

Supplemental Figure 1. SPY is not feedback regulated by circadian clock.

(A) Schematic diagrams of domain organization of SPY protein and its respective mutations. The amino acid deletion or change and the mutant background are indicated in each mutant allele.

(**B**) Diagram indicating the position of primers used for RT-qPCR to determine *SPY* mRNA levels.

(C and D) The temporal expression pattern of *SPY* in LD (D) and LL (E) conditions. Data represent mean \pm s.d. (n = 3).

(E) Western blot analysis showing protein abundance of SPY in a time course experiment.

Supplemental Figure 2. Circadian phenotypes of spy mutants with additional reporters.

(A, B and C) Circadian phenotype of *spy-1* mutant determined with *CAB2pro:LUC* as a reporter in constant red light. Data represent the mean \pm s.e. (n = 20 seedlings).

(**D**, **E** and **F**) Circadian phenotype of *spy-1* mutant determined with *LNK2pro:LUC* as a reporter in constant red light. Data represent the mean \pm s.e. (n = 20 seedlings).

(G, H and I). Circadian phenotype of *spy-3* mutant determined with *CAB2pro:LUC* as a reporter in constant red light. Data represent the mean \pm s.e. (n = 20 seedlings).

(J, K and L) Circadian phenotype of *spy-3* mutant determined with *LNK2pro:LUC* as a reporter in constant red light. Data represent the mean \pm s.e. (n = 20 seedlings). *t*-test, ***p < 0.001.

Supplemental Figure 3. The *spy* mutants displays the lengthened circadian period.

The estimated circadian period of A. Data represent mean \pm s.e. (n=18). *** p < 0.001 (Student *t*-test).

Supplemental Figure 4. Identification of respective SPY transgenic lines and characterization of their physiological phenotypes.

(A) Western blot determining SPY protein level in selective T3 progeny of homozygous transgenic lines.

(**B**) Representative transgenic lines showing *SPYpro:GFP-SPY-NES* can rescue the flowering time phenotype of *spy-3* mutant, but not *SPYpro:GFP-SPY-NLS*. Scale bars=1 cm.

(C) Statistical analysis of the flowering time phenotype shown in (B). Data represent mean \pm s.e. (n=12).

(**D**) Representative transgenic lines showing *SPYpro:GFP-SPY-NES* can rescue the leaf serration phenotype of *spy-3* mutant, but not *SPYpro:GFP-SPY-NLS*. Scale bars=1 cm.

Α		ZTO			С	ZT12				
		SPYpro:GFP-SPY SPYpro:GFP-SPY				SPYpro:GF	P-SPY S	SPYpro:GFP-SPY		
		5	ару-3	-NLS spy-3		spy-3	3	-NLS spy-3		
		43 15 25								
						(10 (19) 21)				
							\searrow			
в					D					
	NO	. Peak name	Gene ID	Gene Name	NO.	Peak name	Gene ID	Protein Name		
	1	W8QNP6	At3g11540	Glycosyltransferase	1	W8QNP6	At3g11540	Glycosyltransferase		
	2	A0A178WNI0	At1g80670	RAE1	2	A0A178W2Q0	At1g10470	Uncharacterized protein		
	3	A0A178W2Q0	At1g10470	ARR4	3	Q6LA42	At5g24470	APRR5		
	4	Q9LU63/no	At5g51110	MWD22_5	4	A0A178V2E7	At4g25120	SHI4		
	~		440-50000	Autophagy-related	5	Q9FZJ2	At1g27430	F17L21.22		
	5	ASINIKOD	Al3g53930	protein 1b	6	A0A178VW16	At2g36720	VTC1		
	6	A0A178W507	At1g70770	SmD3	7	A0A178WL38	At1g10240	NFXL1		
	7	FAKOVE	415-10150	14-3-3-like protein	8	A0A178UMG2	At5g63860	EXL2		
	1	F4KGV5	At5g10450	GF14 lambda	9	A0A178UF05	At5g62690	Uncharacterized protein		
	8	A0A178\/3F1	At4a03780	Serine/threonine-protein	10	A0A178V7W0	At3g53110	Uncharacterized protein		
	Ű		711-1900700	phosphatase	11	Q9SAF2	At1g13190	F3F19.21		
	9	A0A178UK47	At5g22330	RuvB-like helicase	12	A0A178UVL7	At4g02890	Endoglucanase		
	10	A0A178W3T8	At1g13360	ERF1-2	13	O22791	At2g33410	Putative RNAbinding		
	11	A0A178V716	At3g47620	TCP14				protein		
	12	A0A178V1U6	At4g38280	HDA14	14	O64866	At2g44310	Calcium-binding EF		
	13	A0A178UYV3	At4g38680	GRP2				-hand-containing protein		
	14	A0A178VTU6	At2g44170	Uncharacterized protein	15	A0A178W6P4	At1g53090	RH22		
				TRA1B	16	A0A178V5T0	At3g55510	Uncharacterized protein		
	15	F4JPL2	At4g36080	Phosphotransferases/inositol or phosphatidylinositol	17	Q9ZUX4	At2g27730	Uncharacterized protein		
	15				18	Q9LHL2	At3g13224	Uncharacterized protein		
				kinases	19	C0Z3A1	At2g30620	Uncharacterized protein		

Supplemental Figure 5. Overlapped proteins identified by AP-MS between transgenic line of *SPYpro:GFP-SPY* and *SPYpro:GFP-SPY-NLS*.

(A) and (C) Venn diagram showing the number of overlapped proteins between *SPYpro:GFP-SPY* and *SPYpro:GFP-SPY-NLS*, with sampling at ZT0 (A) and ZT12 (C) respectively. (B) and (D) The list of overlapped proteins shown in A and C.

Supplemental Figure 6. Peptides of PRR5 protein were identified by affinity purification followed by mass spectrometry.

Seedlings of *SPY:GFP-SPY-NLS spy-3* and *35S:GFP* plants were used for affinity purification. The extract ion chromatography of peptide from PRR5 protein was found in the immunoprecipitates of *SPY:GFP-SPY-NLS spy-3* (**B**) but not that of *35S:GFP* (**A**).

Supplemental Figure 7. TOC1 did not interact with SPY in planta.

Co-immunoprecipitation analysis of SPY-FLAG with GFP tagged TOC1 and PRR5 was performed with GFP-Trap beads to precipitate protein complexes extracted from co-infiltrated leaves of *N. benthamiana*.

Supplemental Figure 8. PRR5 abundance, but not subcellular localization pattern, was altered in *spy-3* mutant.

Subcellular localization pattern of PRR5-GFP fusion protein in *PRR5:PRR5-GFP* and *PRR5:PRR5-GFP spy-3* was observed by confocal fluorescence microscopy. Scale bars = $20 \mu m$. Close-up views are shown in the lower red boxes.

Supplemental Figure 9. Immunoblot analysis showing higher PRR5 protein accumulation in *spy-3* mutant in constant red light. Seedlings of *PRR5:PRR5-GFP* and *PRR5:PRR5-GFP spy-3* were grown in 12 h L/12 h D photocycles, then transferred to constant light condition. Samples were collected at indicated time points. PRR5-GFP protein abundance was detected with GFP antibody. Actin antibody and ponceau staining were used as loading controls. Error bar represents s.d. from three biological replicates.

Supplemental Figure 10. Transcript levels of PRR5 were not significantly changed in *spy-3* mutant.

The same tissues in A were used for determine the transcript level of *PRR5* by RT-qPCR. The transcript levels of PRR5 were normalized by *ACT2* expression. Data represent mean \pm s.e. (n = 3, biological replicates).

Supplemental Figure 11. Transcript levels of CCA1 and LHY are decreased in spy-3.

(**A** and **B**) Bioluminescence of *CCA1:LUC* showing the lower transcription activity of *CCA1* promoter in *spy-8* from LD transferred into continuous red light (**A**) or darkness (**B**). Data represent mean \pm s.e. (n = 15).

(**C** and **D**) Transcript levels of *CCA1* (**C**) and *LHY* (**D**) in *spy-3* mutant under LL condition. Data represent mean \pm s.e. (n=3, biological replicates). The gene expression level was normalized by *ACT2* expression.

Supplemental Figure 12. The lengthened circadian period phenotype in *spy-8* could be reverted by null mutation of PRR5.

(A) Normalized bioluminescence activity of *CCA1:LUC* in *spy-8*, *prr5-1*, *spy-8 prr5-1* and Ler plants in continuous monochromatic red light (20 μ mol m⁻² s⁻¹).

(**B**) Scatter plot showing that the lengthened circadian period phenotype of *spy-8* could be partially rescued by null mutation of PRR5, *prr5-1*.

(C) The estimated circadian period of *spy-8*, *prr5-1*, *spy-8 prr5-1* and Ler plants. Data represent the mean \pm s.e. (n = 15 seedlings). ***p < 0.001 (Student *t*-test).

Supplemental Figure 13. Immunoblot analysis showing PRR5 protein abundance in *35S:PRR5-GFP* and *35S:PRR5-GFP spy-3* in constant red light. Seedlings were grown in 12 h L/12 h D, then transferred to constant red light condition. Samples were collected at indicated time points. PRR5-GFP protein abundance was detected with GFP antibody, while actin antibody and ponceau staining were used as loading controls.

Supplemental Figure 14. The regulation on flowering time and leaf serration by SPY is independent of PRR5.

(A) The flowering time of *spy-3*, *prr5-1*, *spy-3 prr5-1* and Col-0 plants. Rosette leaf number were counted after bolting around 3 cm.

(B) Quantification the number of rosette leaves at bolting of *spy-3*, *prr5-1*, *spy-3 prr5-1* and Col-0 plants. Data represent the mean \pm s.d. (n = 12). ****p*<0.001 (Student *t*-test).

(C) Leaf serration phenotypes of *spy-3*, *prr5-1*, *spy-3 prr5-1* and Col-0 plants, showing the PRR5 mutation cannot genetically rescue the lack of leaf serration phenotype of *spy-3*. The fifth leaves of indicated plants were taken for photography. Scale bars = 1 cm.

Primer name	Sequence 5' to 3'	Purpose
qPCR Primers		
qCCA1-F	CCTTTTACAAACACCGGCTCTT	qPCR
qCCA1-R	AATCGGGAGGCCAAAATGA	
qLHY-F	AAATCAAGATGAGAATTGCTCGGG	
qLHY-R	ACTTGTTTCAATGTCGCCACTTACTTTC	
qPRR5-F	ATTCCGAATGAAGCGAAAGGA	
qPRR5-R	TCGTAACGAACCTTTTTCTCAT	
	AACAT	
qSPY-F	TGCTGAGTCCTACCAGAAAGC	
qSPY-R	TCGGTCAAAACAATGGCTAA	
qACT2-F	GCTGAGAGATTCAGATGCCCA	
qACT2-R	GTGGATTCCAGCAGCTTCCAT	
Genotyping Primer	S	
LBa1	TTTTCGCCCTTTGACGTTGGAG	prr5-1
prr5-1-F	CGGCTTTCTGCTGTCCAACAC	prr5-1
prr5-1-R	TCGCGCTTAGAGTTTTGCTCG	
sec-5-F	TCATGAATCAATCCTTGAGCC	sec-5
sec-5-R	TTTCGATGTCCCTTCTTTGTG	
BP	ATTTTGCCGATTTCGGAAC	sec-5
spy-1-F	CTTGGGGTGGCTTATGGAGA	spy-1 mutant for
spy-1-R	CAGCATTGCGAGAATCTGGA	sequencing
spy-3-F	GCAGATGCAAAAACATACAGG	spy-3mutant for
spy-3-R	GGGAACTGCACACAGTATCCTAGCC	sequencing
Cloning		
SPY-F	ATGGTGGGACTGGAAGATG	
SPY-R	CTAGCTAGTGGAGTCCATTC	35Spro:GFP-SPY
SPY-NLS-R	CTAAACCTTTCTCTTCTTCTTAGGGCTAGT	35Spro:GFP-SPY-N
	GGAGTCCATTCTC	LS
SPY-NES-R	CTAAATATCAAGTCCAGCCAACTTAAGA	35Spro:
	GCAAGGCTAGTGGAGTCCATTCTC	GFP-SPY-NES
GFP-SPY-F	CTCGACTCTAGAGGATCCCC	
GFP-SPY-R	CTAGCTAGTGGAGTCCATTC	SPYpro: GFP-SPY
GFP-SPY-NLS-R	CTAAACCTTTCTCTTCTTCTTAGG	
GFP-SPY-NES-R	CTAAATATCAAGTCCAGCCAACTTA	SPYpro:
		GFP-SPY-NES
PRR5 CDS-F	ATGACTAGTAGCGAGGAAGTAG	
PRR5 CDS-R	TGGAGCTTGTGTGGATTGGA	
SPY CDS-F	CGGGGTACCATGGTGGGACTGGAAGATG	
SPY CDS-R	CCATGGACCTTATCGTCATCGTCCTTGTAA	
SPY-FLAG-F	ATGGTGGGACTGGAAGATG	SPYpro:SPY-FLAG
SPY-FLAG-R	CTTATCGTCATCGTCCTTGTAA	

Table S1. A list of oligonucleotides used in this study

Primer name	Sequence 5' to 3'	Purpose
GI CDS-F	ATGGCTAGTTCATCTTCATC	
GI CDS-R	TTGGGACAAGGATATAGTAC	
PRR5C-CDS1673-R	CTATGGAGCTTGTGTGGATTGG	
PRR5C-CDS514-F	ATGCAAACTTCACTTGCTCCTG	
PRR5M-CDS1524-R	CTATTGAAGAGATTGCTGAATTT	
PRR5M-CDS514-F	ATGCAAACTTCACTTGCTCCTG	
PRR5N-CDS1-F	ATGACTAGTAGCGAGGAAG	
PRR5N-CDS513-R	CTATCTTCTCCAGACATGCTG	
PRR7 CDS-F	ATGAATGCTAATGAGGAGGG	
PRR7 CDS-R	GCTATCCTCAATGTTTTTTA	
PRR9 CDS-F	ATGGGGGAGA TTGTGGTTTT	
PRR9 CDS-R	TGATTTTGTAGACGCGTCTG	
SPY ^{CT} CDS1294-F	ATGAATGCTGGCCAGAACCGAT	
SPY ^{CT} CDS-R	GCTAGTGGAGTCCATTCTCTTTG	
SPY ^{NT} CDS1-F	ATGGTGGGACTGGAAGATGAT	
SPY ^{NT} CDS-R	GCGAGAATCTGGATCTATCTTAAG	
TOC1 CDS-F	ATGGATTTGAACGGTGAGTGT	
TOC1 CDS-R	AGTTCCCAAAGCATCATCCT	