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Nutritional Geometry 

We designed our experiments using the nutritional geometric framework. This framework 

aims to untangle the complex interaction between the different macromolecules in food that 

drive phenotypic responses. Consequently, for this study we chose to understand the 

relationship between protein and carbohydrate acting on mtDNA-specific male fitness. In line 

with the framework, we chose four defined diets (“nutritional rails”) that differed in their 

protein-to-carbohydrate ratios (Figure S1A). The use pre-determined diets locks in 

experimental flies to each nutritional rail; if flies consume more food, they would move up 

the rail whereas if they consume less the datapoint would move down the rail. Consequently, 

the more rails are used in the study the greater the nutritional landscape is surveyed.  

The second requirement for nutritional geometry is that a phenotypic trait for each individual 

on the nutritional landscape is collected. There is no constraint on what this phenotypic trait 

can be, but for our study we have chosen male fitness. Hence, for each datapoint on the 

nutritional landscape (Figure S1A) we have three phenotypic measurements: protein 

consumption, carbohydrate consumption and male fitness. Using non-parametric thin-plate 

splines, we can visualise the Z-axis (fitness) for each data point on the nutritional landscape 

(Figure S1B-C). This visualisation is in the form of a heatmap, where areas in red contain 

datapoints with high fitness measures and blue with low fitness. In conclusion, framework is 

able to dissect this complex relationship much better than a standard diet treatment as it takes 

into account part of the behavioural aspect, how much food an individual chose to consume 

to find the ideal nutritional conditions that maximise a particular phenotype. 



 
Figure S1: Principles of the nutritional geometry framework. (A) Datapoints for nutrient 

consumption plotted for each individual in the experiment. Given individuals are locked to 

experimental diets, it is possible to visualise the nutritional rails for each diet. (B) For each 

datapoint, we have a phenotype linked with nutritional consumption (in our case its male 

fertility), and we can superimpose thin-plate splines to create a fitness landscape. (C) Final 

figure showing nutrient consumption and phenotypic landscape.  

 

A complete introduction to the Nutritional Geometry Framework can be found in:  

Simpson & Raubenheimer (1995) “The Geometric Analysis of Feeding and Nutrition: A 

User’s Guide”, J. Insect.Phys 

 

Statistical Models 

Diet consumption 

To examine whether the genotypes varied in the quantity they consumed of each diet, we 

used a model building approach previously used in Camus et al. (2017). The basic model 

(Model C1) expressed total diet consumption (microliters) as a function of diet, with block as 

a random effect. To this model, we then include the random effect of mitochondrial genotype 

to examine if different genotypes consume on average different amount of diet (Model C2). 

Our final model (Model C3) adds diet as a random, genotype-specific intercept to investigate 

genetic variance for diet-specific consumption.  
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Models were compared using parametric bootstrap [1], an approach that uses simulations 

of data under a simpler model to generate a null distribution for the test statistic (the log-

likelihood ratio) against which to compare the observed statistic. 

 

Comparison 1 (Model C1 vs Model C2) 

 LLR df p-value 

PBtest 2.461 1 0.04811 

 

Comparison 2 (Model C2 vs Model C3) 

 LLR df p-value 

PBtest 15.941 9 0.001015 

 

We additionally calculated the amount of variance explained by each model; plus how much 

extra variance is explained by increasing the complexity of our models. This was done using 

the r.squaredGLMM function within the MuMIn package [2] in R . Model C1 explains 

19.21% of the variance and is increased by 1.38% when adding extra terms (Model C2). 

Furthermore, this is increased again by 4.24% when adding the terms specific to Model C3.  

 

Nutritional Requirement 

We compared a base model (Model F1) that describes the experimental response surface with 

fixed effects for the linear, quadratic and cross-product effects of the consumed diet 

components, as well as a random effect for experimental block, with a more complete model 

(Model F2) that assess genetic variation for diet effects on fitness. For this, we added random 

intercept terms to Model F1 that describe how the flies of different mitochondrial genotypes 

vary in their average fitness (across all dietary regimes). The full model (Model F3) builds 

upon Model F2 an adds the genotypic-specific responses with linear, quadratic and cross-

product effects of carbohydrate and protein intake. Model F3 thus allows for genotype-

specific shape specification of the fitness response surface.  

 

Comparison 1 (Model F1 vs Model F2) 

 LLR df p-value 

PBtest 9.8427   1 0.001812 

  



 

Comparison 2 (Model F2 vs Model F3) 

 LLR df p-value 

PBtest 9.7451   14 0.0495 

 

We also calculated the amount of variance explained by the fitness models.  Models F1, F2 

and F3 accounted for 16.62%, 20.29% and 26.4% of the variance respectively.   

 

Further Nutritional Requirement Analysis – Reaction Norms 

In addition to using the Geometric Framework to analyse our nutritional requirement data, we 

used linear mixed models to analyse our data. This analysis follows the same principles as the 

diet consumption analysis, with fitness as a response variable instead of consumption. We do 

have to note that it does not take into account effects due to liquid diet consumption. The 

basic model (Model R1) expressed total number of offspring as a function of diet, with block 

as a random effect. To this model, we then include the random effect of mitochondrial 

genotype to examine if different genotypes consume on average different amount of diet 

(Model R2). Our final model (Model R3) adds diet as a random, genotype-specific intercept 

to investigate genetic variance for diet-specific consumption. 

 

Although we do not take diet consumption into account in this model, we still find significant 

mitochondrial genetic variance (Comparison 1) and mito × diet interactions (Comparison 2). 

This further supports our nutritional geometry results.  

 

Comparison 1 (Model R1 vs Model R2) 

 LLR df p-value 

PBtest 3.502   1 0.001185 

 

 

Comparison 2 (Model R2 vs Model R3) 

 LLR df p-value 

PBtest 3.0885 9 0.004032 

 



We also calculated the amount of variance explained by these models.  Models R1, R2 and 

R3 accounted for 8.55%, 11.96% and 15.72% of the variance respectively.   

 

Permutations Tests 

We wanted to determine to what degree variation in fitness across genotypes/diets was due to 

behavioural (variation in amount of nutrient) or physiological responses (variation in 

metabolic machinery). We used a permutation approach, because it will break any 

associations between behavioural and physiological responses to the different diets. If the 

variation in fitness is determined by the amount consumed or by a matching of behavioural 

responses with physiology, then the permutation of consumption data should lead to a lower 

average predicted fitness and reduced variation in fitness between genotypes. For our test, 

consumption values across genotypes were permutated and used to calculate precited fitness 

values based on the final model fitted to the data (Model F3). This was done separately for 

each block and dietary composition. In total, we generated 1000 datasets with permuted 

consumption data and comparing the distributions of means and variances in fitness across 

permutations to observed values of these parameters in the original data. P-values were 

calculated as the proportion of parameter values calculated from the permuted data that 

equalled or exceeded the values observed in the original dataset. Permutation tests were 

performed on the entire dataset.  



Table S1: Essential and non-essential amino acid stock solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Amino acid stock solution  (g/200 ml)  

Essential amino acid 
F (L-phenylalanine)  3.03  
H (L-histidine  2.24  
K (L-lysine)  5.74  
M (L-methionine)  1.12  
R (L-arginine)  4.70  
T (L-threonine)  4.28  
V (L-valine)  4.42  
W (L-tryptophan)  1.45  

Non-essential amino acid 
A (L-alanine)  5.25  
D (L-aspartate)  2.78  
G (glycine)  3.58  
N (L-asparagine)  2.78  
P (L-proline)  1.86  
Q (L-glutamine)  6.02  
S (L-serine)  2.51  

    
    



Table S2: Recipe for 200ml of protein solution 
 

   Total volume 
200ml 

 L-ile Powder 348mg 
 L-leu Powder 492mg 
 L-tyr Powder 252mg 
    
 cholesterol 20mg/ml in EtOH 3ml 

    
 CaCl2 1000x 200ul 
 MgSO4 1000x 200ul 

 CuSO4 1000x 200ul 
 FeSO4 1000x 200ul 

 MnCl2 1000x 200ul 

 ZnSO4 1000x 200ul 
 H2O  Up to 50ml 
 Total volume before autoclaving 50 ml  
    
 buffer 10x acetate buffer base 20ml 
    
 nucl/lipid soln 125x stock 1.6ml 
    
 Yaa solutions essential amino acid stock solution (EAA) 18.154ml 
  non essential amino acid stock solution (NEAA) 18.154ml 
  Na glutamate solution (100mg/ml) 5.464ml 
  Cys solution (50mg/ml) 1.584ml 
    
 Vitamin stock 47.6x stock 4.2ml 

    
 folic acid stock 1000x stock 200ul 

    
 Propionic acid  1.2ml 
    
 Nipagin 100 g/l stock in 95% EtOH 3ml 
  Make to total volume of 200ml with H2O  

 
 
 
 
 
 
 
 



Table S3: Recipe for 200ml of carbohydrate solution 
 

   Total volume 
200ml 

 sucrose To match protein 1:1 6.5g 

    
 cholesterol 20mg/ml in EtOH 3ml 

    
 CaCl2 1000x 200ul 
 MgSO4 1000x 200ul 

 CuSO4 1000x 200ul 
 FeSO4 1000x 200ul 

 MnCl2 1000x 200ul 
 ZnSO4 1000x 200ul 

 H2O  Up to 50ml 
 Total volume before autoclaving 50ml 
    
 buffer 10x acetate buffer base 20ml 
    
 nucl/lipid soln 125x stock 1.6ml 
    
 Vitamin stock 47.6x stock 4.2ml 

    
 folic acid stock 1000x stock 200ul 

    
 Propionic acid  1.2ml 
    
 Nipagin 100 g/l stock in 95% EtOH 3ml 
  Make to total volume of 200ml with H2O  
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