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Supplementary Notes

Supplementary Note 1: Definition of relative fitness

In a situation where competition among cells is solely through differential intrinsic growth rates, absolute
fitness is equal to growth rate: In a population of cells growing exponentially with growth rate µ , the
selection coefficient for a variant with growth rate µ +δ µ is simply δ µ1. Population genetics models
almost always employ relative fitness2, which we here define as a relative growth rate:

f ≡ µ +δ µ

µ
= 1+

δ µ

µ
.

Thus, to quantify the effect on relative fitness of a small change of some parameter x by δx, we use

δ f
δx

=
1
µ

δ µ

δx
.

Note that population genetics models are frequently defined in terms of discrete generations. With
generation time Tgen = ln2/µ , the selection coefficient of the variant per generation is then3

sT = ( f −1) ln2 =
δ µ

µ
ln2 .
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Supplementary Note 2: An outline of possible extensions of GBA

In our development of GBA, we make several simplifying assumptions. Here, we outline some possible
generalizations.

All proteins contribute to growth by acting as catalysts or transporters. This assumption can simply
be removed by adding a sector of non-growth related proteins4, 5 with concentration Q to the r.h.s. of
equation (2).

Proteins are not used as reactants. To use protein j as a reactant in reaction j′, it will need an extra row
in A, and its concentration p j has to enter the concentration vector y≡ [P, p j,a]T and the kinetic function
k j′(p j,a). This does not affect equation (4). However, if p j appears on the right hand side of equation (5),
this equation will have to be solved for p j before it is possible to proceed to a generalization of the growth
equation.

All catalysts are proteins. We can add different catalytic RNA species as cellular components. Addition-
ally, we may introduce reactions that combine proteins and RNA into molecular machines such as the
ribosome.

A 1-to-1 correspondence between proteins and reactions. Spontaneous reactions that proceed without
a catalyst have to be included in the active stoichiometric matrix A (so that A−1 accounts for their dilution).
They will need a kinetic function that relates their flux to the substrate concentrations (e.g., through mass
action kinetics). However, they will not contribute to the protein sum (equation (2)) and hence will not
directly contribute to the growth equation (6). Because in this case the flux cannot be adjusted by varying
the concentration of a catalyst, only concentration vectors are feasible for which the flux through this
reaction is identical when calculated based on mass conservation (through A−1) and on kinetics. This will
reduce the dimensionality of the solution space.

In the case of isoenzymes, where both protein j and protein j′ catalyze the same reaction, the optimal
solution will always use the one with the more favourable kinetics at the given reactant concentrations
(e.g., protein j if k j(a)> k j′(a)> 0).

For protein complexes, where proteins j and j′ have to bind to each other before they can act as a catalyst,
we can either ignore the individual proteins and include the protein complex as a cellular component in
the model, or add a reaction that describes the complex formation.

Finally, if one protein (or protein complex) catalyzes reactions j and j′, the substrates (and possibly
products) of reaction j′ will enter the kinetic function k j(a). The fluxes through both reactions are
proportional to the protein concentration p. Hence, p = v j/k j(a) = v j′/k j′(a), providing an additional
constraint for the fluxes v j,v j′ . As the fluxes are unique given the concentration vector y = [P,a]T , again
not all concentration vectors y will be compatible with this condition, reducing the dimensionality of the
solution space of balanced growth.

Optimizing only growth. An extension of GBA can be formulated for non-growing cells (or cellular
subsystems) that are instead optimized for the production of specific molecules, as is the case for many
cell types in multicellular organisms. The dilution term µy in equation (1) would be replaced by a vector
d(y) that quantifies the degradation of proteins and other molecules (with entries di = ziyi and constant
degradation rate zi); an additional “output vector” o would represent the desired cellular production with
rate vo:

Av = voo+d(y) .
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The kinetics are still a function of y, and we can proceed with the analysis following the same steps as for
equation (1) to calculate v, p, and vo.
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Supplementary Note 3: Growth Control Analysis (GCA)

We briefly explore the connection between GBA and some central concepts of metabolic control analysis
(MCA)6. The results below that involve elasticities and control coefficients largely restate previous
insights7, 8 in the framework of GBA. First, we rephrase the balance equation in terms of control theory.

We define the (scaled) growth control coefficients (GCC) as the total relative change in the growth rate due
to a small change in the concentration xi, accounting for the density constraint. The growth rate change is
caused by two effects: the net fitness benefit of increasing xi without considering the density constraint,
captured by the marginal net benefits ηi; and the fitness cost of reducing the cellular density ρ available
for all other concentrations, captured by −κiηρ . The GCC is then simply the sum of these two,

Γ
µ

i = ηi−κiηρ . (1)

From the balance equation, we have Γ
µ

i = 0 at optimal growth, so in real systems Γ
µ

i could be used as
an objective measure of how "non-optimal" concentration xi is. A related definition of growth control
coefficients has been introduced before in the context of noise propagation in a model of gene expression
and cellular growth9.

We now examine the the relationship of the variables defined in GBA to the coefficients considered in
MCA. The elasticity coefficient ε

j
α is defined in MCA as the change in the reaction rate j when varying

the substrate concentration aα while keeping the enzyme (catalyzing protein) concentration fixed6. The
(scaled) elasticity coefficient is thus directly related to the marginal kinetic benefit u j

α ,

ε
j

α ≡
1
v j

(
∂v j

∂aα

)

p j=const
=

1
p jk j

p j
∂k j

∂aα

=
1
k j

∂k j

∂aα

=
u j

α

φ j
.

Control coefficients have been defined in MCA as the change in a response variable z due to a change in a
state variable xi, where each z = z(x,π) is a function of the state variables x and the system parameters π6.
In the GBA framework, the growth rate µ , the fluxes v, the protein concentrations p, and the dependent
concentrations c are all functions of the concentrations x = [P,b]T , the active matrix A, and the kinetic
parameters in k. Thus, µ,v,p, and c can be seen as response variables, while the concentrations xi are state
variables. In contrast to MCA, the GBA framework provides explicit functions for all response variables,
and thus control coefficients can be calculated easily. The control of µ by the concentrations xi is given
by the growth control coefficient Γ

µ

i in the supplementary equation (1), while the control of dependent
concentrations cγ is directly determined by the dependence matrix D.

We next examine the control of fluxes v j and protein concentrations p j. The (scaled) flux control coefficient
(FCC) Γ

v j
i is the relative change in v j due to a small change in xi (at fixed concentrations xi′ for i′ 6= i),

Γ
v j
i ≡

1
v j

∂v j

∂xi
.

Using Theorem 5, we can calculate ∂v j/∂xi, giving

Γ
v j
i ≡

1
v j

∂ µ

∂xi

v j

µ
+

µ

v j
B−1

ji =
1
µ

∂ µ

∂xi
+

µ

v j
B−1

ji

= Γ
µ

i +
q j

i
φ j

.
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At optimal growth, Γ
µ

i = 0, so

Γ
v j
i =

q j
i

φ j
.

Thus, at optimal growth, the flux control coefficient is simply the marginal production cost incurred via
reaction j, divided by the proteome fraction of the catalyzing protein.

The (scaled) protein control coefficient (PCC) Γ
p j
i is the change in the proteome fraction of protein j,

p j/P, due to a small change in the concentration xi (at fixed concentrations xi′ for i′ 6= i),

Γ
p j
i ≡

1
P

∂ p j

∂xi
.

From the kinetic constraint (12),

Γ
p j
i =

1
P

∂

∂xi

(
v j

k j

)
=

1
P

(
1
k j

∂v j

∂xi
− v j

k2
j

∂k j

∂xi
+∑

γ

Dγi
v j

k2
j

∂k j

∂cγ

)

=
1

Pk j

∂v j

∂xi
−u j

i −∑
γ

Dγiu
j
γ .

Again calculating ∂v j/∂xi using Theorem 5, we obtain

Γ
p j
i =

1
Pk j

(
∂ µ

∂xi

v j

µ
+µB−1

ji

)
−u j

i −∑
γ

Dγiu
j
γ = φ jΓ

µ

i +q j
i −u j

i −∑
γ

Dγiu
j
γ

= φ jΓ
µ

i −η
j

i ,

where we defined η
j

i ≡−q j
i +u j

i +∑γ Dγiu
j
γ as the contribution of reaction (or protein) j to the marginal

net benefit ηi. Summing over j, we obtain

∑
j

Γ
p j
i =

Γ
µ

i
P ∑

j
p j−∑

j
η

j
i

= Γ
µ

i −ηi−κiηρ .

(2)

Without a density constraint, ηρ = 0, and

∑
j

Γ
p j
i = 0 . (3)

Supplementary equations (2) and (3) can be seen as summation theorems that relate the GCC Γ
µ

i with the
control coefficients of MCA, in a similar fashion as in Ref.9.

At optimal growth,

Γ
p j
i =−η

j
i ,

and

∑
j

Γ
p j
i =−ηi .

Typically, reactants participate in only a small fraction of reactions, so for most combinations i, j, we have
u j

i = 0 and Dγiu
j
γ = 0; the PCC at optimal growth is then just the marginal production cost,

Γ
p j
i = q j

i .
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Supplementary Note 4: Choice of basis, relationship between density and dependence
constraints

Not every reactant can be considered dependent: a reactant for which the corresponding row in the active
matrix A is linearly independent of all other rows will always be in the basis (equivalently, a reactant that
has zero entries in all vectors in a basis for the left null space of A cannot be a dependent reactant).

For some models, it is possible that there is one or more choices of basis such that its corresponding
dependence matrix has for some i ∈ {P,β}

∑
γ

Dγi =−1 .

In these cases, any marginal change in the mass concentration of component i will cause the exact opposite
change in the total mass concentration of its dependent reactants γ . When this is combined with the density
constraint as defined in equation (9), these changes in concentrations result in a perfect cancellation in
the density utilized by i and its dependent reactants, and thus a zero net change in density for any change
in the concentration i (i.e., κi = 0, Def. 4). For this reason, the marginal net benefit of i is simply ηi = 0
(Theorem 10).

Such a perfect cancellation is highly unlikely if we use a more realistic description of the density constraint,
where different cellular components i have different specific density utilizations σi; e.g., if we assume that
the density constraint limits the total volume occupied by cellular components, then σi gives the volume
per mass of component i. In this case, the density constraint (14) (equation 9) is replaced by a volume
density constraint, i.e., a constraint on the volume of cellular dry mass per volume of cell water, ν :

ν ≥ σPP+∑
α

σαaα ,

where σP is the specific density of proteins (almost constant for different proteins10) and σα is the specific
density of reactant α , which depends on chemical properties such as hydrophobicity and charge11.
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Supplementary Figures
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Supplementary Figure 1. Examples of balanced growth models and their mathematical
description. These are derived from the active matrix A and the kinetic functions k j(a): basis matrix B,
investment matrix B−1, closure matrix C, dependence matrix D =CB−1, marginal net benefits ηi, and
density factors κi. (a) A model with a simple linear network of irreversible reactions, connecting a single
transporter to the final production of proteins12, 13; linear networks never have dependent reactants, as the
number of reactions equals the number of components (n = m+1). (b) A more elaborate, nonlinear
model of irreversible reactions that includes cofactors and a dependent reactant (ADP). Basis components
(green) have associated density factors, while the dependent reactants ADP (gray) have no associated
density factors.
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Supplementary Figure 2. A minimal whole-cell model. The model comprises a transport reaction
(with rate vt) and the ribosome reaction (with rate vR). The arrows labeled µa and µP indicate the dilution
of a and P, respectively, at volume growth rate µ .
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Supplementary Figure 3. Dependence of the growth rate (ln µ) on dry weight per free water
volume (lnρ) in E. coli grown at different external osmolarities14. The square (�) indicates the normal
environmental conditions, which correspond to the maximal growth rate; dots (•) indicate growth at lower
osmolarities. The red line shows the predicted slope = 0.66, drawn through the center of gravity of the
three data points (the line is indistinguishable from the linear regression, also with slope 0.66). Error bars
are based on the reported experimental s.d..
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Supplementary Figure 4. An approximation ignoring metabolite dilution. An approximation
(dashed grey line, equation 36) that ignores the dilution of intermediates and hence production costs
results in good predictions of experimentally observed active ribosome proteome fraction15, 16 at low to
intermediate growth rates in E. coli (a; see also Ref.17), but overestimates φR in yeast (b). For comparison,
we also show the full GBA predictions (red line, identical to Fig. 2).



Supplementary Tables

Supplementary Table 1. Experimental data from Cayley et al.14. The table lists cellular free water
content V f ree and growth rate µ across different external osmolarities, together with the respective cellular
dry weight per cellular free water volume, calculated as ρ = 1/V f ree.

Osmolarity (Osm) V f ree (ml gCDW−1) ρ (gCDW ml−1) µ (h−1)
0.03 2.56±0.10 0.39±0.02 0.84±0.07
0.10 2.12±0.08 0.47±0.02 0.91±0.04
0.28 2.05±0.11 0.49±0.03 1.00±0.10
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Supplementary Table 2. Definitions of symbols. For simplicity of notation, we also use P as an
index for total protein, and ρ as an index for cellular dry weight per volume.

Symbol Definition [units]
A active matrix [mass fraction]
B basis matrix [mass fraction]
C closure matrix [mass fraction]
D dependence matrix

A−1 investment matrix
µ growth rate [time]−1

P total protein concentration [mass][volume]−1

α reactant index
β basis reactant index
γ dependent reactant index

aα reactant concentration [mass][volume]−1

bβ basis reactant concentration [mass][volume]−1

cγ dependent reactant concentration [mass][volume]−1

j reaction index
v j reaction j flux [mass][volume]−1[time]−1

p j concentration of protein catalyzing reaction j [mass][volume]−1

φ j proteome fraction catalyzing reaction j [mass fraction]
i protein or independent reactant index (∈ {P,β})
y vector of concentrations [mass][volume]−1

x vector of independent concentrations [mass][volume]−1

k kinetic function [time]−1

kcat turnover number [time]−1

Km Michaelis constant [mass][volume]−1

ρ cellular dry weight per volume [mass][volume]−1

f fitness
η0

i direct marginal net benefit of i [volume][mass]−1

ηi marginal net benefit of i [volume][mass]−1

ηρ marginal benefit of the cellular density [volume][mass]−1

ηc
γ marginal net benefit of γ [volume][mass]−1

q j
i marginal production cost of i through reaction j [volume][mass]−1

u j
β

marginal kinetic benefit of β through reaction j [volume][mass]−1

u j
γ marginal kinetic benefit of γ through reaction j [volume][mass]−1

κ density factor
L Lagrangian [time]−1

λρ Lagrange multiplier of the density constraint [volume][mass]−1[time]−1

λγ Lagrange multiplier of the dependent concentration γ [volume][mass]−1[time]−1
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