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1 Multiscale homogenized model for non-Ohmic conduction

This Appendix contains mathematical and heuristic arguments justifying the multiscale model considered in the
central part of the paper and describes the numerical scheme used in the computational experiments. In the first
section, we consider the steady-state one-dimensional model of the conduction in a periodic chain of cells
separated by weakly conductive thin membrane where gap junctions are embedded. At the microscopic level, the
conduction coefficient of the membrane depends on the difference of the potentials at the sides of a membrane.
The goal of the multiscale mathematical analysis is the up-scaling of this model and the derivation of a
macroscopic non-linear constitutive Ohm’s law. This analysis yields an algorithm that relates the microscopic
and macroscopic conductivities. The method is based on the homogenization technique (see [1–5] and the
bibliography therein). The algorithm is rigorously justified by an estimate for the difference of the exact solution
of the one-dimensional conductivity problem and an approximate solution, which is a solution of the
homogenized problem. At the end of the first section, we discuss an extension of the upscaled constitutive law to
the case of the non-stationary conduction problem. Using heuristic arguments, we suggest a formal generalization
of the upscaling procedure in the three-dimensional case. The second section of this Appendix presents a weak
formulation for the one-dimensional non-Ohmic homogenization model (NOHM), and the numerical scheme used
in the solution of the NOHM.

1.1 Formulation of the non-Ohmic homogenization model and main results

Consider an ε-periodic chain of cells separated by thin membranes of thickness εδ, where ε, δ are small positive
parameters and consider the conduction of the chain having the conductivity within a cell σc of order 1 and
conductivity of membranes of order of the small parameter δ nonlinearly depending on the voltage drop at the
sides of a membrane. Let uε,δ be the microscopic potential field, and jε,δ be the microscopic current density. We
consider the problem of conduction given by

− d

dx
jε,δ(uε,δ) = 0, x ∈ (0, 1), (1)
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with boundary conditions
jε,δ(uε,δ)|x=0 = I0, I0 ∈ R, uε,δ|x=0 = 0, (2)

where I0 is an applied current density. Denote the periodically extended space occupied by the cytoplasm by
Bcε,δ = ∪∞k=−∞((k + δ

2 )ε, (k + 1− δ
2 )ε), and the membranes occupy the set of layers

Bfε,δ = ∪∞k=−∞((k − δ
2 )ε, (k + δ

2 )ε), denote the dilated 1/ε times sets: Bcδ = ∪∞k=−∞(k + δ
2 , k + 1− δ

2 ), and

Bfδ = ∪∞k=−∞(k − δ
2 , k + δ

2 ). Problem (1), (2) is the Neumann’s problem for the local Ohm’s law given by the
following relations

jε,δ(uε,δ) = −σδ
(x
ε
, {uε,δ}

)duε,δ
dx

(3)

where the conductivity is described by the following relation

σδ

(
ξ, {u}

)
=


σc, ξ ∈ Bcδ ,

δ(1 + µa(S[u]j,ε))σg, ξ ∈ (j − δ
2 , j + δ

2 ) ,
(4)

where

[u]j,ε = u((k +
δ

2
)ε)− u((k − δ

2
)ε), (5)

S is a scaling parameter (S ≤ ε−1) and a is a smooth function satisfying inequalities

‖a‖C(R) ≤ ā0, ‖a′‖C(R) ≤ ā1, (6)

where ā0, ā1, σc, σg, µ are positive constants, and ε, δ are small positive parameters. Let us comment the relations
(4),(5). The conductivity of a membrane material is small, it is of order of δ compared to the conductivity of the
cytoplasm, and it nonlinearly depends on the voltage gap u((k + δ

2 )ε)− u((k − δ
2 ) scaled by a zooming factor S:

σδ = δ(1 + µa(S(u((k + δ
2 )ε)− u((k − δ

2 ))))σg. It means that the conductivity may be sensible to any small
voltage gap, i.e. even if the gap is small the variation of the conductivity is significant. The solution of this
problem is defined as a continuous piecewise differentiable function, satisfying equations (1),(2).

The main theoretical result of this Appendix concerns the asymptotic analysis of problem (1), (2). We will be
prove that there exists a positive constant µ0 such that for all values of µ such that |µ| ≤ µ0 there exists a unique
solution to problem (1), (2), and it can be approximated by a solution v of the homogenized equation

d

dx

(
σ̂δ(

dv

dx
)
dv

dx

)
= 0, x ∈ (0, 1), (7)

and boundary conditions (same as (2))

σ̂δ(
dv

dx
)
dv

dx
|x=0 = −I0, I0 ∈ R, v|x=0 = 0 (8)

where σ̂δ(y) is the effective conductivity and is given by the following algorithm. First, we solve with respect to
the unknown [N ](y) the following equation depending on the parameter y ∈ [−2(1 + λ)I, 2(1 + λ)I]:

[N ] = −(1− δ)
(
〈 1

σδ(·, Sε[N ])
〉−1 − 1

)
y, (9)

where I = |I0|
σg

max{1, λ}, λ = σg/σc,

〈F (·)〉 =

∫ 1

0

F (ξ)dξ.

Second, we define the effective conductivity tensor

σ̂δ(y) = 〈 1

σδ(·, Sε[N ](y))
〉−1. (10)
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In the following, we will show that for |µ| ≤ µ0, equation (9) admits a unique smooth solution to problem
(7),(8). This problem depends on the small parameter δ, and passing to the limit we can show that the
homogenized problem is independent of δ. However we prefer to keep δ in the equation because in this case the
error is smaller.

Analysing (9) we can see that if Sε is a small parameter, then in the case that a(0) = 0 using the Taylor’s
expansion for the function a in the neighborhood of 0 one can prove that the above theorems hold for any finite
µ0. In such case, the contribution of the nonlinearity to the homogenized equation is also relatively small. In the
case Sε = 1 the nonlinear effect is strong.

The main theorem proves the error estimates for all µ such that |µ| ≤ µ0,

‖uε,δ − v‖L∞((0,1)) = O(ε+ δ2). (11)

Moreover, introducing the first corrector,

u
(1)
ε,δ = v + εN(

x

ε
, v′)

where N(ξ, y) is a periodic solution to (26), and we obtain

‖uε,δ − u(1)
ε,δ‖L∞((0,1)) = O(δ2), ‖duε,δ

dx
−
du

(1)
ε,δ

dx
‖L∞((0,1)) = O(δ). (12)

These estimates justify the homogenized equation and the effective Ohm’s law (10). This law is then used in the
numerical simulations on the cable equation in the modeling of electric conductivity of a tissue at the
macroscopic scale.

We note that when µ = 0 the membrane conductivity is independent of the transjunctional voltage, which
represents an Ohmic behavior of the gap junctions. In such case, there is no need to solve non-linear equation (9),
and it is easy to show that the effective conductivity defined in (10) takes on the analytic expression

σ̂δ =

{
1

σg
+

1− δ
σc

}−1

≈
{

1

σg
+

1

σc

}−1

, (13)

i.e. the effective conductivity is the harmonic mean of the conductivities of the cytoplasm and of that of the
membrane. We note that this is a classical result in linear homogenization theory [1, 2, 5], and corresponds to the
classical linear Ohm’s law at the macroscopic level. Then, the homogenized problem (7), (8) becomes linear and

its solution satisfies (11), while the approximation u
(1)
ε,δ(x) = v(x) + εN(xε )v′(x) is now the exact solution to the

linear version (µ = 0) of problem (1), (2).

1.2 Theorem on the existence and uniqueness of a solution to problem (1), (2)

Theorem 1. There exists µ0 > 0 independent of small parameters such that for all µ ∈ [−µ0, µ0] there exists a
unique solution uε,δ to problem (1), (2). It satisfies inequality

‖duε,δ
dx
‖L∞((0,1)) ≤

2I

δ
. (14)

Proof. Denote U =
duε,δ
dx . Then (1), (2) is equivalent to

U(x) = − I0
σc
, ∀x ∈ Bcε,δ,

U(x) = −µa
(
S
∫ (k+ δ

2 )ε

(k− δ2 )ε
U(s)ds

)
U(x)− I0

δσg
, ∀x ∈ ((k − δ

2 )ε, (k + δ
2 )ε), k = 0,±1, ....

(15)

Consider the space C([(k − δ
2 )ε, (k + δ

2 )ε]) supplied with the norm

‖ · ‖E = supx∈[(k− δ2 )ε,(k+ δ
2 )ε]| · (x)|

and a mapping
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F : E → E, F (U) = −µa

(
S

∫ (k+ δ
2 )ε

(k− δ2 )ε

U(s)ds

)
U − I0

δσg
. (16)

Note that for any U1, U2 ∈ E

|F (U1)(x)− F (U2)(x)| ≤

≤ |µ||a

(
S

∫ (k+ δ
2 )ε

(k− δ2 )ε

U1(s)ds

)
− a

(
S

∫ (k+ δ
2 )ε

(k− δ2 )ε

U1(s)ds

)
||U2(x)|+

+|µ||a

(
S

∫ (k+ δ
2 )ε

(k− δ2 )ε

U2(s)ds

)
||U1(x)− U2(x)|,

and so

|F (U1)(x)− F (U2)(x)| ≤ |µ|(ā1δSε‖U2‖E + ā0)‖U1 − U2‖E . (17)

Consider a closed ball Br in E with r = 2|I0|
δσg

. If |µ| ≤ 1
2ā0

then F (Br) ⊂ Br.
Indeed, if ‖U‖E ≤ r then

‖F (U)‖E ≤ |µ|ā0‖U‖E +
|I0|
δσg
≤ ā0

2ā0

2|I0|
δσg

+
|I0|
δσg

= r. (18)

So, if U1, U2 ∈ Br then

‖F (U1)(x)− F (U2)(x)‖E ≤ |µ|(ā1δSε
|2I0|
δσg

+ ā0)‖U1 − U2‖E =

= |µ|(2ā1Sε|I0|/σg + ā0)‖U1 − U2‖E . (19)

Let |µ| < 1
2ā1|I0|/σg+ā0

. Then F is a contraction with the factor κ = |µ|(2ā1|I0|Sε/σg + ā0) and so there

exists a unique fixed point U ∈ Br. So, there exists a unique solution such that ‖duεδdx ‖L∞((0,1)) ≤ |2I0|δσg
≤ 2I

δ .

Finally, let us prove that if |µ| < 1
2ā0

then any solution satisfies this inequality. Indeed, for all x ∈ Bcε,δ it is
evident(δ < 2) and for x ∈ (0, 1)\Bcε,δ

‖duεδ
dx
‖L∞((0,1)) ≤ |µ|ā0‖

duεδ
dx
‖L∞((0,1)) +

I

δ
<

1

2
‖duεδ
dx
‖L∞((0,1)) +

I

δ
, (20)

so,

‖duεδ
dx
‖L∞((0,1)) ≤

2I

δ
.

So, the theorem is proved with

µ0 < min{ 1

2ā1SεI + ā0
,

1

2ā0
}. (21)

�
In what follows we assume that this condition is satisfied.
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1.3 Theorem on the stability of the solution to problem (1), (2)

Theorem 2. Let condition (6) be satisfied, let f be a piecewise-continous function with possible discontinuities at
the points (k ± δ/2)ε, i.e.

f ∈ L∞(0, 1) ∩[1/ε]+1
k=0 C([(k − δ/2)ε, (k + δ/2)ε] ∩ [0, 1]) ∩ C([(k + δ/2)ε, (k + 1− δ/2)ε] ∩ [0, 1]) let vε,δ be a

solution to the problem

jε,δ(vε,δ)|x=0 = I0 + f, x ∈ [0, 1], vε,δ|x=0 = 0 (22)

Then there exists µ0 > 0 independent of small parameters such that for all µ ∈ [−µ0, µ0] the inequality holds

‖vε,δ − uε,δ‖L∞((0,1)) ≤ Cµ0‖f‖L∞((0,1)), (23)

where Cµ0
does not depend on ε, δ.

Proof. Denote U =
duε,δ
dx , V =

dvε,δ
dx , then V − U = −f/σc in Bcε,δ and

‖V − U‖E = ‖F (V )− F (U)− f

δσg
‖E ≤ |µ|ā1Sεδ‖V − U‖E‖U‖E + |µ|ā0‖V − U‖E +

‖f‖E
δσg

≤

≤ |µ|(2ā1|I0|Sε/σg + ā0)‖V − U‖E +
‖f‖E
δσg

, x ∈ ((k − δ

2
)ε, (k +

δ

2
)ε).

Condition (21) yields: |µ| < 1
2ā1|I0Sε|/σg+ā0

, so

‖V − U‖E ≤ (1− |µ|(2ā1|I0|Sε/σg + ā0))−1 ‖f‖E
δσg

for all intervals [(k − δ
2 )ε, (k + δ

2 )ε] and so, integrating V − U and taking into account that the difference

V − U = − f
σc

everywhere except for the set Bfε,δ of measure O(δ), we get:

‖vε,δ − uε,δ‖L∞((0,1)) ≤ Cµ0
‖f‖L∞((0,1))

with Cµ0 = max{(1− µ0(2ā1|I0|Sε/σg + ā0))−1, λ}. �

1.4 Derivation of the cell problem

Now consider the homogenization procedure seeking an approximate solution in the form

u
(1)
ε,δ(x) = v(x) + εN(

x

ε
, v′(x)),

where v is smooth (belongs to C2([0, 1])) and N(ξ, y) is 1−periodic in ξ, smooth in y. Then

− jε,δ(u(1)
ε,δ) =



σc(v
′(x) + ∂N

∂ξ (ξ, v′(x)) + ε∂N∂y (ξ, v′(x))v′′(x)), x ∈ Bcε,δ, ,

δσg(1 + µa(S[u
(1)
ε,δ ]jε))

(
v′(x) + ∂N

∂ξ (ξ, v′(x)) + ε∂N∂y (ξ, v′(x))v′′(x)
)
,

x ∈ ((k − δ
2 )ε, (k + δ

2 )ε) ,

(24)

where

[u
(1)
ε,δ ]jε = ε(δv′((k + θδ)ε) +N(k +

δ

2
, v′|(k+ δ

2 )ε)−N(k − δ

2
, v′|(k− δ2 )ε)) (25)

Note that it will be proved that v, v′, v′′, N and its derivatives are of order of one. Denote
[N ](y) = N(k + δ

2 , y)−N(k − δ
2 , y). So, keeping the leading term we get the following cell problem: for any real

value of a parameter y solve equation
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d

dξ

(
σδ(ξ, [N ])(

dN

dξ
+ y)

)
= 0, (26)

in the class H1
# of 1-periodic functions N belonging to H1

loc, where parameter y stands for v′(x),

σδ

(
ξ, [N ]

)
=


σc, ξ ∈ Bcδ ,

δσg(1 + µa(Sε[N ])), ξ ∈ (k − δ
2 , k + δ

2 ) ,
(27)

equation (26) is formulated in a classical form, and it is equivalent to the weak formulation: its solution is
piecewise linear with respect to ξ. Let us find a 1−periodic solution to (26),(27).

For the leading term of the asymptotic approximation of the current we get:

σδ

(
ξ, [N ]

)
(
dN

dξ
+ y) = C0 = const;

dN

dξ
= −y +

C0

σδ

(
ξ, [N ]

) .
N is 1−periodic in ξ function and so, 〈dNdξ 〉 = 0 (see Lemma 1 section 3, Chapter 2 from [1]), so,

C0 = 〈 1

σδ

(
ξ, [N ]

) 〉−1y,

where 〈·〉 =
∫ 1

0
·dξ. Note that N is a 1−periodic function, so,

[N ] = N(
δ

2
, y)−N(1− δ

2
, y) = −

∫ 1− δ2

δ
2

(−y + C0/σc)dξ

because for ξ ∈ ( δ2 , 1−
δ
2 ), σδ

(
ξ, [N ]

)
= σc.

So, we get the main equation for unknown function [N ](y):

[N ](y) = −(1− δ)
(
〈 1

σδ

(
ξ, [N ]

) 〉−1σ−1
c − 1

)
y (28)

Let us rewrite it calculating the right-hand side.

〈 1

σδ

(
ξ, [N ]

) 〉−1 = (
δ

δ(1 + µa(Sε[N ]))σg
+

1− δ
σc

)−1 = σg(
1

1 + λ
+ bδ(Sε[N ])),

where

bδ(Sε[N ]) =
(1 + δλ)µa(Sε[N ]) + δλ

(1 + λ)(1 + (1− δ)(1 + µa(Sε[N ]))λ)
; (29)

here if δ < 1, |µ| < 1
2ā0

and so

|bδ(Sε[N ])| ≤ (1 + δλ)|µ|ā0 + δλ

1 + λ
.

Equation (28) has the form

[N ](y) = ϕ(Sε[N ], y), (30)

where

ϕ(t, y) = −(1− δ)(λbδ(t)−
1

1 + λ
)y. (31)

We will prove further that this mapping is contracting.
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1.5 Homogenized equation

Conformly to the homogenization theory for a stratified medium, the homogenized equation can be presented in
the form

d

dx

(
〈 1

σδ

(
ξ, [N ](v′)

) 〉−1v′
)

= 0, x ∈ (0, 1), (32)

so that

〈 1

σδ

(
ξ, [N ](v′)

) 〉−1v′ = −I0, x ∈ (0, 1), v(0) = 0, (33)

i.e.

1

1 + λ
v′ + bδ(Sε[N ](v′))v′ = −I0/σg, x ∈ (0, 1), v(0) = 0. (34)

If

0 <
(1 + δλ)|µ|ā0 + δλ

1 + λ
<

1

2(1 + λ)
, (35)

then |bδ(t)| < 1
2(1+λ) , consequently, |v′| < 2(1 + λ)I, and so equation (28) should be solved only for values of the

parameter y ∈ (−2(1 + λ)I, 2(1 + λ)I). Condition (35) is satisfied in particular if

µ0 <
1

8ā0
, δ <

1

8λ
. (36)

Below we assume that this condition is satisfied.

1.6 Proof of the existence and uniqueness of a solution to the cell problem

Let us prove that there exists µ0 independent of δ such that for all µ ∈ (−µ0, µ0) there exists a unique solution
[N ] to ( 28), differentiable with respect to y. Let us calculate

(bδ(t))
′ =

µa′(t)

(1 + (1− δ)(1 + µa(t))λ)2
.

For µ0, δ satisfying (36) we have an estimate:

|(bδ(t))′| < µ0ā1. (37)

There exists µ0 depending on ā0 and on ā1 such that for µ ∈ (−µ0, µ0),

Sε|(bδ(t))′| <
1

2I(1 + λ)2
. (38)

In particular, it is satisfied if

µ0 <
1

2Iā1Sε(1 + λ)2
(39)

and (36).
Then mapping ϕ from R to R, defined by the right hand side of relation (30) is a contraction with the factor

λ
1+λ in the interval [−2(1 + λ)I, 2(1 + λ)I]. So there exists a unique solution to equation (28). According to the
implicit function theorem, [N ] is differentiable on [−2(1 + λ)I, 2(1 + λ)I].
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1.7 Theorem on the existence and uniqueness of a solution to the homogenized
problem. Error estimate.

Theorem 3. There exists µ0 > 0 independent of small parameters such that for all µ ∈ (−µ0, µ0), there exists a
unique solution v of problem (32), (33) (i.e. of the equivalent equation (34) ) and a unique solution uε,δ of
problem (1), (2) and the following estimate holds

‖v − uε,δ‖L∞((0,1)) = O(ε+ δ2). (40)

Proof. Let us prove first the existence of a solution to problem (34) for the values of µ ∈ (−µ0, µ0) such that

‖bδ‖L∞(R) + ‖b′δ‖L∞(R)Sε‖[N ]′‖L∞([−2(1+λ)I,2(1+λ)I])2(1 + λ)I <
1

2(1 + λ)
.

Let us give a sufficient condition for it using the previously obtained bounds (36), (37), (39). Note that for
[N ]′(y) we get the following equation:

[N ]′(y) = −(1− δ)
(
〈 1

σδ

(
·, [N ](y)

) 〉−1σ−1
c − 1

)
− (1− δ)σ−1

c

(
〈 1

σδ

(
·, [N ]

) 〉−1
)′

[N ]
[N ]′(y)y =

= −(1− δ)λbδ(Sε[N ]) + (1− δ) 1

1 + λ
− (1− δ)λb′(Sε[N ])Sε[N ]′(y)y.

Let µ0 < min{ 1
32ā0

, 1
32λā0

, 1
32ā1ISε(1+λ)2 } and let δ < min{ 1

32 ,
1

32λ}, then

|bδ| ≤
3

16(1 + λ)
,

|b′δ| ≤ |µ|ā1 ≤
1

32ISε(1 + λ)2
,

and so, we get

|[N ]′| ≤ 3λ

16(1 + λ)
+

1

1 + λ
+ λ|µ|ā1|[N ]′|2Sε(1 + λ)I ≤

≤ 3λ+ 16

16(λ+ 1)
+

λ

16(1 + λ)
|[N ]′|.

So, |[N ]′| is bounded by 3λ+16
15λ+16 .

So,
‖bδ‖L∞(R) + ‖b′δ‖L∞(R)Sε‖[N ]′‖L∞([−2(1+λ)I,2(1+λ)I])2(1 + λ)I

≤ 3

16(1 + λ)
+

3λ+ 16

32(1 + λ)2I(16 + 15λ)
2(λ+ 1)I <

1

2
.

So, existence and uniqueness of solution to equation (34) follows from the Banach fixed point theorem applied
to the space [−2(1 + λ)I, 2(1 + λ)I] .

The existence and uniqueness of solution to equation (1), (2) follows from Theorem 1.
Evidently, v is linear, so, v′′ = 0.
So,

−jεδ(u(1)
εδ ) = σδ(

x

ε
, [N ](y))(

dN

dξ
+ y)|y=v′ +Rεδ(x) =

= 〈 1

σδ

(
·, [N ]

) 〉−1v′(x) +Rεδ(x) = −I0 +Rεδ(x),

Rεδ(x) = (−σδ(
x

ε
, [N ](y)) + σδ(

x

ε
, {u(1)

εδ }))(
dN

dξ
+ y)|y=v′ =
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=


0, x ∈ Bcε,δ ,

δµ(a(S[u
(1)
ε,δ ]jε)− a(Sε[N ](v′)))(v′ + dN

dξ (v′)), x ∈ ((j − δ
2 )ε, (j + δ

2 )ε) ,

(41)

Here
|a(S[u

(1)
ε,δ ]jε)− a(Sε[N ](v′)| ≤ ā1|S[u

(1)
ε,δ ]jε − Sε[N ](v′)|.

Using relation (25), we see that this right-hand side is less than ā1δ|v′| ≤ 2(1 + λ)δIā1.
So,

‖
du

(1)
ε,δ

dx
− duε,δ

dx
‖L∞((0,1)) = O(δ), ‖u(1)

ε,δ − uε,δ‖L∞((0,1)) = O(δ2) (42)

according to Theorem 2. This estimate justifies the homogenized equation and respectively the nonlinear
macroscopic Ohm’s law. Theorem 3 is proved. �

1.8 Extensions to the transient problem of conduction and to three-dimensional
domains

Further this law is used for numerical computations of the cable equation at the macroscopic scale.
Remark 1. Theorems 1-3 can be easily generalized in the case when equation (1) is non-homogeneous:

− d

dx
jε,δ(uε,δ) = f(x), x ∈ (0, 1), (43)

where f is a continuous function in [0, 1]. However this generalization needs several modifications and some

additional estimates. Namely, |I0| in the estimates should be replaced by I ′0 = |I0|+
∫ 1

0
|f(x)|dx and the constant

I should be replaced by I ′, obtained from I replacing |I0| by I ′0. Equation (32) will have the right-hand side f(x):

d

dx

(
〈 1

σδ

(
ξ, [N ](v′)

) 〉−1v′
)

= f(x), x ∈ (0, 1), (44)

and consequently, (34) will have the following form:

1

1 + λ
v′ + bδ(Sε[N ](v′))v′ = −I0/σg +

∫ x

0

f(θ)dθ, x ∈ (0, 1), v(0) = 0. (45)

By the implicit function theorem, v′ is continuously differentiable and it is no more constant. Finally, (40)
will have an additional residual consisting of two parts.The first one is

δ(1 + µa(S[uε,δ]jε)ε
∂N

∂y
(ξ, v′(x))v′′(x)

and the second one is related to the approximation

δµa(S[u
(1)
ε,δ ]jε) = δµa(Sε(N(j +

δ

2
, v′(jε))−N(j − δ

2
, v′(jε))) + rε,δ,

|rε,δ| ≤ ā1δµ(δ sup
x∈[0,1]

|v′(x)|+ δε

2
sup

ξ∈[0,1],y∈[−2(λ+1)I′,2(λ+1)I′]

|∂N
∂y

(ξ, y)| sup
x∈[0,1]

|v′′(x)|).

Note that N is a piecewise linear function of ξ and so ∂N
∂y is also piecewise linear. So,

sup
ξ∈[0,1],y∈[−2(λ+1)I′,2(λ+1)I′]

|∂N
∂y

(ξ, y)| ≤ 2 sup
y∈[−2(λ+1)I′,2(λ+1)I′]

|∂[N ]

∂y
(y)|.

Function v′′ can be evaluated using the relation corresponding to the derivative of (45). Taking into
consideration these estimates we show that the order of estimate (11) is the same as in Theorem 3.
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The homogenization of the cable equation is a more complicated problem, however if the homogenized cable
equation

∂

∂x

(
〈 1

σδ

(
ξ, [N ](v′)

) 〉−1 ∂v

∂x

)
= 〈AmCm〉

∂v

∂t
+ 〈AmIion(v,w)〉 in Ω× (0, T ), (46)

∂w

∂t
= g(v,w), (47)

supplied with the conditions

v|t=0 = 0,w|t=0 = 0,−
(
〈 1

σδ

(
ξ, [N ]( ∂v∂x )

) 〉−1 ∂v

∂x

)
|x=0 = I0, (48)

admits a unique solution with bounded derivatives ∂v
∂x ,

∂v
∂t ,

∂2v
∂x2 for lipschitzian Iion and g(v,w) we can prove that

u
(1)
ε,δ = v+ εN satisfies cable equation with a residual of order O(ε+ δ), i.e. u

(1)
ε,δ is a first order formal asymptotic

approximation.
Based on the macroscopic homogenized equations, we express the non-Ohmic cable problem of cardiac

electrophysiology as follows: Find a macroscopic transmembrane potential function v such that

∂

∂x

(
σ̂(
∂v

dx
)
∂v

∂x

)
= Am

{
Cm

∂v

∂t
+ Iion

}
in Ω× (0, T ), (49)

where Iion : R×R→ R represents the transmembrane ionic current, Cm is the membrane capacity and Am is the
surface-to-volume ratio, and we note that the right-hand side of (49) accounts for the amount of charge that
leaves the intracellular domain and enters the extracellular domain. Further, we will assume that the
transmembrane ionic current Iion is governed by v and by gating variables w : Ω× (0, T )→ RM that modulate
the conductance of ion channels, pumps and exchangers, i.e., Iion = Iion(v,w), where the exact functional form of
Iion will depend on the choice of ionic model. The evolution of gating variables is determined by kinetic
equations of the form

∂w

∂t
= g(v,w), (50)

where the form of g : R× RM → RM will also depend on chosen the ionic model. The equations (49) and (50)
are supplemented with initial and boundary conditions for the transmembrane potential and gating variables to
form an initial boundary value problem.The homogenization of the cable equation with linear Ohm’s law has
been addressed elsewhere [6–8].

Remark 2. Applying some heuristic arguments (the principle of splitting of the homogenized operator, [1],
p.246, see also [4] p. 316) we can formally generalize the macroscopic model to the three-dimensional case:
assuming that the cytoplasm occupies the boxes
((k1 + δ/2)ε, (k1 + 1− δ/2)ε)× ((k2 + δ/2)ε, (k2 + 1− δ/2)ε)× ((k3 + δ/2)ε, (k3 + 1− δ/2)ε), where ki are
integers, supposing that the gap junctions occupy the layers {xi ∈ ((ki − δ/2)ε, (ki + δ/2)ε)}, i = 1, 2, 3, and
ignoring the conductivity in the intersection of the layers
{xi ∈ ((ki − δ/2)ε, (ki + δ/2)ε)} ∩ {xj ∈ ((kj − δ/2)ε, (kj + δ/2)ε)}, i 6= j, we can rewrite equation (46) replacing
the left hand side by

3∑
i=1

∂

∂xi

(
〈 1

σδ

(
ξ, [N ]( ∂v∂xi )

) 〉−1 ∂v

∂xi

)
In the case of anysotropy when a, µ, σc, σg depend on the direction (a = ai, µ = µi, σc = σci, σg = σgi) then

we get the left-hand side

3∑
i=1

∂

∂xi

(
σ̂i(

∂v

∂xi
)
∂v

∂xi

)
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where σ̂i is constructed as 〈 1

σδ

(
ξ,[N ]( ∂v∂xi

)

) 〉−1 but with a, µ, σc, σg replaced by ai, µi, σci, σgi respectively.

2 Numerical solution

The homogenized equations were numerically solved using an explicit Euler finite-element spatio-temporal
discretization scheme. To this the, we start by defining the trial and test spaces:

S =
{
v ∈ (L2(0, T ];H1(Ω,R))

}
V =

{
ν ∈ H1(Ω,R)

}
Testing the function ν ∈ V against (49) we obtain the the weak form of the non-Ohmic electrophysiology

which reads: Find v ∈ S such that∫
Ω

AmCm
∂v

∂t
ν dx+

∫
Ω

∂ν

∂x
σ̂

(
∂v

∂x

)
∂v

∂x
dx+

∫
Ω

AmIion(v,w)ν dx+ j̄0ν(0) + j̄Lν(L) = 0, ∀ ν ∈ V.

were j̄0 and j̄L are the flux applied in the left and right end respectively. For all simulations we have j̄0 6= 0 and
j̄L = 0 except when we elicit the electrical wave from right to left. In this case j̄0 = 0 and j̄L 6= 0. Using a
Forward-Euler explicit scheme to discretize in time assuming a uniform partition [0, . . . , tn, tn+1, . . . , T ], where
the time step is defined by ∆t = tn+1 − tn. Then, given vn and wn, we find vn+1 from the semi-discrete equation∫

Ω

AmCm
vn+1ν

∆t
dx−

∫
Ω

AmCm
vnν

∆t
dx+

∫
Ω

∂ν

∂x
σ̂

(
∂vn
∂x

)
∂vn
∂x

dx+

∫
Ω

AmIion(vn,wn)ν dx+ j̄ν(0) = 0,

which we write in abstract variational form as: find vn+1 such that

a(vn+1, ν) = F (ν) ∀ ν ∈ V (51)

where

a(v, ν) =

∫
Ω

AmCm
vn+1ν

∆t
dx

F (ν) =

∫
Ω

Am

{
Cm

vnν

∆t
− Iion(vn,wn)

}
ν dx−

∫
Ω

∂ν

∂x
σ̂

(
∂vn
∂x

)
∂vn
∂x

dx− j̄ν(0).

The gating variables are updated locally using a forward Euler scheme, which results in the update

wn+1 = wn + ∆t g(vn,wn). (52)

The time-discretized variational problem described in (51) and the internal variable update (52) were
implemented and solved in FEniCS (https://fenicsproject.org) using version 2018.1.0.
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