and an NeuT mammary tumor (lower row); scale bar, 20 mm.

(E) Average percentage of CD11b+ F4/80+ macrophages gated on live cells in ma

glands and mammary tumors of NeuT mice (right graph). Data are mean ± SEM fr

(*p < 0.05 and **p < 0.001).

See also Figures S1 and S2.
mammary tumors of both breast cancer models identified a

CD11bhiF4/80hi macrophage population, hereafter referred to

as TAMs, as well as a CD11bhiF4/80low/� population that con-

tained Ly-6Chi monocytes, Ly-6GhiLy-6Clow neutrophils, and in

the KEP model also a Ly-6CloLy-6Glo population (Figures 1B

and 1C). Comparison by immunohistochemistry showed that

both the KEP and NeuT models were characterized by an

increased accumulation of TAMs (Figure 1D), and their numbers

represented 30% and 6% of the total live cells in the mammary

tumors, respectively (Figure 1E).

Further characterization of the macrophage phenotype

showed that compared with controls, significantly fewer TAMs

from the KEP but not the NeuT model express the mannose re-

ceptor CD206, while a higher proportion of TAMs in the NeuT

model and not in the KEP model expresses MHC-II compared

with macrophages from the mammary gland (Figures S1A–

S1D). In addition, a significant increase in the frequency of

Ki67+ TAMs was observed only in the KEP model (Figures S1E

and S1F). On the basis of these data, we defined and sorted

CD11bhiF4/80hi breast cancer TAMs, as well as tissue macro-

phages from the mammary gland of KEP and NeuT mice

(MTMs [KEP model], MTMs [NeuT model]), mammary tissue

macrophages from KEP mice containing early neoplastic le-

sions, but not palpable tumors (MTMs [PRE-KEP model]), and

spleen and bone marrow of wild-type (WT) and mammary tu-

mor-bearing mice (WT spleen/BM [KEP/NeuT model] and

spleen/BM [KEP/NeuT model]) for genome-wide assessment

of transcriptional regulation (Figures S2A–S2H).

Tissue Origin Dictates Transcriptional Regulation of
TAMs
Considering findings demonstrating that tissue macrophages

are characterized by organ-specific transcriptional regulation

(Lavin et al., 2014), we first compared the transcriptome profiles

of the TAMs derived from the two breast cancer models (KEP,

NeuT) with publicly available TAM profiles of two lung cancer

models (Lewis lung carcinoma cell line and lung adenocarci-

noma cell line) and with the profiles of tissue macrophages of

the mammary gland or lung, respectively. In addition, macro-

phages harvested from seven organs derived from either WT,

mammary tumor-bearing, or helminth-infected mice as well as

other immune and epithelial cells (Squadrito et al., 2012; Thomas

et al., 2012; Lavin et al., 2014; Choi et al., 2015; Lu et al., 2015)

were used as controls (Figure 2A; Figures S3A and S3B). Cells

of the macrophage/monocyte lineage clustered together, sepa-

rated from T cells, neutrophils, natural killer (NK) cells, and

epithelial cells (Figure S3C).
Is Characterized by Macrophage Influx

uencing.

mor (C) stained for F4/80 and CD11b, confirming absence of monocytes (Ly-

tion. Dot plots are gated on CD45+ cells.

ry gland from a WT FVB mouse, an early lesion in the mammary gland of a

f a WT BALB/c mouse, an early lesion in the mammary gland of a 2-month-old

mmary glands and mammary tumors of KEP mice (left graph) and in mammary

om n = 5 or 6 animals per group and were analyzed using a Mann-Whitney test
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To elaborate the relationship between the different tissuemac-

rophages and cancer models, we performed sample-sample co-

expression network analysis (CNA) on the basis of Pearson cor-

relation (cutoff 0.977) on all present genes. CNA showed a

distinct cluster consisting of mammary gland tissue macro-

phages (MTMs) and TAMs derived from both breast cancer

models, strongly suggesting that the tissue of origin dictates

most of the transcriptional regulation in TAMs (Figure 2B). This

was similarly true for the lung cancer TAMs, which clustered

together with the healthy lung tissuemacrophages. To computa-

tionally validate these findings, we performed hierarchical clus-

tering (HC) on the 1,000 genes with the highest variance within

the dataset (Figure 2C) and generated a Pearson correlation co-

efficient matrix (PCCM) (Figure 2D). Both approaches supported

our initial findings, clearly indicating that the TAMs of the two

breast and lung cancer models were part of the mammary gland

or lung clusters, respectively. Similarly, macrophages derived

from spleen or bone marrow of tumor-bearing KEP or NeuT

mice also clustered with the respective organ (Figures 2C and

2D). Moreover, we observed that the transcriptional differences

between TAMs and their respective healthy tissue counterparts

were less pronounced than those between healthy and hel-

minth-infected animals (Figures 2C and 2D).

As an alternative to statistical models, we used CNA on all

genes and created a scale-free network (R2 = 0.772) on the basis

of a Pearson correlation cutoff of 0.87 (Figures S3D and S3E). A

total of 28 clusters were identified in the CNA (construction of

CNA–automated [CoCena2]) cluster-condition heatmap (Fig-

ure 2E), and specific gene signatures for each of themacrophage

samples were discovered in this network, as depicted in Fig-

ure S3F. We detected modules associated with classic macro-

phage genes, such as scavenger receptors (Cd163, Mrc1,

Cd36) and transcription factors (Maf) in MTMs, whereas the

pro-inflammatory Il12b, the integrin Itgb8, and the G protein-

coupled receptor Gpr31b associated mainly with breast cancer

TAMs (Figure 2F). Taken together, our data suggest that the tis-

sue of origin dictates the transcriptomes not only of healthy

tissue macrophages but also of TAMs and dictates their tran-

scriptional programs.

Identification of TAM-Specific Transcripts
Although the comparison of TAMs with different tissue macro-

phage populations revealed that the tissue of origin is the major

driver of the global transcriptome, we were also interested to

determine truly TAM-specific gene expression profiles. In previ-

ous reports, TAM functionalities have been compared with

macrophages isolated from a different tissue than the tumor

origin (Biswas et al., 2006; Ojalvo et al., 2009). In contrast,
Figure 2. Tissue of Origin Determines the Fate of the Macrophage Phe

(A) Schematic representation depicting the bioinformatics workflow.

(B) Network visualization of sample-centered correlation analysis, where each no

(C and D) HC (C) and PCCM (D) maps based on the 1,000 genes with the hig

macrophages.

(E and F) CoCena2 cluster-condition heatmap (E) and (F) CoCena2 visualization

mammary gland/tumors are colored according to the clustering as seen in cluste

them. GFC, group fold change.

See also Figure S3.
we defined such genes by direct comparison of breast cancer

TAMs with macrophages from age-matched healthy mammary

gland tissue and related them to those derived from compari-

sons of TAMs with other tissue-resident macrophages (Fig-

ure 3A). We used Venn diagrams to compare KEP-TAMs with

either MTMs or splenic macrophages (KEP model) (Figure 3B),

as well as splenic macrophages (KEP model) with either KEP-

TAMs or MTMs (KEP model) (Figure 3C). We found that the

fold change (FC) of differentially expressed (DE) genes in the

TAMs versus splenic macrophages correlated better with the

FC of DE genes in the MTMs versus splenic macrophages

(KEP model) (r = 0.8) as opposed to the FC of DE genes in

the TAMs versus MTMs (KEP model) (r = 0.28), indicating an

overestimation of differential gene expression by TAMs

compared with splenic macrophages (Figures 3B and S3C).

This was also reflected in the respective FC/FC plots, in which

many genes were similarly DE when plotting KEP-TAMs versus

either MTMs (KEP model) or splenic macrophages (Figure S4A).

Plotting KEP-TAMs versus splenic macrophages against MTMs

indicated that the TAMs and MTMs displayed a transcriptome

profile substantially different from that of splenic macrophages

(Figure S4B). Similarly, the same pattern was observed in the

NeuT model (Figures S4C and S4D) or when splenic macro-

phages were replaced with bone marrow macrophages in

both breast cancer models (Figures S4E–S4H).

To identify truly TAM-associated cell surface markers, we

plotted genes elevated in TAMs in comparison with either

MTMs or splenic macrophages from both models (Figure 3D).

This analysis revealed a small set of genes that was DE against

both MTMs and splenic macrophages (cluster 3). Moreover,

we also identified genes that were DE only against splenic mac-

rophages (cluster 2) or MTMs (cluster 1) and that would wrong-

fully be included or excluded fromdownstreamanalysis if splenic

macrophages were to be used as the reference macrophage

population. Collectively, these analyses further support the

notion that the determination of TAM transcriptomic profiles re-

quires comparison with macrophages derived from the same tis-

sue and strongly argue for the careful selection of reference

macrophage populations.

TAM Transcriptomes Differ between Different Breast
Cancer Models
Our experimental setting also allowed us to define tumor model-

specific regulation of macrophages (Figure 4A). To define differ-

ences in TAM transcriptomes between the KEP and the NeuT

model, we performed principal-component analysis (PCA)

(Figure 4B), HC of the 1,000 genes with the highest variance (Fig-

ure 4C), and a PCCM (Figure 4D). All three approaches
notype

de represents one sample.

hest variance within the dataset. Indicated in bold (D) are the disease-state

of all present co-expressed genes in all tissues. Tissue-specific clusters for

r-condition heatmap. Representative cluster-specific genes are noted next to

Cell Reports 29, 1221–1235, October 29, 2019 1225



A

B

C

D

Figure 3. Inter-tissue Comparison Leads to False Interpretation of Changes in TAMs

(A) Schematic representation outlining the bioinformatics approach.

(B and C) Venn diagrams of the comparisons of KEP-TAMs with MTMs and splenic macrophages (KEP model; B) and splenic macrophages with KEP-TAMs and

MTMs (KEP model; C). Correlation plots of the FCs of the DE genes in the comparisons are shown (right) for both Venn diagrams.

(D) Heatmap visualization of z-transformed surface marker (SM) absolute expression values. Overlapping DE genes from KEP and NeuT models were extracted

from FC/FC plots, filtered for SMs, and plotted.

See also Figure S4.
demonstrated that TAMs from both breast cancer models are

more closely related to one another than to MTMs from healthy

or early neoplastic lesions. However, we also identified tumor

model-specific gene alterations in TAMs as depicted in the HC

analysis of KEP and NeuT models (Figure 4C, clusters 5 and 8,

respectively), implying that the tumor subtype also shapes the

transcriptional regulation of TAMs. Two clusters (1 and 4) were
1226 Cell Reports 29, 1221–1235, October 29, 2019
related to the different genetic backgrounds of the models as

the same up- or downregulated genes in KEP-TAMs and

NeuT-TAMs were also seen in MTMs (KEP model) and MTMs

(NeuT model), respectively. Representative genes from clusters

5 (Hif1a, Vegfa, Itgam, Cxcr4, Il1rn) and 8 (Tlr12, Itga8, Itgb8,

Icosl) of the HC are depicted in the model-specific volcano

plots in Figures 4E and 4F.
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We next visualized the DE genes from the comparison of KEP-

TAMs andNeuT-TAMs to the respectiveMTMs in Venn diagrams

and found a small overlap in both the upregulated (17%, upper

diagram) and downregulated (26%, lower diagram) DE genes

(Figure 4G). Because we also had the opportunity to isolate

MTMs (PRE-KEP model), we could determine whether there

were already transcriptional changes in macrophages at this

stage. However, the transcriptional changes of MTMs (PRE-

KEP model) to KEP-TAMs were comparable with those of

healthyMTMs to KEP-TAMs, as shown in the respective Venn di-

agrams for upregulated (70%, upper diagram) and downregu-

lated (50%, lower diagram) DE genes, suggesting that they are

similar to each other (Figure 4H).

On the basis of the DE genes in both tumor models, we in-

ferred overall biological changes by Gene Ontology (GO) enrich-

ment analysis (GOEA) (Figures S5A–S5C). Common breast

cancer TAM ontology terms included proliferation-related pro-

cesses, regulation of innate immune responses and cell migra-

tion-related processes, wound healing processes, and T cell

activation processes (Figure S5A), whereas vasculature devel-

opment and cell cycle-related processes (KEP-TAMs) and

regulation of cell growth and angiogenesis-related processes

(NeuT-TAMs) were associated with model-specific TAM popula-

tions (Figures S5B and S5C). Notably, the cell cycle-related pro-

cesses were significantly enriched only in KEP-TAMs which is in

line with the phenotypical observations of Figures S1E and S1F.

In conclusion, our data show that the breast cancer subtype con-

tributes to TAM transcriptional differences in different murine

models.

Identification of TAM-Associated Hubs by CNA
To link our information concerning differential transcriptional

regulation within TAMs of different models to potential regulatory

circuits, we used co-regulation of gene expression as our model

and applied CNA on the DE genes between TAMs and MTMs in

at least one of the breast cancer models (Figure 5A). The scale-

free network (Figure 5B; R2 = 0.714) comprised eight modules

and confirmed that the transcriptomes of KEP-TAMs and

NeuT-TAMs consisted of genes that followed shared (turquoise

module) and model-specific expression patterns (blue and

magenta modules) (Figure 5C). Immune-related DE genes that

were co-expressed are shown for the turquoise (Ccr5, Cx3cr1,

Cxcl16, Ifngr2, Itgav, Mmp14), blue (Nt5e, Cxcr4, Hif1a, Itgam)

and magenta (Icosl, Itga8, Itgb8, Tlr12) modules in Figure 5D.

We then went one step further and investigated the potential

hierarchies in TAM-associated gene regulation by building intra-

cluster gene interaction networks (I-GINs). From the previous
Figure 4. Breast Cancer Subtype Influences TAM Phenotype: Convent

(A) Schematic representation outlining the bioinformatics approach.

(B) PCA using all present genes.

(C) HC map based on the 1,000 genes with the highest variance within the datas

(D) PCCM map based on the 1,000 genes with the highest variance within the da

(E) Volcano plot of the DE genes from the comparison KEP-TAMs with MTMs (K

(F) Volcano plot of the DE genes from the comparison NeuT-TAMs with MTMs (N

0.05) are indicated in red, and representative upregulated DE genes are noted.

(G) Venn diagram of the comparisons of KEP-TAMs with MTMs (KEP model) and

(H) Venn diagram of the comparisons of KEP-TAMs with MTMs (PRE-KEP mode

See also Figure S5.
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network analysis, we first focused on the gene module changed

in both TAM models (turquoise module). We visualized the top

25% nodes on the basis of degree and correlation and the top

25% correlation-ranked edges to identify known interactions

from the STRING protein-protein interactions database (Fig-

ure 5E). Subsequently, all edges to hubs were kept, allowing a

maximum of two edges between hubs. Already 46% of the iden-

tified interactions within the common breast cancer TAM

network were known on the basis of protein-protein interaction

databases. Among the selected candidates, we detected cyto-

kine receptors (Ifngr2), chemokines (Cxcl16), and metalloprotei-

nases (Mmp14), which reflect the immune activation of breast

cancer TAMs in the TME (Figure 5F). Further assessment of the

KEP-TAM- and NeuT-TAM-specific modules revealed the co-

regulation of hypoxia factor (Hif1a), 50-nucleotidase (Nt5e) and

scavenger receptors (Msr1) in the KEP-TAM dataset and path-

ogen recognition receptors (Tlr12), co-stimulatory molecules

(Icosl) and integrins (Itgax) in the NeuT-TAM dataset (Figures

S5E and S5F). Finally, the co-expressed genes detected here

presented a remarkably high degree of overlap with the DE

genes identified by statistical models in Figure 4C, further

strengthening their relevance as breast cancer model-specific

biomarkers in TAMs.

Model-Specific TAMGene Signature PrognosesDisease
Outcome in Humans
To determine the clinical relevance of the identified murine

model-specific TAM signatures, we next set out to translate

our findings to humans. For this purpose, we generated a unique

list of TAM-associated genes defined by statistical and co-

expression models (Figure 6A), identifying 198 KEP-TAM-asso-

ciated genes, 227 NeuT-associated genes, and 116 common

breast cancer TAM genes (Figure 6B). The 10 most significant

GO terms for each of the three gene lists are shown in Figure 6C

and include chemotaxis-related terms (common breast cancer

TAMs), nucleotide metabolism (KEP-TAMs), and cell activa-

tion/regulation of adaptive immune cells (NeuT-TAMs). We

selected one common breast cancer TAM gene (Cx3cr1) and

one KEP-TAM-associated gene (Nt5e) on the basis of FC and

antibody availability (Table S1) and validated these genes at

the protein level. In line with the RNA expression levels, Cx3cr1

protein levels were significantly elevated in TAMs from both

models, whereas Nt5e (also known as CD73) was selectively

increased in KEP-TAMs (Figures S1G–S1J).

As a next step, we interrogated RNA-seq samples derived

from ILC patients within The Cancer Genome Atlas (TCGA) (n =

125) (Ciriello et al., 2015) and the METABRIC (n = 147) (Curtis
ional Approach

et. Representative cluster-specific genes are noted next to them.

taset.

EP model).

euT model). DE genes (FC R 2, false discovery rate [FDR]-adjusted p value%

NeuT-TAMs with MTMs (NeuT model).

l) and KEP-TAMs with MTMs (KEP model).
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et al., 2012) databases for their macrophage content (Figure 6D;

Figure S6A). We used linear support vector regression (LSVR)

and the LM22 macrophage gene signature set (Newman et al.,

2015) to describe the immune cell content of these samples.

When ranking the samples for predicted macrophage content,

it became clear that ILC patients have quite variable amounts

of macrophages within their TME (Figure 6D). We also tested

whether the specific murine TAM signatures could be identified

(Figure S6A). Indeed, when applying LSVR using signatures

derived from KEP-TAMs, NeuT-TAMs, and respective MTMs,

the KEP-TAM signature represented a major part in most of

the ILC patients (TCGA cohort), while the NeuT-TAM signature

was present to a lower extent in most of the cases (Figure S6A),

indicating that the formermight better reflect the biology of TAMs

in ILC patients.

On the basis of these encouraging results, we assessed

the prognostic value of these breast cancer model-specific

TAM signatures for disease outcome. Kaplan-Meier analysis

showed that the KEP-TAM signature correlated with worse

clinical outcomes (p = 0.037) in ILC patients from the TCGA

cohort (Figure 6E) and the METABRIC cohort (p = 0.048) (Fig-

ure S6B). Importantly, the NeuT-TAM signature was not en-

riched in ILC patients or did not correlate with better or worse

overall survival in both patient cohorts (Figure 6F; Figure S6C).

To further prove the validity of these findings, we used a gene

signature from the comparison of KEP-TAMs with splenic mac-

rophages, random and LSVR-derived total human macrophage

signatures and assessed whether they were prognostic of the

outcome in the TCGA and METABRIC ILC cohorts (Figures

6G and 6H; Figures S6D–S6G). In fact, none of these signatures

showed a prognostic value of disease outcome of ILC patients

in both cohorts.

Using this approach, we then tested whether the model-spe-

cific signatures could be prognostic for human triple-negative

breast cancer (TNBC). Neither the KEP-TAM nor the NeuT-

TAM signature correlated with worse or improved overall survival

of TNBC patients (Figure S6). Interestingly, the ILC patients

showing enrichment of the KEP-TAM but not of other signatures

(common breast cancer TAM, NeuT-TAM, random signatures, or

splenic macrophages) also displayed enrichment of a specific

breast cancer cell proliferation signature. Indeed, the KEP-

TAMs themselves showed enrichment of cell cycle-related GO

terms (Figure S5D). Collectively, these data indicate that the gen-

eration of meaningful gene signatures for outcome prognosis

derived from TAMs requires a matched clinically relevant murine

model and the comparison of TAMs with their healthy tissue

counterparts (here MTMs) instead of unrelated macrophage

sources such as spleen or bone marrow.
Figure 5. Breast Cancer Subtype Influences TAM Phenotype: Co-expr

(A) Schematic representation outlining bioinformatics workflow.

(B) CoCena2 logged network degree distribution with linear fitting.

(C) CoCena2 cluster-condition heatmap.

(D) CoCena2 visualization of all present co-expressed genes. Network nodes ar

specific genes are noted.

(E) Schematic representation outlining bioinformatics workflow for I-GIN constru

(F) I-GIN node coloring represents regulatory or receiving status obtained from aB

proposed links to strongest correlated neighbors. Candidate genes mentioned in

See also Figure S5.
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DISCUSSION

It is widely acknowledged that the immune system plays an

important role in cancer development and progression (Shala-

pour and Karin, 2015), with macrophage abundance associating

with disease outcomes (Aras and Zaidi, 2017; Poh and Ernst,

2018). Here we provide a strategy to derive TAM-specific gene

signatures and demonstrate that they can be used as prognostic

biomarkers for overall survival in two independent ILC cohorts.

These signatures could only be generated by proper comparison

with the healthy tissue macrophage counterparts, but not by

comparison with macrophages derived from unrelated tissues

(e.g., spleen or bonemarrow). Moreover, we show that the global

transcriptome of TAMs is defined mainly by tissue signals,

although the tumor subtype also plays a crucial role in shaping

the TAM transcriptional networks. Collectively, our approach

illustrates how transcriptional regulation of TAMs derived from

a murine model closely resembling the human disease (here

ILC) can be successfully translated into clinically meaningful dis-

ease outcome prognosis.

Previous studies have defined TAM gene signatures by

comparing TAMs with healthy tissue macrophages derived

from tissues, such as the spleen (Biswas et al., 2006; Ojalvo

et al., 2009). However, recent evidence highlighted the diversity

of the transcriptomes and epigenomes of the several tissue

macrophage populations (Gosselin et al., 2014; Lavin et al.,

2014). With these findings in hand, it was conceivable to address

whether such definitions would indeed lead to TAM-specific sig-

natures. We provide compelling evidence that TAMs still share

most genes with their healthy tissue counterparts and that com-

parison with macrophage populations from other organs mainly

reflect tissue differences. As a consequence, we strongly pro-

pose to study TAMs in the context of their healthy tissue counter-

parts when searching for truly TAM-related changes in gene

expression and functions. Clearly, this can be more easily

achieved in murine model systems compared with human

cancer. More recently, Cassetta et al. (2019) reported on a

37-gene TAM signature derived from four breast cancer patients.

This signature was mainly enriched in the Her2 breast cancer

subtype or the ‘‘claudin-low’’ molecular subtype as defined by

the PAM50 classification (Parker et al., 2009) and could also be

linked to worse outcome prognosis, albeit not specifically for a

particular breast cancer subtype.

Another important finding of our study is the observation that

only a TAM-specific signature derived from the KEP model

was prognostic for outcome in ILC patients. Similar results

were reported by Michea et al. (2018), who showed that tumor-

infiltrating DCs in two subtypes of human breast cancer express
ession-Based Approach

e colored according to their cluster membership, and representative cluster-

ction for breast cancer TAM-specific genes (turquoise cluster).

ayesian approach and points out highly co-expressed genes and their known or

the text are highlighted in yellow boxes. GFC, group fold change.
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survival-prognosis signatures in a subset- and tumor subtype-

specific manner. In our case, although the two breast cancer

models shared tumor-associated changes, we also observed

and validated in silico functionality differences between the

two murine models, such as the cell cycle. This also points to-

ward an important aspect, namely, that therapeutic interventions

capable of changing the biology of the tumor, including cells

within the TME, can also have an impact on the prognostic value

of TAM-associated signatures. Such changesmust be taken into

consideration for further development of signatures as potential

diagnostic tools.

We also asked whether murine TAM signature genes could be

further validated on protein level. We chose two genes as exam-

ples; one from the common breast cancer TAM (Cx3cr1) and one

from the KEP-TAM (Nt5e/Cd73) signature. Cx3cr1 is expressed

by a distinct subset of pro-angiogenic macrophages that

contribute to breast and lung cancer metastasis (Pucci et al.,

2009; Qian et al., 2009), while Nt5e/Cd73 has been demon-

strated to confer tumor resistance to anti-4-1BB/CD137 therapy,

and its blockade has been shown to inhibit breast tumor growth

and metastasis in pre-clinical models (Stagg et al., 2010; Chen

et al., 2019). On the basis of these findings, it is conceivable

that their prognostic value could be also evaluated on protein

level in prospective studies.

Differences in functions between breast cancer TAM popula-

tions have been previously described (Qian and Pollard, 2010;

Kim and Zhang, 2016). For instance, breast cancer TAM popula-

tions in different tumor models have been shown to differ

in migratory behavior and their ability to uptake fluorescent

dextran (Egeblad et al., 2008). Similarly, macrophage function

can differ with varying oxygen levels across different tumor

models (Movahedi et al., 2010; Casazza et al., 2013). Moreover,

in the MMTV-PyMT mouse model both MTMs and TAMs are

found in themammary tumors, but only TAMs play a role in tumor

progression (Franklin et al., 2014; Tymoszuk et al., 2014). Collec-

tively, our findings show that the tumor subtype affects the

phenotype of TAMs inducing a unique TAM signature in the

two models.

Although concerns have been raised about the validity of mu-

rine cancer models (Mak et al., 2014), we demonstrate here that

an appropriate cancer model such as the KEP can directly lead

to clinically translatable results, here the generation of prog-

nostic signatures TAM transcriptomes, that could be tested in

prospective clinical trials to assess their performance. In this

context, it is important to stress that only the KEP-TAM-derived

and not the NeuT-TAM-based gene signature was informative

for the ILC patient cohorts. For TNBC patients, we could not

identify a signature from the murine NeuT or the KEP model
Figure 6. KEP-TAM-Specific Signature Prognoses Overall Survival in I

(A) Schematic representation depicting the bioinformatics approach.

(B) Venn diagrams of overlapping CoCena2- and ANOVA-derived gene sets for KE

map of the union of KEP-TAM-, NeuT-TAM-, and breast cancer TAM-specific ge

(C) Top ten most significant GO terms for the common breast cancer TAM, KEP

(D) The LM22 signature was used as input to identify the relative fraction of seve

(E–H) Kaplan-Meier survival analysis of TCGA ILC patients. ILC specimens having

and CIBERSORT (H) macrophage signatures are visualized in red line and numb

higher than 2 marks indicates significant enrichment of gene signature.

See also Figure S6 and Table S1.
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that was prognostic, arguing that the KEP is sufficientlymodeling

only ILC. Together, these findings illustrate the requirement for

murine tumor models that match the patient tumor subtype.

Such models are then ideally suited to address further questions

concerning the role of the myeloid cell compartment within the

TME (Salvagno et al., 2019).

Although we could successfully translate population-level in-

formation derived from the KEP model to a clinical question,

other questions might need higher resolution analysis such as

can be provided by single-cell omics technologies (Papalexi

and Satija, 2018). Such a question in our study is the assessment

of the underlying heterogeneity in theMTMs (PRE-KEPmodel). It

is very likely that although these cells were found to be transcrip-

tionally very similar to MTMs at the bulk population level, sub-

structure analysis might reveal concealed homogeneous

subsets with distinct transcriptomic profiles that follow a spec-

trum ranging from those of MTMs to KEP-TAMs. In this light, sin-

gle-cell RNA-seq data from fewer than 100 macrophages

derived from 11 patientswere described in an initial study (Ferreri

et al., 2010), and a more recent study profiled more than 45,000

CD45+ cells from 8 patients, also including macrophages (Azizi

et al., 2018). Although particularly the second study highlighted

the enormous heterogeneity of the immune cell compartment

in breast cancer, corroborating previous findings (Iqbal et al.,

2010; Johdi et al., 2017), it is too early to link this rich information

to patient outcome prognosis. Clearly, further studies are

required that link approaches as presented here with these

exciting new technologies to evaluate their clinical potential for

diagnosis, subclassification of disease, and outcome prognosis.
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sez, A., Decaluwé, H., Pircher, A., Van den Eynde, K., et al. (2018). Phenotype

molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24,

1277–1289.

Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad,

M., Jung, S., and Amit, I. (2014). Tissue-resident macrophage enhancer land-

scapes are shaped by the local microenvironment. Cell 159, 1312–1326.

Lavin, Y., Kobayashi, S., Leader, A., Amir, E.D., Elefant, N., Bigenwald, C.,

Remark, R., Sweeney, R., Becker, C.D., Levine, J.H., et al. (2017). Innate im-

mune landscape in early lung adenocarcinoma by paired single-cell analyses.

Cell 169, 750–765.e17.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lu, L.F., Gasteiger, G., Yu, I.S., Chaudhry, A., Hsin, J.P., Lu, Y., Bos, P.D., Lin,

L.L., Zawislak, C.L., Cho, S., et al. (2015). A single miRNA-mRNA interaction

affects the immune response in a context- and cell-type-specific manner. Im-

munity 43, 52–64.

Lyons, Y.A., Wu, S.Y., Overwijk, W.W., Baggerly, K.W., and Sood, A.K. (2017).

Immune cell profiling in cancer: molecular approaches to cell-specific identifi-

cation. NPJ Precis. Oncol. 1, 26.

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to

assess overrepresentation of gene ontology categories in biological networks.

Bioinformatics 21, 3448–3449.

Mak, I.W., Evaniew, N., andGhert, M. (2014). Lost in translation: animal models

and clinical trials in cancer treatment. Am. J. Translat. Res. 6, 114–118.

Mass, E., Ballesteros, I., Farlik, M., Halbritter, F., G€unther, P., Crozet, L., Ja-
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S., M€uller-Holzner, E., Fiegl, H., Böck, G., van Rooijen, N., et al. (2014). In

situ proliferation contributes to accumulation of tumor-associated macro-

phages in spontaneous mammary tumors. Eur. J. Immunol. 44, 2247–2262.

Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package

for comparing biological themes among gene clusters. OMICS 16, 284–287.

Zhao, X., Qu, J., Sun, Y., Wang, J., Liu, X., Wang, F., Zhang, H., Wang, W., Ma,

X., Gao, X., and Zhang, S. (2017). Prognostic significance of tumor-associated

macrophages in breast cancer: a meta-analysis of the literature. Oncotarget 8,

30576–30586.
Cell Reports 29, 1221–1235, October 29, 2019 1235

http://refhub.elsevier.com/S2211-1247(19)31264-1/sref60
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref60
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref61
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref61
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref62
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref62
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref62
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref62
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref63
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref63
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref63
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref63
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref64
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref64
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref64
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref67
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref67
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref67
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref67
https://doi.org/10.1101/472753
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref70
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref70
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref71
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref71
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref71
http://refhub.elsevier.com/S2211-1247(19)31264-1/sref71


STAR+METHODS
KEY RESOURCES TABLE
REAGENT OR RESOURCE SOURCE IDENTIFIER

Antibodies

anti-mouse F4/80 AbD Serotec Cat. No. MCA497; RRID: AB_2098196

biotinylated goat anti-rat IgG SouthernBiotech Cat. No. 3030-08; RRID: AB_2795822

anti-mouse CD45 eBioscience Cat.No. 83-0451-42; RRID: AB_2574712

anti-mouse CD11b Biolegend Cat. No. 101239; RRID: AB_11125575

anti-mouse F4/80 eBioscience Cat. No. 11-4801-82; RRID: AB_2637191

anti-mouse Ly-6G Biolegend Cat.No. 127621; RRID: AB_10640452

anti-mouse Ly-6C eBioscience Cat.No. 48-5932-82; RRID: AB_10805519

anti-mouse CD11b eBioscience Cat. No. 17-0112-81; RRID: AB_469342

anti-mouse F4/80 eBioscience Cat. No. 12-4801-82; RRID: AB_465923

anti-mouse Ly-6G BD Biosciences Cat. No. 551460; RRID: AB_394207

Fc block (CD16/CD32) purified BD Biosciences Cat. No. 553141; RRID: AB_394656

anti-mouse CD45 BD Biosciences Cat.No. 564279; RRID: AB_2651134

anti-mouse F4/80 Biolegend Cat. No. 123129; RRID: AB_2277848

anti-mouse Ly-6C Biolegend Cat.No. 128043; RRID: AB_2566576

anti-mouse MHC-II eBioscience Cat. No. 47-5321-82; RRID: AB_1548783

anti-mouse CD206 AbD Serotec Cat.No. MCA2235A488; RRID: AB_324891

anti-mouse CD3 eBioscience Cat. No. 48-0031-82; RRID: AB_10735092

anti-mouse CD45 eBioscience Cat.No. 45-0451-82; RRID: AB_1107002

anti-mouse CX3CR1 Biolegend Cat. No. 149007; RRID: AB_2564491

anti-mouse CD73 eBioscience Cat.No. 12-0731-82; RRID: AB_763513

Ki-67 eBioscience Cat. No. 14-5698-82; RRID: AB_10854564

Chemical, Peptides and Recombinant proteins

Collagenase type A Roche Cat. No. 10103586001

Difco trypsin 250 BD Biosciences Cat. No. 215240

TRIzol Invitrogen Cat. No. 15596018

Proteinase K Sigma-Aldrich Cat. No. P2308

7-AAD Viability Staining Solution eBioscience Cat. No. 00-6993-50

Fixable Viability Dye eBioscience Cat. No. 65-0865-14

Fixable aqua dead cell dye ThermoFisher Scientific Cat. No. L34957

Critical Commercial Kits

anti-APC magnetic MicroBeads Miltenyi Biotec Cat. No. 130-090-855

Rneasy Mini kit QIAGEN Cat. No. 74104

Rneasy Micro kit QIAGEN Cat. No. 74004

Ovation RNA-seq system V2 NuGEN Cat. No. 7102

Encore Rapid library system NuGEN Cat. No. 0316

Foxp3/transcription factor staining

Buffer set kit

ThermoFisher Scientific Cat.No. 00-5523-00

Deposited Data

Raw and normalized data This paper GEO: GSE126268

Raw data (Squadrito et al., 2012) GEO: GSE34903

Raw data (Thomas et al., 2012) Elixir (ArrayExpress): E-MTAB-955

Raw data (Lavin et al., 2014) GEO: GSE63341

Raw data (Choi et al., 2015) GEO: GSE59831

Raw data (Lu et al., 2015) GEO: GSE68511

(Continued on next page)

e1 Cell Reports 29, 1221–1235.e1–e5, October 29, 2019



Continued

REAGENT OR RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

K14cre;Cdh1F/F;Trp53F/F mice Taconic Biosciences https://www.taconic.com/

MMTV-NeuT mice Charles River Laboratories https://guide.labanimal.com/supplier/charles-river-laboratories-

italia-srl

Software and Algorithms

TopHat2 (Kim et al., 2013) https://dgarijo.github.io/ResearchObjects/aaai2017/ontosoft/

tophat.html

Partek Genomics Suite Partek http://www.partek.com/partek-genomics-suite/

DESeq2 (Love, Huber and Anders, 2014) https://bioconductor.org/packages/release/bioc/html/DESeq2.

html

SigmaPlot Systat Software Inc. https://systatsoftware.com/

MayDay (Battke, Symons and Nieselt, 2010) https://doi.org/10.1186/1471-2105-11-121

BioLayout Express3D (Theocharidis et al., 2009) https://www.ebi.ac.uk/about/news/service-news/

BioLayoutExpress3D

Cytoscape Cytoscape http://www.cytoscape.org

BiNGO (Maere, Heymans and Kuiper, 2005) https://doi.org/10.1093/bioinformatics/bti551

EnrichmentMap (Merico et al., 2010) https://doi.org/10.1371/journal.pone.0013984

WordCloud (Oesper et al., 2011) https://doi.org/10.1186/1751-0473-6-7

clusterProfiler (Yu et al., 2012) https://doi.org/10.1089/omi.2011.0118

CoCena2 This paper https://github.com/UlasThomas/CoCena2

Hmisc CRAN depository https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

igraph CRAN depository https://cran.r-project.org/web/packages/igraph/igraph.pdf

STRING STRING Consortium https://string-db.org/

bnlearn (Scutari, 2010) https://github.com/cran/bnlearn

CIBERSORT (Newman et al., 2015) https://github.com/cran/bnlearn

TCGA specimens (Ciriello et al., 2015) https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga

METABRIC cohort (Curtis et al., 2012) http://molonc.bccrc.ca/aparicio-lab/research/metabric/

BioMart (Durinck et al., 2009) https://bioconductor.org/packages/release/bioc/html/biomaRt.

html

GSVA (Hänzelmann, Castelo and Guinney,

2013)

https://bioconductor.org/packages/release/bioc/html/GSVA.

html

Survival CRAN https://cran.r-project.org/web/packages/survival/survival.pdf
LEAD CONTACT AND MATERIALS AVAILABILITY

The study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and fulfilled by the Lead Contact, Joachim L. Schultze (j.schultze@uni-bonn.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The generation and characterization of K14cre;Cdh1F/F;Trp53F/Fmice have been previously described in detail (Derksen et al., 2006).

The mice were backcrossed onto the FVB/N background and genotype was confirmed by PCR (Derksen et al., 2006; Coffelt et al.,

2015). MMTV-NeuT mice on a BALB/c background (Boggio et al., 1998) were purchased from Charles River Laboratories (Calco,

Italy) andwere bred in house. FemaleK14cre;Cdh1F/F;Trp53F/F andMMTV-NeuTmiceweremonitored twice everyweek for the onset

of mammary tumor formation by caliper and palpation measurement starting at 2 or 4 months of age, respectively. Mice were kept in

open cages with food and water provided ad libitum at a 12-hour light/dark cycle. Animal experiments were approved by the Animal

Ethics Committee of the Netherlands Cancer Institute (Amsterdam, Netherlands) and performed in accordance with institutional, na-

tional and European guidelines for Animal Care and Use (CCD license: AVD3010020172688).
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METHOD DETAILS

Macrophage isolation
Macrophages were isolated according to (Salvagno and de Visser, 2016). Briefly, mammary glands or mammary tumors (size ±

225mm2), spleen and bone marrow were harvested from 4month old K14cre;Cdh1F/F;Trp53F/F female mice containing early lesions,

6-8 months old tumor-bearing K14cre;Cdh1F/F;Trp53F/F, 4 month old tumor-bearing MMTV-NeuT female mice and age- and sex-

matched FVB/N and BALB/c mice. Tumors and mammary glands were mechanically chopped with a McIlwain Tissue Chopper

(Ted Pella, Inc, CA, USA) and were enzymatically digested for 1 hour at 37�C with 3 mg/ml collagenase type A (Roche) and

1.5 mg/ml porcine pancreatic trypsin (BD Biosciences) in serum-free DMEM medium. Digestion was stopped by the addition of

DMEM supplemented with 8% FBS and the suspension was disaggregated through a 70 mm cell strainer. Spleens and bone marrow

cells from tibiae and femora were harvested and disaggregated through a 70 mm cell strainer. Splenic suspensions were subse-

quently treated twice with NH4Cl erythrocyte lysis buffer for 3 min at room temperature. All single-cell suspensions were stained

for 20 min at 4�C in the dark with anti-mouse F4/80 (1:200; BM8; eBioscience) and anti-mouse CD11b (1:200; M1/70; eBioscience)

in IMDMsupplementedwith 2%FBS, 0.5%beta-mercaptoethanol, 0.5mMEDTA, Pen/Strep. Cells were thenwashed and incubated

with magnetic MicroBeads (Miltenyi Biotec) following the manufacturer’s guidelines. Isolation of F4/80+ cells from the CD11b+-en-

riched fraction was performed on a BD FACS ARIA II sorter with Diva software (BD Biosciences). DAPI was added to select viable

cells. Sorted macrophages were stored at �80�C in TRIzol (Invitrogen). Cell purity was determined on a FACSCalibur using

CellQuestPro software (BD Biosciences) and data were analyzed using FlowJo software v9.9.

Immunohistochemistry
Immunohistochemical analysis was performed by the Animal Pathology facility at the Netherlands Cancer Institute. Briefly, formalin-

fixed paraffin-embedded tissues were blocked with 4% BSA/5% normal goat serum in PBS and stained with anti-mouse F4/80

(1:300; Cl:A3-1; AbD Serotec) after antigen retrieval with 20 ug/ml Proteinase K (Sigma-Aldrich) at 37�C for 20 min. Endogenous

peroxidase activity was neutralized in 3% H2O2 in methanol for 20 min at room temperature. Slides were then incubated with bio-

tinylated goat anti-rat secondary antibody (1:100; SouthernBiotech) followed by DAB detection. Samples were visualized with a

BX43 upright microscope (Olympus) and images were acquired in brightfield using cellSens Entry software (Olympus) at 40X

magnification.

Flow cytometry
Single-cell suspensions were stained with anti-mouse CD45 (1:200; 30-F11; BD Biosciences), anti-mouse CD45 (1:200; 30-F11;

eBioscience), anti-mouse CD11b (1:400; M1/70; Biolegend), anti-mouse CD11b (1:200; M1/70; eBioscience), anti-mouse F4/80

(1:200; BM8; eBioscience), anti-mouse F4/80 (1:200; BM8; Biolegend), anti-mouse CD206 (1:100;MR5D3; AbDSerotec), anti-mouse

Ly-6C (1:400; HK1.4; eBioscience), anti-mouse Ly-6C (1:400; HK1.4; Biolegend), anti-mouse Ly-6G (1:200; 1A8; BD Biosciences),

anti-mouse Ly-6G (1:200; 1A8; Biolegend), anti-mouse CX3CR1 (1:400; SA011F11; Biolegend), anti-mouse CD73 (1:200; eBioTY/

11.8; eBioscience), anti-mouse CD3 (1:200; 145-2C11; eBioscience) and anti-mouse MHC-II (1:200; M5/114.15.2; eBioscience)

for 20 min at 4�C in the dark in PBS supplemented with 0.5% BSA. 7AAD (1:20; eBioscience), Fixable Viability Dye (1:1000;

eBioscience) or Fixable aqua dead cell dye (1:100, ThermoFisher Scientific) were added to exclude dead cells. For Ki67 detection

in macrophages, cells were fixed and permeabilized with the Foxp3/transcription factor staining Buffer set kit (ThermoFisher Scien-

tific) as manufacturer’s recommendations, followed by incubation with Fc block (CD16/CD32 purified; 1:50; 2.4G2; BD Biosciences)

and stained with Ki67 (1:200; eBioscience) or anti-mouse IgG2ak (1:200; eBioscience). Experiments were performed using a LSRII

flow cytometer (BD Biosciences) and data analysis were performed using FlowJo software v9.9.

Library preparation
Total RNA was extracted using the RNeasy Mini and Micro Kits (QIAGEN). RNA (10 ng) was converted into cDNA libraries using the

Ovation RNA-Seq system V2 and Encore Rapid library systems protocols (NuGEN) and samples were sequenced on a HiSeq 1500

system (Illumina).

Standard bioinformatic analysis
Publicly available datasets (Squadrito et al., 2012; Thomas et al., 2012; Lavin et al., 2014; Choi et al., 2015; Lu et al., 2015) were

trimmed using fastx trimmer (-l 50 -i Sample.fastq -o Sample_trim50.fastq) to 50 bp reads tomatch experimental settings. All datasets

were aligned against the murine mm10 reference genome using TopHat2 (v2.0.11) default parameters (Kim et al., 2013). The aligned

reads were then imported into Partek Genomics Suite v6.6 (PGS) separately to deduct gene and transcript information before per-

forming normalization using the DESeq2 package (Love, Huber and Anders, 2014) in R (v3.0.2). Normalized read counts were floored

to a value of at least 1 after batch correction. Finally, the datasets were filtered to a minimum value of 10 counts per group. The 1000

genes with the highest variance and DE gene calculations were performed utilizing a one-way ANOVA model in PGS. Genes with FC

R 2 and FDR% 0.05 were defined as differentially expressed and were visualized in volcano plots and FC/FC plots using SigmaPlot
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(v12.0) (Systat Software) and correlation plots. For more detailed analysis, the ANOVA model was filtered based on the respective

gene lists (Fulton et al., 2009). TAM-specific surface marker expression was visualized in a heatmap using Mayday (Battke, Symons

and Nieselt, 2010).

Comparative and biological function-related bioinformatic analysis
Global similarity comparisons between macrophage populations were performed by correlation analysis based on Pearson correla-

tion coefficients (Pearson correlation R 0.977) using BioLayout Express3D (Theocharidis et al., 2009). The correlation network was

visualized in Cytoscape (http://www.cytoscape.org/). The structure of our breast cancer dataset was visualized utilizing PCA on all

expressed genes. HC and PCCM were performed on the 1000 genes with the highest variance within the dataset using default set-

tings in PGS. To link DE genes to known biological functions, GOEA was applied on DE gene sets extracted from FC/FC plots. Sub-

sequently, Cytoscape was used to visualize GOEA results in a global view using the plug-ins BiNGO (Maere, Heymans and Kuiper,

2005), EnrichmentMap (Merico et al., 2010) and WordCloud (Oesper et al., 2011). GOEA for the common breast cancer TAM, KEP-

TAM, NeuT-TAM signatures was performed using the R package clusterProfiler and the default settings (Yu et al., 2012).

CoCena2

To define differences and similarities in transcript expression patterns among the different groups, CoCena2 (Construction of co-

expression Network Analysis – automated) was performed based on Pearson correlation. Either all present genes or the union of

DE genes from the three comparisons KEP-TAMs versusMTMs from the KEPmodel, NeuT-TAMs versusMTMs from theNeuTmodel

and KEP-TAMs versusMTMs from the PRE-KEPmodel were used as the input. Pearson correlation was performed using the R pack-

age Hmisc (v4.1-1). To increase data quality, only significant (p < 0.05) correlation values were kept. A Pearson correlation coeffi-

cients cutoff of 0.878 (all present genes; 7,610 nodes and 310,789 edges) and of 0.87 (union DE genes; 1,992 nodes and 52,392

edges) was chosen to construct scale-free networks. The nodes were colored based on the Group Fold Change (GFC), the mean

of each condition versus overall mean for each gene respectively, for each group separately. Unbiased clustering was performed

using the ‘‘label propagation’’ algorithm in igraph (v1.2.1) and was repeated 1000 times. Genes assigned to more than 5 different

clusters during the iterations got no cluster assignment. The mean GFC expression for each cluster and condition were visualized

in the Cluster/Condition heatmap. Clusters smaller than 10 genes were not shown.

I-GIN (Intraclusteral Gene Interaction Network)
To investigate condition-specific clusters (common breast cancer TAM signature: turquoise [289 genes], NeuT-specific signature:

magenta [236 genes] and KEP-specific signature: blue [255 genes]), an I-GIN was constructed based on the CoCena2 results. To

enhance the structure and information access of the respective networks, hub genes were identified for each network separately.

A gene was defined as hub gene, having a mean correlation greater or equal 75% of the connected edges. Maximal the top 25

most correlated and the two highest correlated edges with other hubs edges were visualized. All edges were classified as either

already known or unknown via STRING database v1.20.0. Genes having more than 5 known connections were additionally defined

and labeled as hubs. All known interactions to hubs were kept and the resulting network nodes were sized according to their degree

of connectivity in the resulting network. All edges in the networkwere colored gray and only known interactionswere colored red. Hub

genes were colored based on their property being regulating (purple) or being regulated (blue) by another gene. This information was

calculated using Bayesian Network Analysis.

Bayesian Network Analysis
Bayesian Network Analysis was used to calculate the causal relationship of each gene pair within the cluster of interest defined by

CoCena2, providing additional information about the direction of regulation between two connected nodes within the I-GIN network.

Bayesian Network Analysis extracted information from the turquoise, the blue and the magenta clusters and a greedy-search hill-

climbing algorithm from the R-package ‘‘bnlearn’’ v4.4 (Scutari, 2010) was used to create a network that best fits the observed

data and represents the conditional dependencies and independencies between the genes within the cluster of interest. The network

structure was then used to determine the regulatory status of each gene, classifying it as receiving if its number of parent nodes ex-

ceeded its number of children or as regulating if its number of children exceeded its number of parents. Geneswere color-coded with

respect to their regulatory status. Genes with a high regulatory potential of children-to-parent ratio (CP-ratio) more than 5 were clas-

sified as ‘‘hot spots.’’

Identification of TAM core signatures
Core signatures for common breast cancer TAMs, KEP-TAMs, NeuT-TAMs were defined by overlapping CoCena2 clusters and the

respective DE genes (Table S1). The breast cancer TAM signature is the intersection between the turquoise cluster and the common

upregulated genes between KEP-TAMs versus MTMs (KEP model) and NeuT-TAMs versus MTMs (NeuT model). The KEP-TAM

signature is the intersection between the blue cluster and the upregulated genes between KEP-TAMs versus MTMs (KEP model)

and the NeuT-TAMs signature is the intersection between the magenta cluster and the upregulated genes between NeuT-TAMs

versus MTMs (NeuT model). Subsequently, the union of the core signatures was visualized in a HC map using PGS.
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CIBERSORT deconvolution analysis
CIBERSORT (Newman et al., 2015) was employed to characterize the relative contribution of immune cell populations to the TME of

ILC patients. The normalized gene expression table of the TCGA ILC cohort was utilized as input mixture file and the published im-

mune cell signature LM22 was used to compute the relative immune cell populations within bulk ILC samples (1,000 permutations).

For custom signature generation by CIBERSORT, a gene expression matrix containing KEP-TAM and NeuT-TAM data was used as

input.

TAM enrichment analysis
Bulk RNA-sequenced ILC TCGA specimens (Ciriello et al., 2015) were accessed through the Genomic Data Commons (https://gdc.

cancer.gov/; phs000178.v9.p8) and were aligned against the human hg19 reference genome using TopHat2 (v2.0.11) default param-

eters. The TNBC TCGA cohort was acquired as quantified counts through the GDC data portal (https://portal.gdc.cancer.gov/) and it

was selected based on lack of three clinical parameters (progesterone, HER2 and estrogen). Both datasets were normalized sepa-

rately with DESeq2 in R (v3.0.2) and floored to a value of at least 1. Access to bulk ILC and TNBC microarray specimens of the

METABRIC cohort (Curtis et al., 2012) was granted through the EGA depository (EGAD00010000162). The dataset was imported

into PGS, quantile-normalized following log2 transformation of absolute expression values and subsequently filtered for probe

sets exerting the highest variance. Genes were defined as expressed if the maximum value over all group means utilizing the clas-

sification in (Ciriello et al., 2015) was higher than 10 (TCGA) or 6.5 (log2 transformed;METABRIC). Before the enrichment in the human

TCGA or METABRIC datasets, the KEP-TAM and the NeuT-TAM signatures were translated into human orthologs using the BioMart

package (Durinck et al., 2009) v2.36.1. The signature enrichment analysis for the human TCGA and METABRIC datasets was calcu-

lated using GSVA (v1.28.0) using the z-score method (Hänzelmann, Castelo and Guinney, 2013). Enrichment analysis were

performed for the KEP-TAM, NeuT-TAM, KEP-TAMs versus splenic macrophage (intersection of the blue cluster and KEP-TAM up-

regulated genes comparing KEP-TAMs versus splenic macrophages) and random signatures. Random gene signatures were gener-

ated by sampling a total of 300 genes from the union of signatures (common breast cancer TAM, KEP-TAM and NeuT-TAM) and

randomly assigning them to two groups, each holding 150 genes. For each patient and each combination of dataset (TCGA and

METABRIC) and signature, an enrichment score was calculated.

Proliferation signature enrichment analysis
Upon enrichment analysis of the KEP-TAM, NeuT-TAM, KEP-TAM versus splenic macrophage and random signatures as described

before, gene set enrichment analysis of a signature defined by human breast tumor expression data Broad MSigDB was used and a

t test based on the enrichment score from the proliferation signature and on the grouping defined by the enrichment analysis of the

core signatures was performed to define significant differences.

Kaplan Meier survival analysis
Kaplan-Meier survival analysis was performed utilizing the survival package in R (v3.0.2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Except where stated otherwise, all analyses were conducted in at least three biological replicates (animals). Data are presented as

mean with standard error of the mean (SEM) calculated as indicated. Groups of biological replicates were compared using Mann-

Whitney tests. Significance levels are indicated by asterisks (*p < 0.05, **p < 0.001).

DATA AND CODE AVAILABILITY

The datasets generated in this study are deposited in the Gene Expression Omnibus database under GEO: GSE126268. The

CoCena2 code is available at https://github.com/UlasThomas/CoCena2.
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Fig. S1 - Related to Fig. 1. TAMs in K14cre;Cdh1F/F;Trp53F/F mammary tumors 
express low levels of CD206 and have a proliferative phenotype compared to TAMs 
from the MMTV-NeuT model. (A-B) Percentage of CD206+ macrophages in KEP 
tumors and WT FVB mammary glands (A) or NeuT tumors and WT Balb/c mammary 
glands (B) as determined by flow cytometry. The gating was based on fluorescence-
minus-one sample for CD206. (C-D) Percentage of MHC-II+ macrophages in KEP 
tumors and WT FVB mammary glands (C) or NeuT tumors and WT Balb/c mammary 
glands (D) as determined by flow cytometry. (E-F) Percentage of Ki67+ macrophages 
in KEP tumors and WT FVB mammary glands (E) or in NeuT mammary tumor and 
WT Balb/c mammary glands (F) as determined by flow cytometry. Dot plots were 
gated on CD11b+F4/80+ macrophages. (G-H) Percentage of CX3CR1+ macrophages 
in KEP tumors and WT FVB mammary glands (G) or in NeuT mammary tumor and 
WT Balb/c mammary glands (H) as determined by flow cytometry. Dot plots were 
gated on CD11b+F4/80+ macrophages. (I-J) Percentage of CD73+ macrophages in 
KEP tumors and WT FVB mammary glands (I) or in NeuT mammary tumor and WT 
Balb/c mammary glands (J) as determined by flow cytometry. Dot plots were gated 
on CD11b+F4/80+ macrophages. Representative dot plots are shown in all panels. 
Data are mean values ± SEM from n=3 animals per group and were analyzed with 
Mann-Whitney test, *p < 0.05.  
  



Fig. S2 – Related to Fig. 1
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Fig. S2 - Related to Fig. 1. Isolation procedure of CD11b+F4/80+ macrophages from 
mammary tumor, mammary gland, spleen and bone marrow by magnetic and 
fluorescence-activated cell sorting. (A-B) Representative dot plots of KEP (A) and 
NeuT (B) mammary tumors showing the CD11b+F4/80+ population before and after 
pre-enrichment by magnetic-activated cell sorting for CD11b+ cells. (C-F) 
Representative dot plots illustrating the gating strategy for the isolation of 
CD11b+F4/80+ macrophages from KEP tumors (C), mammary gland (D), spleen (E) 
and bone marrow (F) by fluorescence-activated cell sorting after enrichment of 
CD11b+ cells. (G) Dot plots showing the purity of the sorted macrophages in tumor, 
mammary gland, spleen and bone marrow of KEP mice. (H) Stacked bar plots 
showing the composition of KEP tumors in CD11b-, CD11b+F4/80- and 
CD11b+F4/80+ cells before and after macrophage sorting. Data are mean values ± 
SEM from 3 preps.  
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Fig. S3 - Related to Fig. 2. Murine tissue macrophages are distinguished from other 
immune cell populations and epithelial cells by their transcriptome. (A) Schematic 
representation outlining bioinformatics workflow. (B) HC based on the1,000 genes 
with the highest variance within the dataset. Macrophage transcriptomes derived 
from different organs and disease states were collectively named macrophages. (C) 
PCA using all present genes plotted in two-dimensional graphs. (D) Schematic 
representation of the bioinformatics workflow for Co-expression network analysis 
(CNA) of all present genes by CoCena2. (E) CoCena2 logged network degree 
distribution with linear fitting. (F) Networks were colored according to GFCs for each 
condition, respectively. 

  



Fig. S4 – Related to Fig. 3
A
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Fig. S4 - Related to Fig. 3. Inter-tissue comparison leads to false interpretation of 
changes in TAMs. FC/FC plot of the union of DE genes showing the fold change in 
expression of genes in (A) KEP-TAMs compared to MTMs (KEP model) (y-axis) 
against KEP-TAMs compared to splenic macrophages (KEP model) (x-axis), (B) 
KEP-TAMs compared to splenic macrophages (KEP model) (y-axis) against MTMs 
(KEP model) compared to splenic macrophages (KEP model) (x-axis), (C) NeuT-
TAMs compared to MTMs (NeuT model) (y-axis) against NeuT-TAMs compared to 
splenic macrophages (NeuT model) (x-axis), (D) NeuT-TAMs compared to splenic 
macrophages (NeuT model) (y-axis) against MTMs (NeuT model) compared to 
splenic macrophages (NeuT model) (x-axis), (E) KEP-TAMs compared to bone 
marrow macrophages (KEP model) (y-axis) against KEP-TAMs compared to MTMs 
(KEP model) (x-axis), (F) KEP-TAMs compared to bone marrow macrophages (KEP 
model) (y-axis) against MTMs (KEP model) compared to bone marrow macrophages 
(KEP model) (x-axis), (G) NeuT-TAMs compared to bone marrow macrophages 
(NeuT model) (y-axis) against NeuT-TAMs compared to MTMs (NeuT model) (x-axis) 
and (H) NeuT-TAMs compared to bone marrow macrophages (NeuT model) (y-axis) 
against MTMs (NeuT model) compared to bone marrow macrophages (NeuT model) 
(x-axis). Each dot represents one gene where red and blue dots indicate positive or 
negative fold change differences in both comparisons and grey dots correspond to 
opposite fold change differences across the axes. 
  



Fig. S5 – Related to Fig. 4 and Fig. 5
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Fig. S5 - Related to Fig. 4 and Fig.5. In silico gene ontology enrichment and 
regulatory circuit analysis of TAM-specific gene modules. (A-C) Network visualization 
of GOEA using BiNGO and EnrichmentMap based on model-specific DE genes 
derived from (A) common breast cancer TAM-, (B) KEP-TAM- and (C) NeuT-TAM-
specific genes. Node size and color (positively enriched GO terms) and node border 
width (negatively enriched GO terms) represent corresponding FDR-adjusted 
enrichment p-values (p-value: ≤0.05). Enriched gene ontology terms mentioned in the 
text are highlighted in yellow boxes. (D) ILC patients from the TCGA database 
enriched in the KEP-TAM gene signature exhibit higher enrichment in human breast 
cancer cell proliferation signatures. ILC specimens having a significant enrichment for 
the macrophage signatures are visualized in gold boxplots, whereas non-enriched 
specimens are marked in turquoise boxplots. Data were analyzed with t-test, *p < 
0.05. (E-F) I-GIN construction for KEP-TAM-specific (blue cluster) (E) and NeuT-
specific (magenta cluster) (F) genes. Node coloring represents regulatory or 
receiving status obtained from a Bayesian approach and points out highly co-
expressed genes and their known or proposed links to strongest correlated 
neighbors. Candidate genes mentioned in the text are highlighted in yellow boxes. 
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 Fig. S6 – Related to Fig. 6
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Fig. S6 - Related to Fig. 6. Validation of Kaplan-Meier survival analysis of breast 
cancer model-specific signatures. (A) KEP-TAM, NeuT-TAM, splenic and bone 
marrow macrophage and MTM signatures from both models were computed using 
CIBERSORT and their relative abundance in the ILC specimens was calculated. (B-
G) Kaplan-Meier survival curves of overall TCGA (left, n=125), overall METABRIC 
(n=146) and disease-specific METABRIC (right, n=146) ILC (left subpanel) or TNBC 
(right subpanel) patients. Specimens having a significant enrichment for (B) KEP-
TAM, (C) NeuT-TAM, (D) splenic macrophage, (E-F) random or (G) macrophage 
abundance signatures are visualized in red lines and numbers. The rest patients are 
visualized in green lines and numbers. Z score above 2 (p-value: ≤0.05) marks 
significant enrichment of gene signatures. 
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