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Most tissue-level models of cardiac electrophysiology make use of continuum approximations to 
discrete cell-level equations. A commonly used model is based on the monodomain (or bidomain) 
reaction-diffusion equations, which follows from a homogenization process. However, as is well 
known, this derivation does a poor job accounting for the presence of gap junctions that connect 
one cell to another. Experimental results show that gap junctions can have a significant effect on 
the propagation of the action potential. Several works have been devoted to improving this aspect 
of the mondomain/bidomain model. Linear-gradient constitutive laws are the basis for most models 
in continuum mechanics and biology (linear Ohm law). In the paper under review the authors 
incorporate gap junction structures into the microscopic (cell-level) equations using a “nonlinear 
Ohm law” that regulate the current by a conductivity that depends nonlinearly on the so-called 
transjunctional potential jump (the relative difference in the membrane potential between coupled 
cells). After a simple and formal homogenization process the authors obtain a model in which the 
elliptic (diffusion) part contains a gradient-dependent conductivity. Moreover, the conductivity 
function itself is implicitly defined via an algebraic equation. The main part of the paper is devoted 
to presenting and testing (numerically) this model. 

In addition, there is a “mathematical” appendix that derives the model in a very simplified setting. 
Let us provide some details regarding this derivation. The authors consider conduction in a strand 
of cells � , where the cell length is �  and the length of gap junctions is � , with �  
much smaller than �  and �  much smaller than 1. In other words, �  is an additional (small) 
parameter determining the size of gap junctions relative to cell length. The cytoplasma is 
represented by a union of intervals of the form

� ,

of length � , while the gap junctions are 
represented by a union of intervals of the form 

� ,

of length � . See the figure on the right (Fig. 5 in the 
paper) for an illustration. The microscopic 
transmembrane potential and current are denoted 
respectively by �  and � . The steady-state current 
balance reads 

� ,

where the basic assumption is that �  is of the form

� .

The authors postulate that the conductivity �  takes the specific form
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where �  are constants, �  is a bounded function, and 

�

denotes the jump of the function �  accross the � th gap junction. In other words, the current follows 
the usual linear Ohm law inside the cytoplasma with conductivity � , while at gap junctions the 
current is nonlinearly controlled by the function �  and its dependency on the so-called 
transjunctional potential jump � . From the point of view of standard homogenisation of 1D 
elliptic equations, the principal difficulty is that the discontinuous conductivity depends nonlinearly 
on the transjunctional potential jump. The authors claim that the homgenized problem (obtained by 
sending � ) is a nonlinear elliptic equation with gradient-dependent conductivity � , namely

� ,

with boundary conditions

� .

The averaged conductivity �  is defined by

� ,

where �  solves the implicit equation

� .

The above homogenized equation is derived in a very simplified context. It does not really model 
electrical conduction in cardiac biological tissues. However, the authors postulate (without further 
justification) that the standard monodomain reaction-diffusion equation should be modified to 
account for nonlinear conduction by replacing the linear elliptic operator �  by the 
nonlinear elliptic operator �  that depends on the gradient of the potential. It is this 
model that is utilized in the numerical examples. 

Overall, the first part of paper is carefully written and makes for a very pleasant read. It contains 
interesting results that attempt to rectify some of the deficiencies (related to gap junctions) of the 
commonly used models for electrical conduction in biological tissues. 

The second part of the paper (appendix), which is is devoted to the derivation of the homgenized 
model, is poorly written and needs to be largely reworked. The organization is not clear. In fact, it is 
very difficult to read because of typos and inaccuracies in notation as well as in the “mathematics”. 
It is hard to detect a logical structure in the presentation. For example, the homogenized 
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conductivity coefficient is implicitly defined. It solves an "algebraic" equation. It would be natural to 
discuss early on in the paper that this equation is well-defined and can indeed be solved to find the 
conductivity. This is not done as far as I can see. Instead it is hidden in a few sentences 
(discussing fixed points) at the very end of the paper. This does not make for easy reading.  By the 
way, the notation makes it somewhat difficult to understand the precise definition of the 
homogenized conductivity function � . Perhaps after defining this function you include an example 
where �  is explicitly computed for a simple choice of the function � . By the way, is it correct to 
insert an �  in �  in eqn. (4), appendix?  It is not clear what the authors mean by a solution to 
their PDEs. Is it a weak solution or a classical solution. A classical solution demands that the 
solution is twice continuously differentable. I found no arguments showing that the involved 
functions actually possess this regularity. Is it available? I recommend that the authors add 
references to classic homogenization theories. Homogenization of transmission problems with 
interface jumps can be found in numerous works concerning models of diffusion in various 
applications.  Discuss and relate your arguments to revelant existing works. Be more precise when 
you define the functional spaces, in particular those that involve periodic functions. Spaces of 
periodic functions often use the subscript � . It is difficult at times to understand if functions are 
periodically extended to the entire domain or simply defined on an intervall � . Increase the 
overall precision when presenting the mathematics ... The role of the parameter �  is unclear. 
The homogenization parameter �  vanishes in the macroscopic model? What about � ?  Several 
places in the manuscript the functions carry the subscripts �  but the macrospic model seems to 
depend on �  via the “averaged” conduction coefficient.  If �  is a fixed number, why indicate that the 
functions depend on � ? This is confusing.  Adding to this confusion, corrector error estimates (eq. 
12) seem to depend �  (not � ). In eqn. (26) you have neglected the term �  (define � !) 
from eqn. (24). Justify why you can do that, i.e.,  is not possible that � ? I do not 
understand Theorem 2, in particular the hypotheses. As a final remark, I believe that the paper 
would have benefitted from writing out a detailed two-scale homogenization argument for the 
monodomain equation (instead of the very simplied 1D elliptic setting chosen by the authors); after 
all, this is the model used in numerical simulations. 

To summarize: I have listed a few comments/remarks regarding the appendix but there are 
numerous others that I do not list. Overall, the writing of the appendix must be significantly 
improved before this paper can be accepted for publication.
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