| 1        | SUPPLEMENTARY INFORMATION                                                                                                                                       |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2        |                                                                                                                                                                 |  |  |  |
| 3        | Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the ${f P}_{1B}$ -type                                                            |  |  |  |
| 4        | ATPase, ATP7B                                                                                                                                                   |  |  |  |
| 5        |                                                                                                                                                                 |  |  |  |
| 6        | Shadi Maghool <sup>1</sup> , Sharon La Fontaine <sup>2,3</sup> , Blaine R. Roberts <sup>3</sup> , Ann H. Kwan <sup>4,*</sup> and Megan J. Maher <sup>1,5*</sup> |  |  |  |
| 7        |                                                                                                                                                                 |  |  |  |
| 8        | <sup>1</sup> Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe                                                        |  |  |  |
| 9        | University, Melbourne, VIC Australia.                                                                                                                           |  |  |  |
| 10       | <sup>2</sup> School of Life and Environmental Sciences, Deakin University, Geelong, VIC Australia.                                                              |  |  |  |
| 11       | <sup>3</sup> The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.                                                      |  |  |  |
| 12       | <sup>4</sup> School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW Australia.                                                        |  |  |  |
| 13       | <sup>5</sup> School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of                                                 |  |  |  |
| 14       | Melbourne, Parkville, Australia.                                                                                                                                |  |  |  |
| 15       |                                                                                                                                                                 |  |  |  |
| 16       |                                                                                                                                                                 |  |  |  |
| 17       | *Corresponding authors:                                                                                                                                         |  |  |  |
| 18       | A/Prof. Megan Maher,                                                                                                                                            |  |  |  |
| 19<br>20 | School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute,<br>The University of Melbourne,                                                |  |  |  |
| 20<br>21 | Melbourne, Victoria, 3010 Australia.                                                                                                                            |  |  |  |
| 22       | Phone: +61 3 9035 7451                                                                                                                                          |  |  |  |
| 23<br>24 | E-mail: megan.maher@unimelb.edu.au                                                                                                                              |  |  |  |
| 25       | Dr Ann Kwan,                                                                                                                                                    |  |  |  |
| 26       | School of Life and Environmental Sciences and Sydney Nano Institute,                                                                                            |  |  |  |
| 27<br>28 | University of Sydney,<br>Mars Creasent                                                                                                                          |  |  |  |
| 28<br>29 | Maze Crescent,<br>Sydney, NSW 2006, Australia                                                                                                                   |  |  |  |
| 30       | Phone: +61 2 9351 3911                                                                                                                                          |  |  |  |
| 31       | E-mail: ann.kwan@sydney.edu.au                                                                                                                                  |  |  |  |
| 32       |                                                                                                                                                                 |  |  |  |
| 33       |                                                                                                                                                                 |  |  |  |
| 34       |                                                                                                                                                                 |  |  |  |
|          |                                                                                                                                                                 |  |  |  |

- **Table S1** Cu:protein stoichiometries for purified proteins

| Protein | [Cu]/[Protein] |
|---------|----------------|
| hGrx1   | $0.97\pm0.02$  |
| Atox1   | $1.01\pm0.05$  |
| WLN5-6  | $1.94\pm0.03$  |

39 Table S2 Apparent Cu(I) dissociation constants K<sub>D</sub> for the Cu(I)-binding sites for the hGrx1, Atox1

40 and WLN5-6 proteins, determined *via* competition with Bcs.

|    | Protein  | Log <i>K</i> <sub>D</sub> pH 7.0 |                        |
|----|----------|----------------------------------|------------------------|
| 42 | FIOLEIII | This work                        | Ref                    |
|    | hGrx1    | -15.8                            | -15.5 <sup>10</sup>    |
| 43 | Atox1    | -17.5                            | -17.4 <sup>10,44</sup> |
| 44 | WLN5-6   | -17.8                            | -17.6 <sup>44</sup>    |

## 47 Supplementary Figure Captions

48

49 **Figure S1** Analyses of purified <sup>15</sup>N-hGrx1, Atox1, hGrx1 and WLN5-6 proteins by Coomassie Brilliant

50 Blue (CBB)-stained SDS-PAGE. Pre-stained SDS-PAGE protein marker (Bio-Rad, lane 1) and protein 51 samples (10 μg, lanes 2-5) were resolved by electrophoresis with a 10% Bis-Tris gel under reducing

52 conditions (Thermo Fisher Scientific).

53

## 54 Figure S2

- 55 Results of Cu exchange reactions between Cu(I)-hGrx1 and partner proteins. (A) Cu(I)-hGrx1, (B) Cu(I)-
- 56 Atox1 and (C) Cu(I)-WLN5-6 were applied to an anion exchange column and fractions analyzed for the
- 57 presence of protein (A<sub>280</sub>, solid lines) and for Cu(I) with Bcs (the  $[Cu^{I}Bcs_{2}]^{3-}$  complex is detected
- 58 colorimetrically at A<sub>483</sub>, dashed orange lines). (D) Results of Cu exchange reaction between Cu(I)-hGrx1
- 59 and *apo*-Atox1. Cu(I)-hGrx1 and *apo*-Atox1 were incubated together at 1:1 molar and re-separated using
- 60 anion exchange. (E) Cu exchange between Cu(I)-Atox1 and *apo*-hGrx1. (F) Cu exchange between Cu(I)-
- 61 WLN5-6 and *apo*-Atox1 (G) Cu exchange between Cu(I)-Atox1 and *apo*-WLN5-6. (H) Cu exchange
- 62 between Cu(I)-hGrx1, and a mixture of the *apo*-Atox1 and *apo*-WLN5-6 proteins. Cu(I)-hGrx1, *apo*-
- Atox1 and *apo*-WLN5-6 were incubated together at molar ratio of 1:1:1 and re-separated using anion exchange (A<sub>280</sub>, pink solid line) and fractions colorimetrically analysed for the presence of Cu (orange
- 65 dashed line).
- 66

Figure S3 Schematic representations of related Cu exchange experiments conducted in this work. The
✓ symbol indicates that Cu transferred between proteins and the X symbol indicates that it is not. This
figure was generated with Microsoft PowerPoint for Mac (Version 16.31).

70

Figure S4 Assigned <sup>15</sup>N-<sup>1</sup>H-HSQC spectrum of <sup>15</sup>N-<sup>13</sup>C *apo*-hGrx1. Lines indicate sidechain resonances
 from Asn and Gln residues.

73

Figure S5A Comparison of <sup>15</sup>N-<sup>1</sup>H-HSQC spectra of *apo*-hGrx1 and Cu(I)-hGrx1. (A) Overlay of <sup>15</sup>N <sup>1</sup>H-HSQC spectra of *apo*-hGrx1(red) and Cu(I)-hGrx1(blue). Residues that display significant chemical
 shift changes (including positional and intensity) are labeled. Arrows show groups of peaks that belong
 to the same amino acid in the two states.

Figure S5B Histogram showing combined H and N chemical shift changes comparing <sup>15</sup>N-Cu(I)-hGrx1
 and <sup>15</sup>N-apo-hGrx1.

Figure S5C Histogram showing changes in peak heights comparing <sup>15</sup>N-Cu(I)-hGrx1 and <sup>15</sup>N-apohGrx1.

82

83 Figure S6A Histogram showing combined H and N chemical shift changes during WLN5-6 titrations to

84 <sup>15</sup>N-Cu(I)-hGrx1. Results were shown for titrations of WLN5-6 to <sup>15</sup>N-Cu(I)-hGrx1 at molar ratios of

85 1:1 (blue), 2:1 (green) and 7:1 (pink).

- 86 Figure S6B Histogram showing changes in peak heights during WLN5-6 titrations during WLN5-6
- 87 titrations to <sup>15</sup>N-Cu(I)-hGrx1. Results were shown for titrations of WLN5-6 to <sup>15</sup>N-Cu(I)-hGrx1 at molar
- 88 ratios of 1:1 (blue), 2:1 (green) and 7:1 (pink).
- 89

90 Figure S7A <sup>15</sup>N-<sup>1</sup>H-HSQC spectra of <sup>15</sup>N-Cu(I)-hGrx1 titrated with Atox1. Overlay of <sup>15</sup>N-<sup>1</sup>H-HSQC

91 spectra of Cu(I)-hGrx1 before (blue) and after additions of Atox1 at Cu(I)-hGrx1:Atox1 molar ratios of

92 2.2:1 (green) and 3.8:1 (pink). Residues that display significant chemical shift changes (including

- 93 positional and intensity) are labelled.
- 94 Figure S7B Histogram showing combined H and N chemical shift changes during Atox1 titrations to
- 95  $^{15}$ N-Cu(I)-hGrx1. Results were shown for titrations of Atox1 to  $^{15}$ N-Cu(I)-hGrx1 at molar ratios of 2.2:1

96 (blue) and 3.8:1 (pink).

Figure S7C Histogram showing changes in peak heights during Atox1 titrations during Atox1 titrations
to <sup>15</sup>N-Cu(I)-hGrx1. Results were shown for titrations of Atox1 to <sup>15</sup>N-Cu(I)-hGrx1 at molar ratios of
2.2:1 (blue) and 3.8:1 (pink).

100

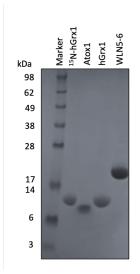
Figure S8A. <sup>15</sup>N-<sup>1</sup>H-HSQC spectra of <sup>15</sup>N-*apo*-hGrx1 titrated with Atox1. Overlay of <sup>15</sup>N-<sup>1</sup>H-HSQC spectra of *apo*-hGrx1 before (red) and after additions of Atox1 at *apo*-hGrx1:Atox1 molar ratios of 0.1:1 (black) and 1.1:1 (cyan). Residues that display significant chemical shift changes (including positional and intensity) are labeled.

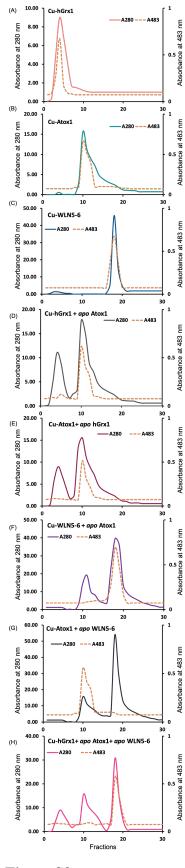
105 Figure S8B Histogram showing combined H and N chemical shift changes during Atox1 titrations to

<sup>15</sup>N-*apo*-hGrx1. Results were shown for titrations of Atox1 to <sup>15</sup>N-*apo*-hGrx1 at molar ratios of 0.1:1

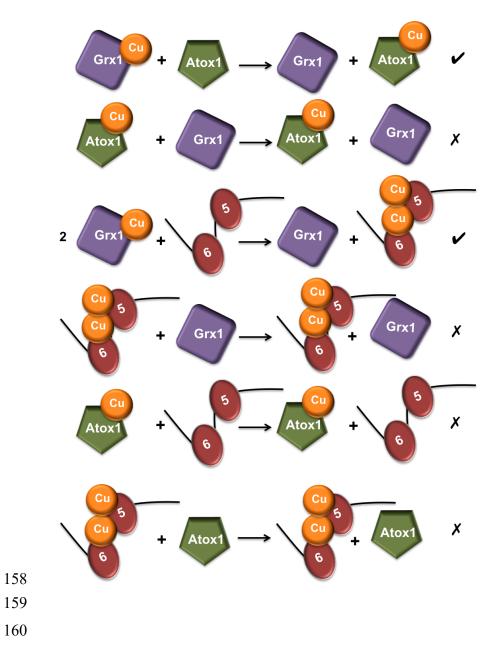
- 107 (black) and 1.1:1 (cyan).
- 108 Figure S8C Histogram showing changes in peak heights during Atox1 titrations during Atox1 titrations
- 109 to <sup>15</sup>N-apo-hGrx1. Results were shown for titrations of Atox1 to <sup>15</sup>N-apo-hGrx1 at molar ratios of 0.1:1
- 110 (black) and 1.1:1 (cyan).
- 111

| 112 | Figure S9A <sup>15</sup> N- <sup>1</sup> H-HSQC spectra of <sup>15</sup> N- <i>apo</i> -hGrx1 titrated with WLN5-6. Overlay of <sup>15</sup> N- <sup>1</sup> H-HSQC |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 113 | spectra of apo-hGrx1 before (red) and after additions of WLN5-6 at apo-hGrx1:WLN5-6 molar ratios of                                                                 |
| 114 | 0.2:1 (black) and 1:1 (cyan). Residues that display significant chemical shift changes (including                                                                   |
| 115 | positional and intensity) are labeled.                                                                                                                              |
| 116 | Figure S9B Histogram showing combined H and N chemical shift changes during WLN5-6 titrations to                                                                    |
| 117 | <sup>15</sup> N- <i>apo</i> -hGrx1. Results were shown for titrations of WLN5-6 to <sup>15</sup> N- <i>apo</i> -hGrx1 at molar ratios of 0.2:1                      |
| 118 | (black) and 1:1 (cyan).                                                                                                                                             |
| 119 | Figure S9C Histogram showing changes in peak heights during WLN5-6 titrations during WLN5-6                                                                         |
| 120 | titrations to <sup>15</sup> N-apo-hGrx1. Results were shown for titrations of WLN5-6 to <sup>15</sup> N-apo-hGrx1 at molar                                          |
| 121 | ratios of 0.2:1 (black) and 1:1 (cyan).                                                                                                                             |
| 122 |                                                                                                                                                                     |
| 123 | Figure S10A <sup>15</sup> N- <sup>1</sup> H-HSQC titrations of Atox1 into <sup>15</sup> N- <i>apo</i> -hGrx1 in absence of Cu(I). Peak heights                      |
| 124 | (arbitrary units, black squares) and fitted values (lines) for a 1:1 binding model are shown for residues                                                           |
| 125 | C23 and T69. Residuals of the fits are shown as red squares in the bottom plots.                                                                                    |
| 126 | Figure S10B <sup>15</sup> N- <sup>1</sup> H-HSQC titrations of WLN5-6 into <sup>15</sup> N-apo-hGrx1 in absence of Cu(I). Peak heights                              |
| 127 | (arbitrary units, black squares) and fitted values (lines) for a 1:1 binding model are shown for residues                                                           |
| 128 | C23 and T69. Residuals of the fits are shown as red squares in the bottom plots.                                                                                    |
| 129 |                                                                                                                                                                     |
| 130 | Figure S11 Electrostatic surface structures of hGrx1, Atox1 and WLN5-6. (A) hGrx1 (PDB code                                                                         |
| 131 | 4RQR <sup>41</sup> ), (B) Atox1 (PDB code 1FEE <sup>58</sup> ), (C) WLN5-6 (PDB code 2EW9 <sup>21</sup> ). The top panels show the                                  |
| 132 | electrostatic surface structures of the proteins, colored according to the electrostatic potentials (red:                                                           |

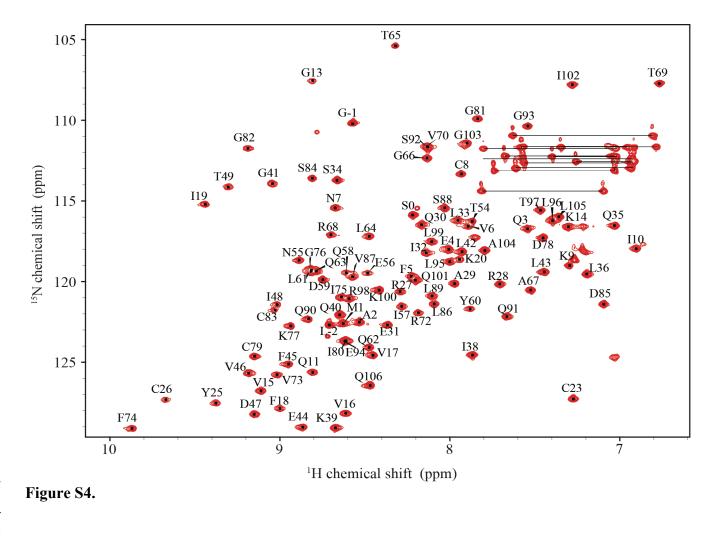

negatively charged; blue: positively charged; white: uncharged). In the bottom panels the secondary

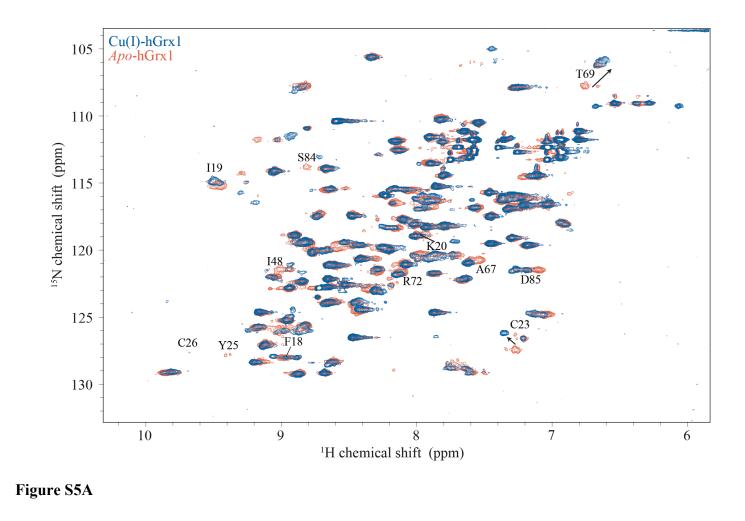

structures of the proteins are represented as cartoons in identical orientations. hGrx1: cyan; Atox1: pink

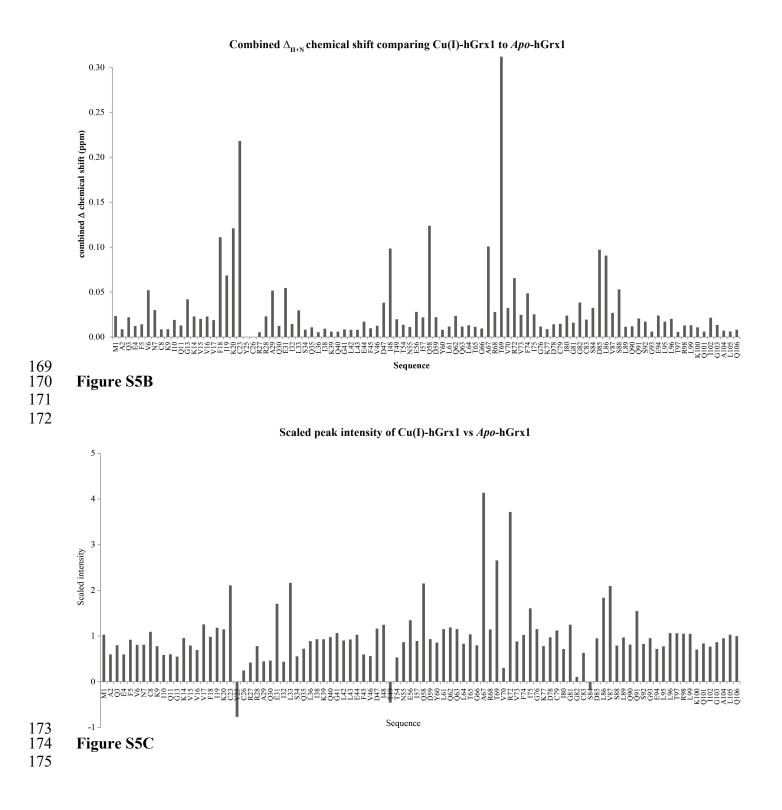
and WLN 5-6: gray. Cysteine residues in the C-XX-C motifs are shown as yellow spheres. This figure


was generated with PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC).

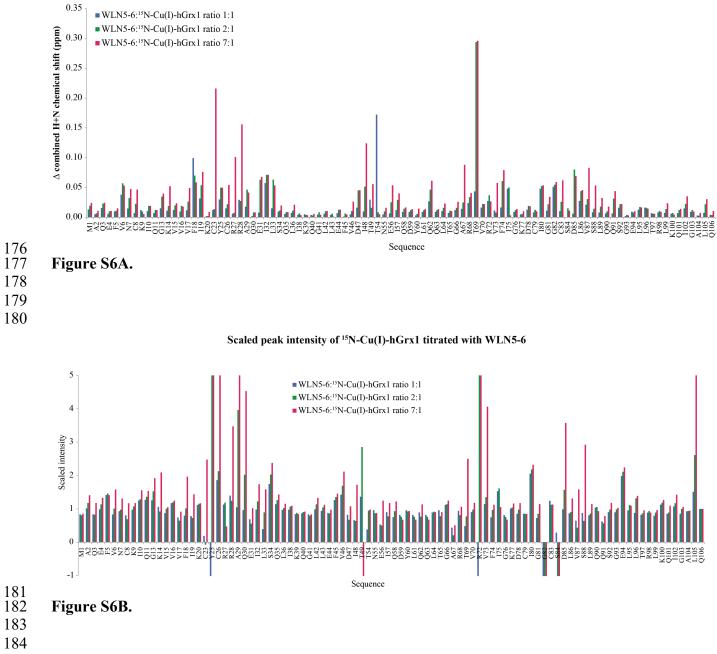
- Figure S1.
- 153 154 155

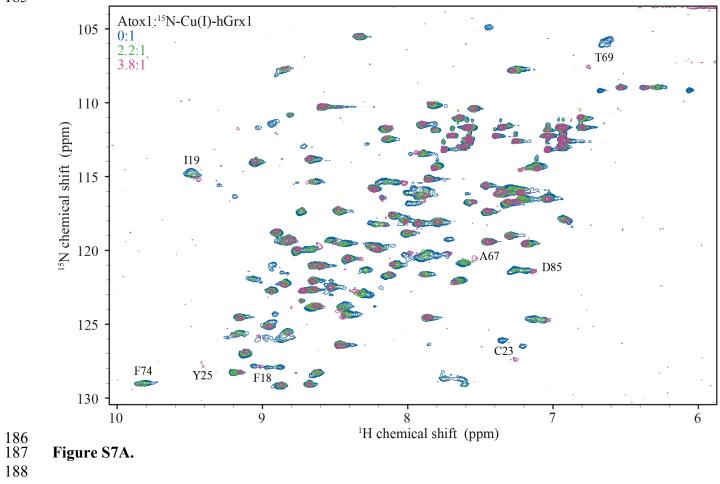


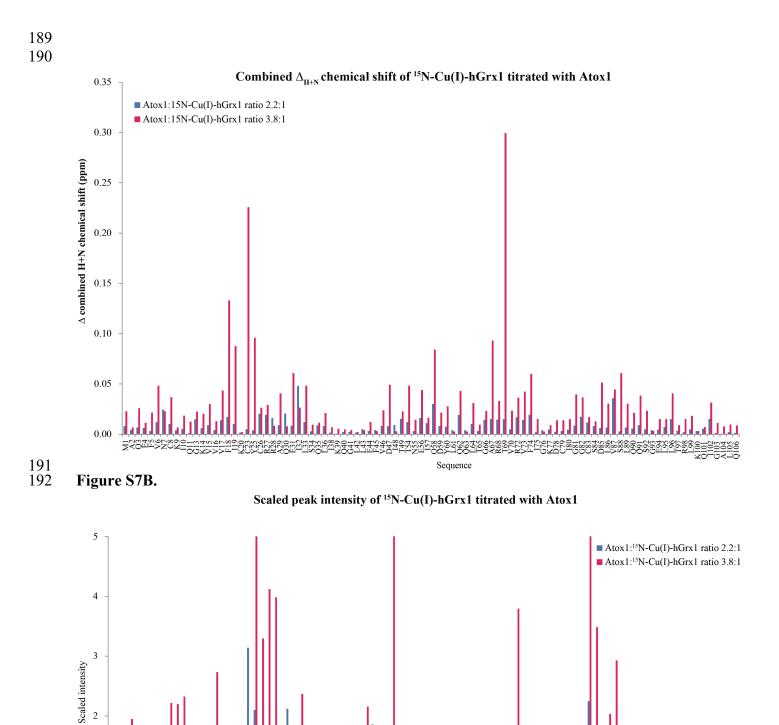



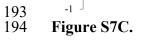


**Figure S2.** 




**Figure S3.** 



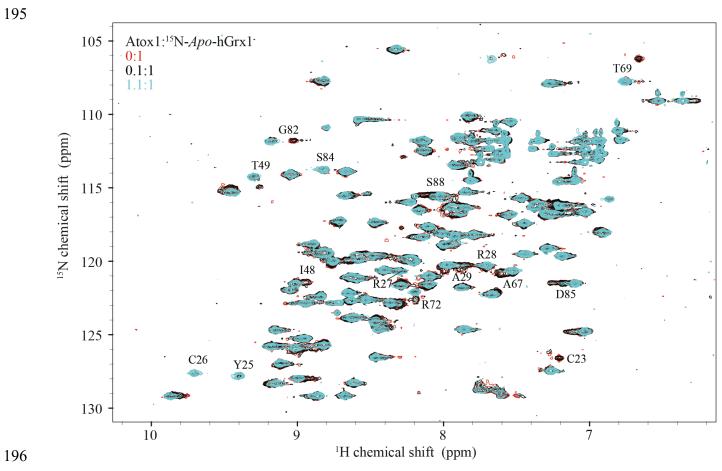







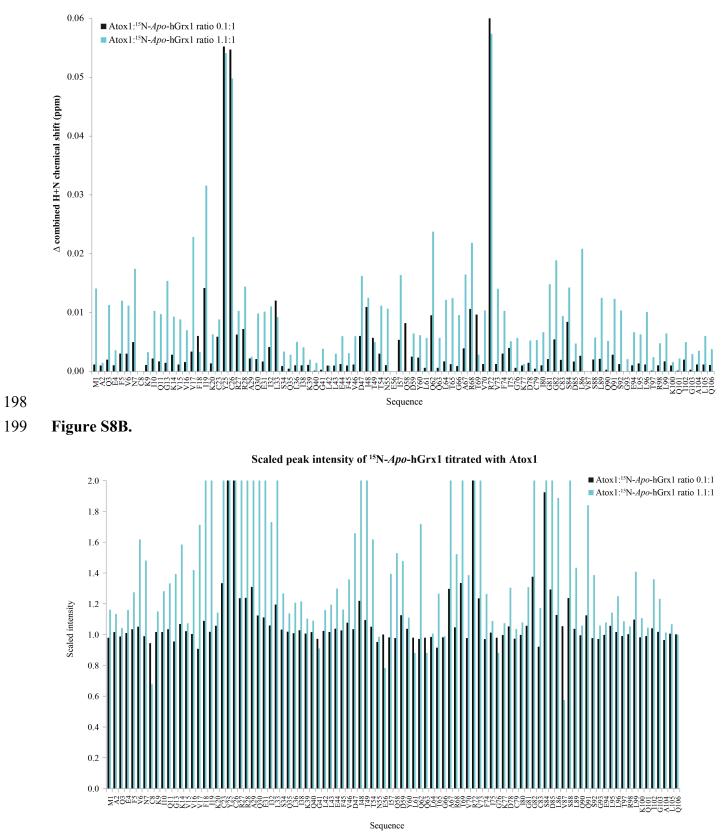




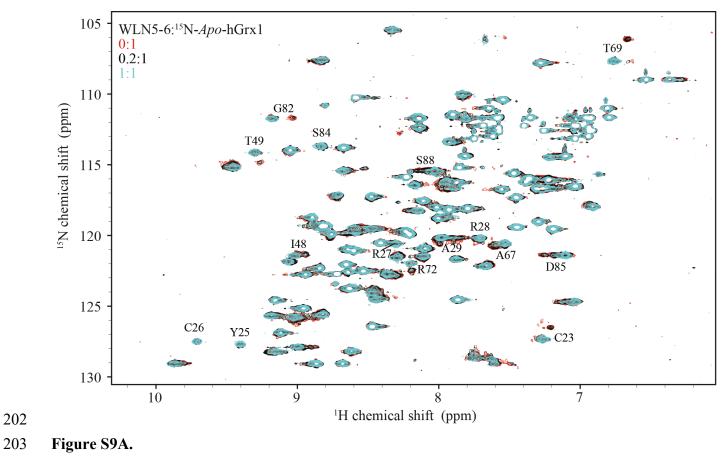




-1

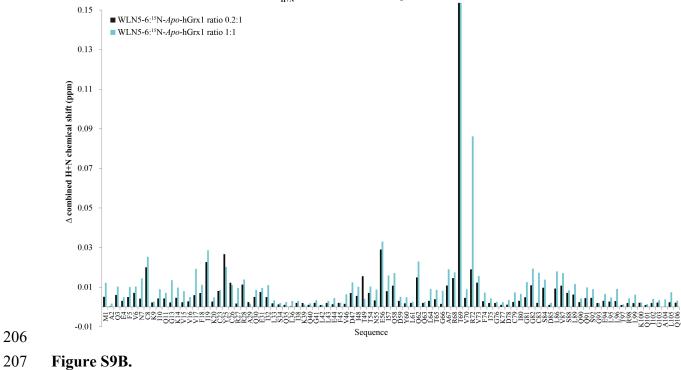
058 D59


100055

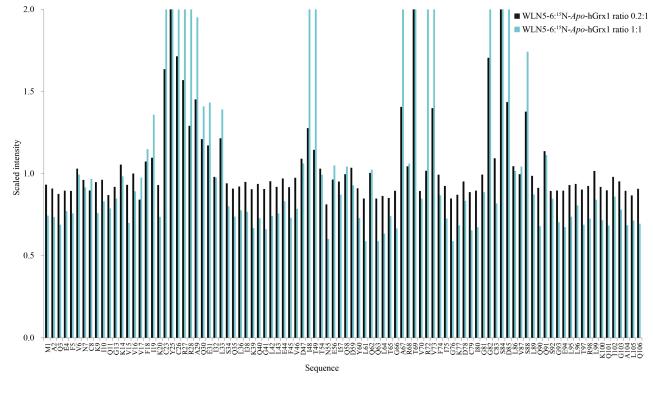
Sequence




**Figure S8A.** 

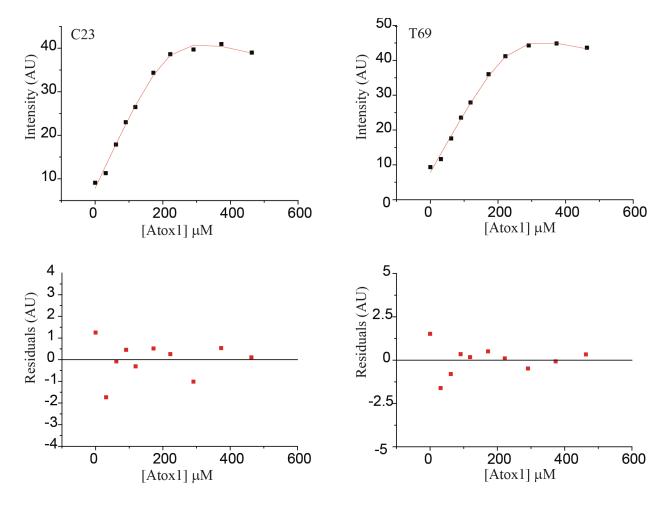

Combined  $\Delta_{\rm H+N}$  chemical shift of  $^{15}N\text{-}Apo\text{-}hGrx1$  titrated with Atox1



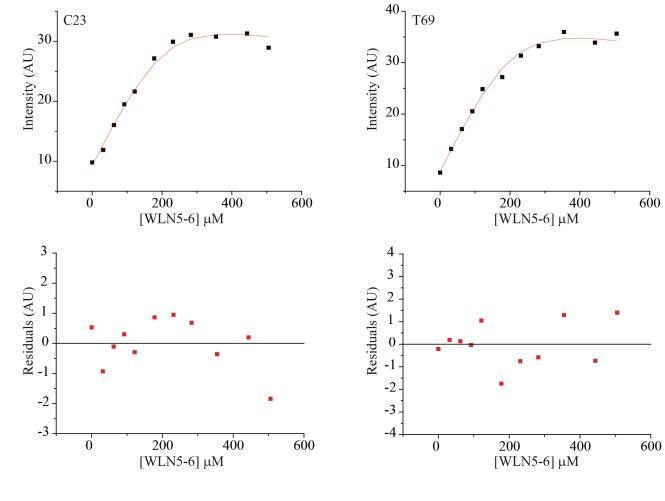

201 Figure S8C.

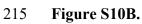


## Combined $\Delta_{\text{H+N}}$ chemical shift of <sup>15</sup>N-*Apo*-hGrx1 titrated with WLN5-6




Scaled peak intensity of <sup>15</sup>N-Apo-hGrx1 titrated with WLN5-6





209 Figure S9C.

210



**Figure S10A.** 





| 218<br>219 | (A)     | (B) | (ê <sup>2</sup> ) |
|------------|---------|-----|-------------------|
| 222        |         |     |                   |
| 223        |         |     |                   |
| 224        | S C C C |     |                   |
| 225<br>226 |         |     |                   |
| 220        |         |     |                   |
| 228        |         |     |                   |
| 229        |         |     |                   |
| 233        |         |     |                   |
| 234        |         |     |                   |
| 235        |         |     |                   |
| 236        |         |     |                   |

- 238 Figure S11.