
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The paper by Dourado and Lercher proposes a theory of balanced cellular growth that takes a 
resource allocation perspective on flux balance analysis, like in other recent work, in order to 
improve predictions of the growth rate under the assumptions that microorganisms have evolved 
to optimize the growth rate. The work is thoughtful and well-written, making multiple interesting 
connections to other modeling frameworks like FBA and MCA. 
 
Probably the most original contribution is to show that growth rate optimization requires 
satisfaction of a necessary condition given by Eq. 10, obtained via the method of Lagrange 
multipliers. 
These positive comments have to be balanced against the following three issues that concern the 
presentation of the work (point 1) and its practical relevance (points 2 and 3). 
 
1. The paper aims at presenting an all-encompassing theory with many formal definitions and 
many connections to other theoretical frameworks, which makes the paper hard to read, even for 
someone familiar with the topic. In particular, the main text reads as an extended abstract of the 
Supplementary Information and the contents cannot be really understood without reading the 
latter in detail. On quite a few points, I have had to read the SI carefully to understand what the 
authors were doing or claiming, for example: 
 
- The notions of BGS and EGS are introduced in two phrases and the reduction of the study of 
optimal BGSs to the study of EGS is posited without explanation. It also leads to a subtle shift in 
the meaning of the symbols, as for example the matrix A seems to refer to the active 
stoichiometry matrix of the entire system in Eq. 1 and to that of an EGS in Eq. 4 (by the way, 
replacing the inverse of A by I is a bit unfortunate as the latter symbol is often used for the 
identity matrix). 
- I found the definition of marginal costs/benefits difficult to understand from the discussion in the 
main text, and did not follow how the expressions for \eta_P and \eta_alpha were derived, and 
how Eq. 8 is obtained. 
 
More generally, the question can be asked whether the format of a short Nat Commun paper is the 
best way for presenting a complex theoretical framework building upon so many definitions and 
arguments. 
 
2. There is a discrepancy between the claimed generality of the framework and the applications to 
illustrate its practical usefulness. In the end, the main application consists of a "whole-cell model" 
consisting of a linear pathway of two reactions to account for a growth law that has been explained 
already by other modeling schemes that the authors refer as dealing with "toy models". What is 
really missing is a convincing demonstration of the usefulness of the framework on a larger model 
with interesting novel insights provided by the study. Could the models in Refs 13 or 14 be used as 
a starting-point for this? 
 
3. If this framework is to be an alternative to FBA, as the authors suggest in Figure 1, it needs to 
confront head-on the difficult problems of building large kinetic models with sensible parameter 
values and the numerical resolution of large nonlinear optimization problems. The authors remain 
silent on these points; a casual reference in the Discussion to "artifical intelligence" supplying 
missing parameter values is not enough in this context. 
 
In conclusion, the paper presents an interesting and promising theoretical framework, but the 
condensed format of the presentation does not really allow to explain well the specificities of the 
approach and a convincing application of its added value with respect to other existing approaches 
is currently missing. 



 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this paper the authors present a mathematical framework for modeling cellular growth and 
metabolism called “Growth Balance Analysis (GBA)”, which integrates metabolite, enzyme levels, 
reaction fluxes, organism growth rates, and a capacity constraint (i.e., an upper bound on total 
osmolyte density) in the steady-state mass balance characteristic of FBA. Under the GBA 
framework, metabolite and protein levels are state variables whereas growth rate and reaction 
fluxes are cast as response variables. 
 
Derivation using null space analysis of stoichiometry matrix and capacity constraint leads to the 
formulation of explicit relationships between cellular variables. In addition, by calculating the 
“marginal net benefit” accorded by metabolite and protein perturbations and using Lagrange 
multipliers in growth optimization, the authors are able to establish that at optimal growth the 
marginal benefit of every independent metabolite is balanced. Quantitative predictions made by 
the authors include the variation of active ribosomal protein fraction and cellular density with 
growth rate in E. coli, both of which show good agreement with experimental measurements. The 
crux of the formulation lies in considering a subset of the stoichiometric matrix consisting of all 
flux-carrying reactions (dubbed the “active stoichiometric matrix”), which enables the authors to 
determine the impact of individual reaction fluxes on the growth-dictated dilution of cellular 
components. 
 
GBA provides useful insight of the cellular state but requires a significant investment in 
experimental measurables such as metabolite and protein concentrations, knowledge of kinetic 
laws and parameters. Unfortunately, all these datasets are seldom available for the same organism 
and condition. Overall, the work of Dourado and Lercher is of sound scientific merit and is a 
significant contribution to the field of metabolic modeling. The authors are asked to consider the 
following points: 
 
Major concerns 
 
In the Introduction some background on kinetic modeling should also be discussed, as the issues 
faced in kinetic modeling such as knowledge of kinetic laws and parameters are also relevant to 
GBA. How applicable are kinetic parameterization algorithms to GBA modeling? Why kinetic 
modeling algorithms cannot be deployed to solve the problem instead of GBA? 
 
Without careful examination of and working experience of other modeling frameworks, it might not 
be clear to the reader what GBA can offer in comparison. Figure 1 does a good job but only for 
GBA vs. FBA. The authors need to do a more thorough job comparing and contrasting GBA with 
other metabolic frameworks that rely on some type of a resource constraint such as by Molenaar 
et al. (considers capacity constraints, similar to GBA), ME-models (consider enzyme synthesis and 
efficiency), and kinetic model (considers kinetic laws, and substrate and enzyme levels). It is 
unclear what is the value-proposition of GBA in comparison with existing frameworks. 
 
A key insight of GBA is the insight that the inverse (I) of the active stoichiometric matrix can be 
used to quantify metabolite dilution by reaction fluxes, however, there was no case study set up to 
use this inverse I. Thus, we recommend that either GBA be applied and the final solutions be 
compared to existing metabolic models with available kinetic expressions or a discussion be 
included so as to illustrate the relevance of incorporating I in metabolic models. 
 
On page 2, please elaborate on the “first principles” in “... demand for catalytic proteins from first 
principles…”? 
 



Is there a typo on page 7, equation 10 where the term ĸ_i is missing? Or is there are an omission 
regarding i not having any dependent reactants (i.e., D_γi=0,∀γ)? 
 
The authors should mention why data from (Schmidt et al., 2016) (ref 32) and not (Klumpp et al., 
2013) (ref 26) was used to construct Figure 2, when the translation model was taken from 
(Klumpp et al., 2013) and both the papers contain proteomic measurements in E. coli. 
 
As GBA is being presented as a generalized modeling framework, it would add to its merit if it can 
explain proteomic allocations in varied systems, such as ribosomal and metabolic protein fractions 
in yeast (Paulo et al., 2015, 2016; Metzl-Raz et al., 2017). Additionally, it might be interesting to 
explore how well GBA does in explaining cases where ribosomal concentrations are not optimally 
tuned to cellular growth (unlike E. coli which is the sole case being explored). 
 
The manuscript will benefit from including a section on “GBA implementation on genome-scale 
models”. The authors present FBA as a linearized version of GBA, but replacing growth-rate 
optimization with the search for the solution set of GBA-derived balance equations is complicated 
by 1) lack of rate expressions and in vivo kinetic parameters for a majority of biochemical 
reactions, and 2) a priori knowledge of the subset of flux-carrying metabolic reactions (which will 
also depend on growth conditions) to construct the “active stoichiometric matrix”. 
 
Minor concerns 
 
Page 2, paragraph 2: recommend changing “all cellular components must be reproduced in 
proportion…” to “all cellular components must be produced in proportion…”. 
 
In the Abstract, “experimentally testable predictions” are mentioned but never specified further. 
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Reviewer #1  
The paper by Dourado and Lercher proposes a theory of balanced cellular growth that 
takes a resource allocation perspective on flux balance analysis, like in other recent 
work, in order to improve predictions of the growth rate under the assumptions that 
microorganisms have evolved to optimize the growth rate. The work is thoughtful and 
well-written, making multiple interesting connections to other modeling frameworks like 
FBA and MCA.  
Probably the most original contribution is to show that growth rate optimization 
requires satisfaction of a necessary condition given by Eq. 10, obtained via the method 
of Lagrange multipliers. 

Response:  We thank the Reviewer for this positive evaluation. 
 

Specific comments 
These positive comments have to be balanced against the following three issues that 
concern the presentation of the work (point 1) and its practical relevance (points 2 and 
3).   
 

1.  The paper aims at presenting an all-encompassing theory with many formal definitions 
and many connections to other theoretical frameworks, which makes the paper hard to 
read, even for someone familiar with the topic. In particular, the main text reads as an 
extended abstract of the Supplementary Information and the contents cannot be really 
understood without reading the latter in detail. On quite a few points, I have had to read 
the SI carefully to understand what the authors were doing or claiming, for example: 
- The notions of BGS and EGS are introduced in two phrases and the reduction of the 
study of optimal BGSs to the study of EGS is posited without explanation. It also leads to 
a subtle shift in the meaning of the symbols, as for example the matrix A seems to refer to 
the active stoichiometry matrix of the entire system in Eq. 1 and to that of an EGS in Eq. 
4 (by the way, replacing the inverse of A by I is a bit unfortunate as the latter symbol is 
often used for the identity matrix). 
- I found the definition of marginal costs/benefits difficult to understand from the 
discussion in the main text, and did not follow how the expressions for \eta_P and 
\eta_alpha were derived, and how Eq. 8 is obtained. 
More generally, the question can be asked whether the format of a short Nat Commun 
paper is the best way for presenting a complex theoretical framework building upon so 
many definitions and arguments. 

Response:  We agree that the main text only provides a summary of the main ideas and 
results; for anyone who wants to deeply understand the formalism, a careful reading of SI text 
A is crucial. The main text is written predominantly to provide an overview of the rationale of 
GBA and of its potential applications, aimed at a general audience that may be neither trained 
in nor deeply interested in the mathematical details. We believe that this type of “division of 
labor” between main text and SI is characteristic for many publications in the Nature family 
journals, and should not be seen as a negative. We do, however, fully agree that some parts of 
the main text can and should be made more comprehensible for the benefit of all readers. 
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Action: We rewrote and expanded large parts of the main text, improving the presentation to 
make it more easily understandable without having to resort to the SI. We paid particular 
attention to the points listed by the Reviewer (Def. of BGS and EGS, line 125ff.; relationship 
between optimal states and EGS, line 132ff.; restriction to full-rank active matrices A, line 
134ff.). We also replaced the symbol for the inverse of the active stoichiometric matrix, which 
was I, with the standard symbol, A-1, throughout the manuscript and SI. 
We extensively rewrote the description of marginal costs and benefits, both in the main text 
(the subsection beginning on line 166) and in the SI (the subsection beginning on line 768). 
The derivation of Eq. (8) is now explained in detail in the paragraph beginning on line 792, 
and the following paragraphs detail the derivation of ηP and ηα . 
We still keep the full formal treatment to the SI, but now strive to give enough detail in the 
main text to provide a general idea of the necessary steps for each derivation. This not only 
makes the main text easier to understand for a general audience, but also provides an 
overview to the expert reader before he or she dives more deeply into the mathematical 
details. 
 
2. There is a discrepancy between the claimed generality of the framework and the 

applications to illustrate its practical usefulness. In the end, the main application consists 
of a "whole-cell model" consisting of a linear pathway of two reactions to account for a 
growth law that has been explained already by other modeling schemes that the authors 
refer as dealing with "toy models". What is really missing is a convincing demonstration 
of the usefulness of the framework on a larger model with interesting novel insights 
provided by the study. Could the models in Refs 13 or 14 be used as a starting-point for 
this?  

Response:  The manuscript describes two applications. The first application examines the 
growth rate dependence of ribosome concentrations (Fig. 2). The derivation of this exact 
relationship does not depend on a specific (linear or non-linear, small or large) model, but is 
valid for any whole-cell balanced growth model in which the ribosome consumes a single 
substrate type to make proteins. Thus, our derivation is much more general than any previous 
modeling scheme addressing this issue, all of which were indeed linear models with 2-7 
reactions (Refs. 3, 5-9). While these small models were able to predict an approximately 
linear relationship between ribosomal protein fraction and growth rate, their description of 
experimental observations was qualitative only (or had to rely on fitting multiple parameters 
to the data to achieve a quantitative description). In contrast, our general model makes 
accurate quantitative predictions for E. coli based only on known ribosome kinetics. In the 
revised version, we additionally perform the same calculation for yeast, again with a very 
good fit to experimental data without fitting any parameters (Fig. 2b). Thus, our first and 
major application does not rely on a specific (small, linear) model, and it makes quantitative 
predictions for E. coli and yeast not possible using previously published frameworks.  
The second application concerns the effects of reduced dry mass density on optimal growth 
(Fig. S3). Here, we indeed use a linear (“toy”) model with only two reactions. While this 
prediction would thus have been possible from an analytical optimization without using our 
general framework, only the inclusion of metabolite concentrations in the capacity constraint 
(which was not deemed necessary in the previous treatments of Refs. 3, 5-9, 19) results in the 
predicted dependence. Our predictions agree quantitatively with the limited available 
experimental data in Fig. S3; an otherwise identical model that limits only the total protein 
concentration results in a much lower estimate for the dependence of growth rate on the 
cellular capacity. Our results not only emphasize the biological significance of the capacity 
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constraint, but – in contrast to models that only limit total protein – provide an explanation for 
the observation that E. coli's dry mass density is roughly constant across conditions (Refs. 43-
45). 
In sum, although we did not make this sufficiently clear in the previous manuscript, we 
indeed demonstrated the application to an arbitrarily large model (using a prediction for 
which all terms containing unknown kinetic parameters cancel from the final equation), and 
we explained two experimental observations that were previously not understood in 
quantitative terms. In addition, our mathematical derivations provide general insights into 
cellular resource allocation, such as the relationship between marginal fitness costs and 
protein expression, Eq. (8). 
We fully agree with the referee that the application of our framework to a genome-scale 
model of bacterial growth is highly desirable, and our group is actively working on such an 
application. However, reaching this goal will require years of work. While existing constraint-
based genome-scale models, such as Bernard Palsson’s ME models or Anne Goelzer’s and 
Vincent Fromion’s RBA models, could provide a basis for this endeavor, these do not include 
the dependence of reaction fluxes on metabolite concentrations. Thus, as pointed out by the 
Reviewer in Comment 3, the most important obstacles that need to be overcome on the way to 
genome-scale GBA applications are the full, non-linear kinetic parameterization and the 
numerical solution of the resulting optimization problem (with the aid of the balance 
equations). These goals are outside the scope of the current manuscript; here, we develop the 
mathematical foundations and demonstrate their usefulness for specific predictions even in 
the absence of a more detailed explicit model. We regret that we did not make the distinction 
between the goals of our manuscript and the challenges still lying ahead sufficiently clear in 
the previous version. 
Action: We extended the discussion of the two applications to clarify the underlying 
assumptions and to emphasize the differences to previous work, as detailed in the Response 
(line 235ff., line 245ff.); we also no longer refer to small, schematic models as “toy” models. 
In addition, we now clearly state the goals of the present study (line 28ff., line 334ff.) – the 
derivation of a rigorous analytical framework for GBA, which provides a mathematical basis 
for current applications to smaller (“toy”) models as well as for future coarse-grained and 
genome-scale applications. Finally, we lay out the challenges that need to be overcome before 
GBA may eventually replace FBA at least for model organisms (line 291ff.; see also our 
response/action to Comment 3). 
 
3. If this framework is to be an alternative to FBA, as the authors suggest in Figure 1, it 

needs to confront head-on the difficult problems of building large kinetic models with 
sensible parameter values and the numerical resolution of large nonlinear optimization 
problems. The authors remain silent on these points; a casual reference in the Discussion 
to "artificial intelligence" supplying missing parameter values is not enough in this 
context. 

Response:  As demonstrated by our applications (see also our response to Comment 2), the 
GBA scheme already provides important insights and makes testable predictions even without 
access to a detailed genome-scale kinetic parameterization. Moreover, GBA is a powerful tool 
for the analysis of schematic (or coarse-grained) models, and would have greatly benefited all 
previous theoretical studies of balanced growth (e.g., Refs. 3, 5-10). We foresee that GBA 
will indeed become an exciting alternative to FBA in the future at least for model organisms 
and synthetic biology “chassis” strains. However, as pointed out by the Reviewer and 
mentioned in our response to Comment 2, the genome-scale kinetic parameterization and the 
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non-linear optimization are difficult problems that first need to be tackled, but that lie outside 
of the scope of the current manuscript. We regret that in the previous version, we did not 
make our aims more explicit and did not discuss sufficiently what challenges still lie ahead.  
Action: In the revised manuscript, we clearly state the goals of the present study (line 28ff., 
line 334ff.): to provide a rigorous mathematical basis for the analysis of self-replicator models 
and to demonstrate its general utility. We added a detailed discussion of the application of 
GBA to genome-scale models (the two paragraphs following line 291), where we clearly list 
the remaining obstacles that need to be overcome before GBA can replace FBA for realistic, 
genome-scale models of cellular growth, and we discuss in detail how these obstacles might 
be overcome. 
 
4. In conclusion, the paper presents an interesting and promising theoretical framework, 

but the condensed format of the presentation does not really allow to explain well the 
specificities of the approach and a convincing application of its added value with respect 
to other existing approaches is currently missing.  

Response:  As outlined in our response to Comment 1, we have expanded and improved the 
main text to provide a better (and more understandable) overview over the mathematical 
derivations presented in detail in the SI (which we also improved substantially, in particular in 
section A.3). As explained in our response to Comment 2, the two applications lead to 
quantitative predictions not possible with previous methodologies, clearly demonstrating the 
added value of GBA over alternative approaches (even if this was not made sufficiently clear 
in the previous manuscript). We believe that our actions in response to Comments 1-3 have 
substantially improved the manuscript, and have rectified the problems pointed out by the 
Reviewer. 
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Reviewer #2  
In this paper the authors present a mathematical framework for modeling cellular growth 
and metabolism called “Growth Balance Analysis (GBA)”, which integrates metabolite, 
enzyme levels, reaction fluxes, organism growth rates, and a capacity constraint (i.e., an 
upper bound on total osmolyte density) in the steady-state mass balance characteristic of 
FBA. Under the GBA framework, metabolite and protein levels are state variables 
whereas growth rate and reaction fluxes are cast as response variables. 
 
Derivation using null space analysis of stoichiometry matrix and capacity constraint 
leads to the formulation of explicit relationships between cellular variables. In addition, 
by calculating the “marginal net benefit” accorded by metabolite and protein 
perturbations and using Lagrange multipliers in growth optimization, the authors are 
able to establish that at optimal growth the marginal benefit of every independent 
metabolite is balanced. Quantitative predictions made by the authors include the 
variation of active ribosomal protein fraction and cellular density with growth rate in E. 
coli, both of which show good agreement with experimental measurements. The crux of 
the formulation lies in considering a subset of the stoichiometric matrix consisting of all 
flux-carrying reactions (dubbed the “active stoichiometric matrix”), which enables the 
authors to determine the impact of individual reaction fluxes on the growth-dictated 
dilution of cellular components.  
 
GBA provides useful insight of the cellular state but requires a significant investment in 
experimental measurables such as metabolite and protein concentrations, knowledge of 
kinetic laws and parameters. Unfortunately, all these datasets are seldom available for 
the same organism and condition. Overall, the work of Dourado and Lercher is of sound 
scientific merit and is a significant contribution to the field of metabolic modeling.  

Response:  We thank the Reviewer for this positive evaluation. 
 
 

Major concerns 
The authors are asked to consider the following points: 

 
1. In the Introduction some background on kinetic modeling should also be discussed, as the 

issues faced in kinetic modeling such as knowledge of kinetic laws and parameters are 
also relevant to GBA. How applicable are kinetic parameterization algorithms to GBA 
modeling? Why kinetic modeling algorithms cannot be deployed to solve the problem 
instead of GBA? 

Response:  We regret that we omitted a discussion of kinetic modeling approaches in the 
previous version. Briefly, GBA is based on a global optimization of cellular resource 
allocation, and thus predicts all concentrations and fluxes based solely on the environmental 
and physico-chemical boundary conditions. In contrast, kinetic modeling approaches require 
knowledge of enzyme concentrations, and thus cannot predict resource allocation from first 
principles. Moreover, as GBA is based on a global optimization of cellular resource 
allocation, it will be less sensitive than kinetic modeling algorithms to regulatory interactions 
and to small parameter changes.  
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Fitting-based parameterization algorithms as those developed for kinetic modeling approaches 
could indeed be applied to GBA; however, this would to some extent go against our aim to 
achieve a mechanistic understanding of cellular resource allocation and physiology. 
Experiences from kinetic modeling, such as the robustness of predictions to alternative 
parameterizations and the utility of parameter balancing approaches, will benefit the 
development of fully parameterized GBA models. 
Action: As suggested by the Reviewer, we have added a discussion of kinetic modeling 
methods to the Introduction (line 64ff.), and we discuss the potential utility of existing 
parameterization algorithms (line 315ff.). We also added a discussion of the major differences 
between GBA and kinetic model applications (line 325ff.).  
 
2. Without careful examination of and working experience of other modeling frameworks, it 

might not be clear to the reader what GBA can offer in comparison. Figure 1 does a good 
job but only for GBA vs. FBA. The authors need to do a more thorough job comparing 
and contrasting GBA with other metabolic frameworks that rely on some type of a 
resource constraint such as by Molenaar et al. (considers capacity constraints, similar to 
GBA), ME-models (consider enzyme synthesis and efficiency), and kinetic model 
(considers kinetic laws, and substrate and enzyme levels). It is unclear what is the value-
proposition of GBA in comparison with existing frameworks. 

Response:  A more thorough comparison of GBA to alternative modeling schemes beyond 
FBA is indeed desirable.   
Action: As suggested by the Reviewer, we added a detailed comparison of GBA to other 
modeling frameworks, including not only FBA, but also the self-replicator model by 
Molenaar et al. (Ref. 5), line 275ff.; RBA (Ref. 14) and ME-models (Ref. 15), line 42ff.; and 
kinetic models (Refs. 24, 25), line 325ff.. 
 
3. A key insight of GBA is the insight that the inverse (I) of the active stoichiometric matrix 

can be used to quantify metabolite dilution by reaction fluxes, however, there was no case 
study set up to use this inverse I. Thus, we recommend that either GBA be applied and the 
final solutions be compared to existing metabolic models with available kinetic 
expressions or a discussion be included so as to illustrate the relevance of incorporating 
I in metabolic models.  

Response: The mass balance of biochemical reactions is usually described mathematically 
through the stoichiometric matrix A, as in Av=dx/dt. If A has full column rank (which is the 
case for elementary flux modes of linear models, Ref. 32, used in Theorem 4), then we can 
use I≡A-1 to instead describe the fluxes as a function of the concentration changes that they 
cause (note that upon suggestion of Reviewer 1, we have replaced I by A-1 throughout the 
manuscript and SI). This insight allows us to express the growth rate as well as the individual 
protein concentrations as functions of the state variables (reactant and total protein 
concentrations).  
More explicitly, as seen from Eq. (4), A-1

ji quantifies what proportion of reaction flux j 
contributes to the dilution of the downstream cellular component i, providing important 
information on cellular efficiency. The expression using A-1 to quantify the growth rate as a 
function of cellular concentrations provides important insights into how cellular 
concentrations affect growth (and hence fitness). Moreover, A-1 forms the basis for the 
calculation of marginal costs and benefits, accounting for all systems-level contributions. In 
our manuscript, we use the balance of the marginal net benefits at optimal growth to derive a 
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quantitative estimate of the growth-rate dependence of ribosome concentrations based only on 
known ribosome kinetics. While our manuscript thus incorporates a number of arguments and 
examples for the relevance of using A-1 in metabolic models, we did not make the centrality of 
A-1 for these sufficiently clear in the text. 
Action: We have emphasized the role of A-1 throughout the text. In addition, we added a new 
paragraph to the discussion about the interpretation of A-1, explaining its utility for solving 
growth models and for understanding cellular efficiency and marginal costs and benefits of 
cellular resource allocation (line 261ff.). 
 
4. On page 2, please elaborate on the “first principles” in “... demand for catalytic proteins 

from first principles…”? 
Response:  We apologize for being unclear here. What we meant to say: to support a given 
metabolic flux, the catalyzing enzyme needs to be present at a concentration that is set by the 
flux value and the concentrations of the metabolites that enter the reaction’s kinetic function. 
FBA does not directly account for the need to produce these proteins. Instead, FBA ensures 
the production of a constant biomass that includes the amino acids needed for growth, which 
is assumed to be independent of growth conditions and the activity of specific enzymes. 
Action: We have clarified this passage (line 35ff.), which now reads: “The resulting 
computational efficiency comes at the price of ignoring reaction kinetics and the requirement 
of sufficient enzyme concentrations to catalyze the predicted metabolic fluxes.” 
 
5. Is there a typo on page 7, equation 10 where the term ĸ_i is missing? Or is there an 

omission regarding i not having any dependent reactants (i.e., D_γi=0,∀γ)? 
Response:  On page 5 of the previous version (just above Eq. (4)), we stated that “For clarity 
of presentation, we here present only the case without dependent reactants; the generalization 
can be treated similarly and is detailed in SI text A.”. This simplifying assumption was made 
for the remainder of the main text, and thus we indeed assume Dγi=0, ∀γ, as suspected by the 
Reviewer. We believe that it is easier to develop an intuition for the main results if we first 
treat the simpler case without dependent reactants; we thus leave the general expressions, 
which involve additional terms and symbols, to the SI. We regret that we did not make it 
sufficiently clear that we kept this assumption for the remainder of the text. 
Action: We now emphasize at multiple positions in the manuscript that the main text makes 
the simplifying assumption that there are no dependent reactants, while the general case is 
treated in SI text A (line 142ff., line 159ff., line 168ff., line 191ff., line 213ff.). 
 
6. The authors should mention why data from (Schmidt et al., 2016) (ref 32) and not 

(Klumpp et al., 2013) (ref 26) was used to construct Figure 2, when the translation model 
was taken from (Klumpp et al., 2013) and both the papers contain proteomic 
measurements in E. coli.  

Response:  While the paper by Klumpp et al. (now Ref. 39) shows data for the ribosomal 
protein fraction, this data is not based on proteomics measurements. Instead, the numbers 
given by Klumpp et al. are derived from the ratio of the dry mass fractions occupied by total 
RNA and total protein. However, total RNA contains a substantial fraction of non-ribosomal 
RNA, in particular of tRNA (Ref. 43), and tRNA concentrations increase with growth rate 
(Ref. 69). In contrast, Schmidt et al. (Ref. 46) directly measured the protein fraction of 
multiple ribosomal proteins, and thus provide a more reliable quantitative picture of the 
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growth rate-dependence of the ribosomal protein fraction. This was our rationale for 
originally only showing the Schmidt et al. data. Nevertheless, we agree that it is appropriate 
to show all available data in the comparison to our predictions. 
Action: We have added data from four studies that estimated ϕR from the total RNA/protein 
ratio, including all data shown by Klumpp et al. (Fig. 2a and line 967ff.). 
 
7. (a) As GBA is being presented as a generalized modeling framework, it would add to its 

merit if it can explain proteomic allocations in varied systems, such as ribosomal and 
metabolic protein fractions in yeast (Paulo et al., 2015, 2016; Metzl-Raz et al., 2017). (b) 
Additionally, it might be interesting to explore how well GBA does in explaining cases 
where ribosomal concentrations are not optimally tuned to cellular growth (unlike E. coli 
which is the sole case being explored). 

Response:  (a) We thank the reviewer for pointing us to proteomic data in yeast that can be 
used to test our model’s predictions also in a eukaryotic model organism. Analogous to the 
calculation of the optimal ribosomal protein fraction in E. coli (Fig. 2a), we now also 
calculate the optimal ribosomal protein fraction in the yeast S. cerevisiae (Fig. 2b). Without 
fitting any parameters, we again achieve quantitative agreement with the experimental data.  
(b) The GBA framework developed in this manuscript assumes growth rate optimization; 
hence, it cannot successfully predict ribosomal concentrations for organisms in which these 
are not optimized for growth. To make such predictions, we would need to know the objective 
function optimized by natural selection (if one indeed exists), which is generally unknown, 
and extend the GBA framework accordingly.  
Action: (a) We have added a panel for yeast to Fig. 2, which compares our prediction of the 
ribosomal protein fraction with proteomics data acquired across different growth conditions.  
(b) We now emphasize that GBA assumes optimal resource allocation, and that it has to be 
applied with caution to systems that are not optimally tuned for growth; the same is true for 
environmental or genetic perturbations to which the studied organism has not been adapted by 
natural selection (line 329ff.). 
 
8. The manuscript will benefit from including a section on “GBA implementation on 

genome-scale models”. The authors present FBA as a linearized version of GBA, but 
replacing growth-rate optimization with the search for the solution set of GBA-derived 
balance equations is complicated by 1) lack of rate expressions and in vivo kinetic 
parameters for a majority of biochemical reactions, and 2) a priori knowledge of the 
subset of flux-carrying metabolic reactions (which will also depend on growth 
conditions) to construct the “active stoichiometric matrix”.  

Response:  We very briefly discussed this in the paragraph starting at the bottom of p.9 of the 
original submission, but we agree that the importance of this issue warrants a much more 
detailed discussion (see also our reply to comment 3 by Reviewer #1). 
Action: As suggested by the Reviewer, we added a detailed discussion of genome-scale GBA 
implementations, where we consider potential strategies to parameterize such models and to 
identify condition-dependent sets of active reactions (the two paragraphs following line 289). 
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Minor concerns 
9. Page 2, paragraph 2: recommend changing “all cellular components must be reproduced 

in proportion…” to “all cellular components must be produced in proportion…”. 
Action: done (line 18). 
 
10. In the Abstract, “experimentally testable predictions” are mentioned but never specified 

further. 
Response:  We referred to the two predictions derived in the manuscript and compared to 
experimental data, the scaling of ribosome concentrations with growth rate (Fig. 2) and the 
dependence of growth rate on dry weight density (Fig. S3).  
Action: We now specify these predictions in the last sentence of the abstract. 
 



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have changed the text of the manuscript to address the three major comments I 
raised in the previous round of reviewing. 
 
I continue to think that the real added value of the work is the careful derivation of the framework, 
which remains mostly hidden in the SI. I am well aware that most Nature papers do not contain 
much technical material in the main text, but in this case the technical material *is* the main 
contribution. In the end, however, the authors are right that this is an editorial issue. 
 
The authors have chosen not to develop a more challenging application than a two-step pathway 
for explaining the quasi-linear relation between growth rate and ribosome mass fraction. Instead 
they argue that the prediction is quantitative and obtained from the ribosome kinetics in a 
principled manner without parameter fitting. I can accept this argument although I continue to 
believe that more challenging examples would have demonstrated the practical usefulness of the 
framework more convincingly than is done now. 
 
Minor comments 
 
- p11: \mu < 1. What are the units? What does this limit correspond to? 
- p11: "potentielly explaining why... across conditions." I can't follow the reasoning here. 
- p9, after Eq. 8: I think that one or two phrases developing the point that "this result provides a 
formal justification..." would be useful for the reader. The equation tells us, if I understand well, 
that for constant \mu and positive \eta_i, an increase of x_i allows a decrease of (some) \phi_j? 
- On the same point, it seems that \eta_i in Eq. 8 corresponds to \eta_1^0 in Section A.3, that is, 
the total marginal benefit reported in the main text used the direct marginal benefit in the 
appendix? 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors did a good job addressing many of the questions raised in out original review. It 
would have been preferable if a more detailed comparison with resource-allocation based methods 
such as ME or RBA was made. Also, the kinetic parameterization part is standard but admittedly it 
does not form the core of the methodology. In light of not delaying things further I am in favor of 
recommending publication so the community has a chance to apply and test the proposed 
concepts. 
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Reviewer #1 
The authors have changed the text of the manuscript to address the three major 
comments I raised in the previous round of reviewing. 

1. I continue to think that the real added value of the work is the careful derivation of the 
framework, which remains mostly hidden in the SI. I am well aware that most Nature 
papers do not contain much technical material in the main text, but in this case the 
technical material *is* the main contribution. In the end, however, the authors are right 
that this is an editorial issue.  

Response: We agree that the major contribution made by our work lies in the mathematical 
derivations. However, their details are too involved for the majority of readers, and thus the 
Results section only provides a summary. The mathematical details form the methodological 
part of our paper, and hence they belong into a separate Methods section.  
Action: We have moved all derivations from the SI to the new Methods section, so that they 
now form an integral part of the manuscript. 
 
2. The authors have chosen not to develop a more challenging application than a two-step 

pathway for explaining the quasi-linear relation between growth rate and ribosome mass 
fraction. Instead they argue that the prediction is quantitative and obtained from the 
ribosome kinetics in a principled manner without parameter fitting. I can accept this 
argument although I continue to believe that more challenging examples would have 
demonstrated the practical usefulness of the framework more convincingly than is done 
now. 

Response: Our results on the scaling of ribosome concentrations with growth rate are fully 
general and do not depend on the choice of a specific two-step (or many-step) pathway. More 
challenging examples – in particular the application to genome-scale bacterial models – will 
be the focus of future work. 
Action: None. 
 

Minor comments 
3. - p11: \mu < 1. What are the units? What does this limit correspond to? 

Response: We apologize for omitting the units – this was supposed to read μ<1 h-1. It is not a 
limit, it just makes clear which data points we refer to when we talk about “growth on 
minimal media”. 
Action: We added the units. 
 
4. - p11: "potentially explaining why... across conditions." I can't follow the reasoning here 

Response: When we ignore the dilution of intermediates, the equation reduces to  the simpler 
equation introduced in Dourado 2017 that predicts the optimal balance of metabolite and 
enzyme concentrations based solely on the combined mass concentration of metabolites and 
enzymes. We admit that this was not obvious from the previous, very brief formulation. 
Action: We expanded this passage as follows: “In contrast, these approximate predictions are 
close to observed values for growth on minimal media ($\mu<1$ h$^{-1}$), indicating that 
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the dilution of intermediates, $\mu a_\alpha$, becomes less important at lower growth rates. 
The latter observation may explain why the relationship between the concentrations of a 
substrate and its catalysts is well approximated in this regime by simply minimizing their 
combined mass concentration while keeping the reaction rate constant \cite{Dourado2017}, 
as this is mathematically equivalent to ignoring the dilution of intermediates. 
 
5. - p9, after Eq. 8: I think that one or two phrases developing the point that "this result 

provides a formal justification..." would be useful for the reader. The equation tells us, if 
I understand well, that for constant \mu and positive \eta_i, an increase of x_i allows a 
decrease of (some) \phi_j? 

Response: This interpretation is exactly right, and we agree that spelling it out will make the 
point we want to make much more accessible to the reader. 
Action: We added the following explanation immediately after Eq. (8) and before the phrase 
quoted by the Reviewer: “Thus, for a positive $\eta_i$ and keeping the growth rate $\mu$ 
constant, a small increase in $x_i$ by $\Delta x_i$ results in a corresponding reduction of the 
total protein fraction, $\sum_j \Delta \phi_j = - \eta_i \Delta x_i$: at least some proteins are 
now required at lower concentrations. 
 
6. - On the same point, it seems that \eta_i in Eq. 8 corresponds to \eta_1^0 in Section A.3, 

that is, the total marginal benefit reported in the main text used the direct marginal 
benefit in the appendix? 

Response: The Methods section develops the theory for the general case with dependent 
reactants. In contrast, to facilitate a more intuitive understanding of the theory, the main text 
provides results only for the simpler case without dependent reactants (as emphasized at 
multiple places throughout the text). In this simpler case, the direct and total marginal benefits 
are indeed equal, \eta_i = \eta_i^0. 
Action: To avoid confusion in the careful reader, we now emphasize this fact just before Eq. 
(8): “(see Methods, section 1.3; note that because here we assume that there are no dependent 
reactants, direct and total net benefits as defined in Methods are identical)”. 

 

Reviewer #2 
The authors did a good job addressing many of the questions raised in out original 
review. It would have been preferable if a more detailed comparison with resource-
allocation based methods such as ME or RBA was made. Also, the kinetic 
parameterization part is standard but admittedly it does not form the core of the 
methodology. In light of not delaying things further I am in favor of recommending 
publication so the community has a chance to apply and test the proposed concepts. 

Response: We thank the Reviewer for this constructive comment. We believe that a more 
detailed comparison to ME and RBA is best left to a future paper that examines a genome-
scale implementation of GBA.  
Action: None. 
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