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Appendix Figure S1: Comparison of support vector machine, random forest, and logistic

regression classifiers in antimicrobial resistance prediction, and their generalization ability.

Training  and performance estimates  was performed in  ten-fold  cross-validation,  where

isolates were split either randomly (standard: std) or using phylogenetically related blocks

of  isolates (block).  The classification was performed for  each antibiotic  using the best

performing feature combinations for the SVM. The error bar shows the variability (standard

deviation) in 10 test folds.
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Appendix Figure S2: Comparison of support vector machine, random forest, and logistic

regression classifiers in antimicrobial resistance prediction, and their generalization ability.

The classifiers were tuned in a ten-fold cross-validation; subsequently their performances

are reported over the held-out set, where isolates were split either randomly (standard:

std) or using phylogenetically related blocks of isolates (block).
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Appendix Figure S3: Pearson correlation coefficient of independently sequenced 

PA14-wt samples.
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