SUPPLEMENTARY INFORMATION

Diatoms synthesize sterols by inclusion of animal and fungal genes in the plant pathway

Carmela Gallo¹, Simone Landi^{1,2}, Giuliana d'Ippolito¹, Genoveffa Nuzzo¹, Emiliano Manzo¹, Angela Sardo^{1,3}, Angelo Fontana¹

¹ National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.

² Univeristy of Naples "Federico II", Department of Biology, Cupa Nuova Cintia 21, 80126 Napoli, Italy

³ Stazione Zoologica "A. Dohrn", Villa Comunale, 80121 Napoli, Italy

Supplementary Table 1: Sterol composition of centric and pennate diatoms based on the 5-

cholesten skeleton

		Phytosterols	5		Animal sterols				
Diatom species	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~ .	$\checkmark \checkmark$				
Cyclotella crypticaª									
Skeletonema marinoi ^a									
Skeletonema costatum ^b									
Thalassiosira weissflogiiª									
Pseudonitzschia arenysensisª									
Phaeodactylum tricornutum ^ª									
Phaeodactylum tricornutum ^b									
Thalassiosira pseudonana ^b									
Cylindrotheca closterium ^b									
Fragilariopsis cylindrus ^b									

^aCurrent study; ^bIn agreement with Limnol. Oceanogr., 55(1), 2010, 91–105

Supplementary Table 2: List of main identified orthologs obtained using nodal sterol pathway translated sequences from *S. marinoi* and *C. cryptica* compared vs *T. oceanica, T. pseudonana, F. cylindrus, P. tricornutum, PN. multistriata and C. crispus* genomes. In addition, the sequence of the ERG2 from *Saccharomyces cerevisiae* was used as further query.

		Main identified orthologs in sequenced genomes of marine diatoms													
Sterol biosynthesis key genes		T.oceanica	Identity	T.pseudonana	Identity	F.cylindrus	Identity	P.tricornutum	Identity	PN.multistriata	Identity	C.crispus	Identity		
HMG-CoA synthase	HMGS	EJK77540.1	84%	XP_002286567.1	87%	OEU16766.1	72%	XP_002185047.1	65%	VEU40541.1	65%	XP_005712048.1	37%		
HMG-CoA reductase	HMGR	EJK68891.1	73%	XP_002289576.1	89%	OEU16221.1	78%	XP_002185302.1	74%	not determined		not determined			
Mevalonate kinase	MEVK	EJK44829.1	75%	XP_002287787.1	83%	OEU13577.1	69%	XP_002177012.1	26%	VEU38327.1	69%	XP_005711370.1	37%		
Squalene synthase	SQS	EJK68341.1	77%	XP_002288355.1	88%	OEU14974.1	70%	XP_002180940.1	72%	VEU34553.1	65%	XP_005712480.1	36%		
Cycloartenol synthase	CAS	EJK52279.1	64%	XP_002287432.1	85%	OEU13816.1	68%	XP_002185678.1	71%	VEU33723.1	57%	XP_005715573.1	45%		
Cycloartenol-C-24-methyltransferase	SMT1	EJK49936.1	37%	XP_002287743.1	69%	OEU12190.1	50%	XP_002178531.1	42%	VEU39293.1	26%	XP_005710912.1	25%		
Cycloeucalenol cycloisomerase	CPI	EJK52525.1	68%	XP_002291862.1	72%	OEU13221.1	52%	XP_002184217.1	59%	VEU40796.1	52%	XP_005714180.1	41%		
Sterol 14 demethylase	СҮР	EJK78043.1	81%	XP_002289823.1	91%	OEU16403.1	59%	XP_002185538.1	65%	VEU38469.1	61%	XP_005711653.1	46%		
Delta 14 sterol reductase	СҮР	EJK57401.1	34%	XP_002287678.1	74%	OEU08604.1	56%	XP_002183899.1	35%	VEU34167.1	51%	XP_005715240.1	33%		
C8 sterol isomerase (ScERG2)	ERG2			_				_				XP_005718833.1	47%		
C-5 sterol desaturase	DWF7	EJK66009.1	38%	XP_002295550.1	80%	OEU21245.1	51%	XP_002179834.1	55%	VEU39255.1	65%	 XP_005719132.1	30%		
7 dehydrocholesterol reductase	DWF5	EJK73338.1	76%	XP 002289717.1	79%	OEU22434.1	70%	XP 002184305.1	38%	VEU39255.1	63%	XP 005719145.1	34%		
24 dehydrocholesterol reductase (Sm-TR10988)	DHCR24					OEU21854.1	43%			VEU38364.1	42%	 XP_005713924.1	35%		
Delta(24(24(1)))-sterol reductase	24SR	EJK57400.1	30%	XP_002287183.1	31%	OEU08604.1	35%	XP_002182735.1	32%	VEU34167.1	31%	 XP_005715240.1	29%		

Supplementary Table 3: Comparison analysis of plants, fungal, yeast and human enzymes involved key reaction of sterol synthesis *vs* the *S. marinoi* and *C. cryptica* sequenced transcriptomes. Resulted hits showing alignment query coverage \leq 39% were considered not significant and dark grey highlighted.

				Best E	est BLAST hit			
Organisms	Descriptions	Genes	S. marinoi	Statistics	C. cryptica	Statistics		
Arabidopsis thaliana	Squalene epoxidase	SQE1	No hit		No hit			
Homo sapiens	Squalene epoxidase	SQE	No hit		No hit			
Pheodactylum tricornutm	Alternative squalene epoxidase	AltSQE	TR7561	QC = 58% I = 25% P= 42%	TR29442	QC = 50% I = 26% P= 43%		
Arabidopsis thaliana	Cycloarthenol synthase	CAS1		QC = 86% I = 47% P= 64%		QC = 86% I = 48% P= 64%		
Neurospora crassa	Lanosterol synthase	LSS	TP12960	QC = 92% I = 38% P= 54%	TP2126	QC = 86% I = 39% P= 55%		
Homo sapiens	Lanosterol synthase	LSS	1112900	QC = 89% I = 44% P= 60%	11(3120	QC = 90% I = 45% P= 60%		
Aspergillus nidulans	Lanosterol synthase	LSS		QC = 87% I = 32% P= 49%		QC = 87% I = 32% P= 48%		
Arabidopsis thaliana	Sterol 14 demethylase	CYP10A1	TP7602	QC = 76% I = 25% P= 43%	TP12100	QC = 77% I = 25% P= 41%		
Arabidopsis thaliana	Sterol 14 demethylase	CYP10A2	1177002	QC = 41% I = 29% P= 48%	11(12199	QC = 42% I = 30% P= 31%		
Arabidopsis thaliana	C8-sterol isomerase	AT1G05440	TR11754	QC = 15% I = 23% P= 51%	No hit			
Arabidopsis thaliana	C8-sterol isomerase	HYD1	TR27203	QC = 24% I = 23% P= 55%	TR38445	QC = 23% I = 41% P= 50%		
Saccharomyces cerevisiae	C8-sterol isomerase	ERG2	TR4901	QC = 22% I = 29% P= 57%	TR41732	QC = 18% l = 32% P= 51%		
Aspergillus nidulans	C8-sterol isomerase	ERG2	TR2164	QC = 12% I = 42% P= 70%	TR9781	QC = 19% l = 36% P= 54%		
Neurospora crassa	C8-sterol isomerase	ERG2	TR4901	QC = 22% I = 29% P= 57%	TR17006	QC = 21% l = 27% P= 45%		
Arabidopsis thaliana	Sterol methyltransferase 1	SMT1	TR612	QC = 89% I = 46% P= 65%	TR44522	QC = 98% I = 43% P= 53%		
Chlamydomonas reinhardtii	Sterol methyltransferase	SMT1-2	TR612	QC = 84% I = 38% P= 53%	TR45147	QC = 84% I = 40% P= 53%		
Arabidopsis thaliana	Sterol methyl-oxidase	SMO1-1	TR11964	QC = 62% I = 27% P= 43%		QC = 60% I = 31% P= 45%		
Arabidopsis thaliana	Sterol methyl-oxidase	SMO1-2	TR30213	QC = 81% I = 26% P= 45%		QC = 80% I = 23% P= 42%		
Arabidopsis thaliana	Sterol methyl-oxidase	SMO1-3	TR11964	QC = 70% I = 27% P= 45%	TP22604	QC = 56% I = 30% P= 45%		
Arabidopsis thaliana	Sterol methyl-oxidase	SMO2-1	TR319	QC = 84% I = 23% P= 40%	1K32004	QC = 58% I = 25% P= 52%		
Arabidopsis thaliana	Sterol methyl-oxidase	SMO2-2	TR28078	QC = 78% I = 28% P= 46%		QC = 59% I = 33% P= 52%		
Homo sapiens	C4 methyl sterol oxidase	SMO	TR11964	QC = 86% I = 25% P= 43%		QC = 75% I = 24% P= 45%		
Saccharomyces cerevisiae	Sterol-4-alpha-carboxylate 3- dehydrogenase	ERG26	TR28078	QC = 98% I = 25% P= 42%	TR14638	QC = 98% I = 29% P= 48%		

Homo sapiens	3-beta-hydroxysteroid- Delta(8),Delta(7)-isomerase	EBP	No hit		No hit	
Arabidopsis thaliana	C5-sterol desaturase	DWF7	TR28093	QC = 58% I = 23% P= 42%	TR48724	QC = 51% I = 25% P= 43%
Homo sapiens	C5-sterol desaturase	SC5D	TR28093	QC = 79% l = 25% P= 43%	TR48724	QC = 48% I = 32% P= 43%
Arabidopsis thaliana	7-dehydrocholesterol reductase	DWF5	TR2636	QC = 86% I = 40% P= 55%	TR24068	QC = 86% I = 41% P= 56%
Homo sapiens	24-dehydrocholesterol reductase	DHCR24		QC = 95% l = 50% P= 67%		QC = 24% I = 25% P= 44%
Arabidopsis thaliana	Delta 24 sterol reductase	DWF1	TP10008	QC = 92% I = 37% P= 54%	TD20121	QC = 11% I = 33% P= 52%
Solanum lycopersicum	Sterol side chain reductase	SSR2	1110558	QC = 92% I = 39% P= 53%	1120124	QC = 25% I = 25% P= 42%
Physalis alkekengi	Delta 24 sterol reductase	24ISO		QC = 91% I = 39% P= 53%		QC = 23% I = 25% P= 45%
Saccharomyces cerevisiae	Delta 24(24) sterol reductase	ERG4	TR213	QC = 94% I = 43% P= 59%	TR29411	QC = 93% I = 43% P= 58%
Saccharomyces cerevisiae	Delta 22 sterol desaturase	ERG5	TR7602	QC = 69% I = 22% P= 49%	TR3228	QC = 40% I = 28% P= 43%

Supplementary Figure 1:NMR (600 MHz, CDCl₃) identification of clionasterol from *S. marinoi* and *C. cryptica*. (**A**) Comparison of ¹H NMR upfield-shifted signals of standard β sitosterol and the natural 24 ethyl sterol isolated from the diatoms; (**B**) ¹H-NMR data of clionasterol and β -sitosterol, and comparison with the literature assignment (Nes *et al.* Lipids (1976) 11: 118).

^a sample isolated from *C. cryptica*; ^b standard.

Supplementary Figure 2: Incorporation of 1^{-13} C-glucose into dihydrobrassicasterol of *C. cryptica*. Enriched carbons are shown by a red spot on the structure. (**A**) Full and (**B-D**) four enlarged regions of the ¹³C-NMR spectra (CDCl₃, 125 MHz) of labeled (top trace) and unlabeled (down trace) dihydrobrassicasterol. Intensity of ¹³C signals of labeled and unlabeled spectra are normalized on C14 (56.79 ppm).

A) Full spectral width (155-0 ppm).

B) Region between 35 and 10 ppm.

C) Region between 60 and 35 ppm.

D) Region between 85 and 60 ppm.

E) Region between 144 and 118 ppm

Supplementary Figure 3: Incorporation of 1^{-13} C glucose into fucosterol of *C. cryptica*. Enriched carbons are shown by a red spot on the structure. (**A**) Full and (**B-D**) enlarged regions of the ¹³C-NMR spectra (CDCl₃, 125 MHz) of labeled (top trace) and unlabeled (down trace) fucosterol. Intensity of ¹³C signals of labeled and unlabeled spectra are normalized on C14 (56.79 ppm).

A) Full spectral width (160-0 ppm).

B) Region between 35 and 10 ppm.

C) Region between 60 and 35 ppm.

D) Region between 85 and 60 ppm.

E) Region between 150 and 110 ppm.

Supplementary Figure 4: Incorporation of 1^{-13} C glucose into clionasterol of *C. cryptica*. Enriched carbons are shown by a red spot on the structure. (**A**) Full and (**B-D**) enlarged regions of the ¹³C-NMR spectra (CDCl₃, 125 MHz) of labeled clionasterol.

A) Full spectral width (160-0 ppm).

B) Region between 35 and 10 ppm.

C) Region between 60 and 35 ppm.

D) Region between 85 and 60 ppm.

E) Region between 145 and 118 ppm.

Supplementary Figure 5: Alignment of amino acid sequences of the catalytic region of the putative

proteins of S. marinoi and C. cryptica with homologous regions from CAS and LSS in animals, yeast

and fungi.

A.nidulans_LSS	342	DSNDLTNSTGSVSVDAFLNMIAFYCKEGPDSKALRRIQTASLEYLWMGPRGMQVMS <mark>I</mark> H	399
H.sapiens LSS	325	ADDRFTKSISIGPISKTINMLVRWYVDGPASTAFQEHVSRIPDYLWMGLDGMKMQGTN	382
A.thaliana_CAS1	355	YEDENTRYICIGPVNKVLNMLCCWVEDPNSEAFKLHLPRIHDFLWLAEDGMKMQGYN	411
A.thaliana_CAS2	264	YEDENTRYICIGPVNKVLNMLCCWVEDPNSEAFKLHLPRIHDFLWLAEDGMKMQGYN	320
S.marinoi_CAS	776	AEDLQTNFIDIGPVNKALNMVSAFHSANNDINDPAVRSHMMRVPDYLWVAEDGMKMQGYN	835
C.criptica_CAS	299	AEDLQTNYIDIGPVNKALNMVAAYHAANNDINDPAVQSHMMRVPDYLWLAEDGMKMQGYN	358
N.crassa_LSS	348	MEDENTDYSDLAPVNAAMNTVCCYVRDGPGAYSVRRHVERLDEVLWVNAEGMLCNGTN	405
S.cerevisiae_LSS	328	TELQNTDSLCIAPVNQAFCALVTLIEEGVDSEAFQRLQYRFKDALFHGPQGMTIMGTN	385
A.nidulans LSS	400	AGHTWETAFVLOAYAEGGLSKVPEIOAAIERAYKYLVEOOHVVDYPE	446
H.sapiens LSS	383	GSOIWDTAFAIOALLEAGGHHRPEFSSCLOKAHEFLRLSOVPDNPP	428
A.thaliana CAS1	412	GSOLWDTGFAIOAILATNLVEEYGPVLEKAHSFVKNSOVLEDCPG	456
A.thaliana CAS2	321	GSOLWDTGFAIOAILATNLVEEYGPVLEKAHSFVKNSOVLEDCPG	365
S.marinoi CAS	836	GSOCWDTSFAIOAVWECGLLDKFPILSAKVWAFLERTOILSTECSOSTPAYOYESC-D	892
C.criptica CAS	359	GSQCWDTSFAIQAVRECGLLDHFPLLSTKVWAYLERTQILSTETSQSSPAFQYESC-D	418
N.crassa LSS	406	GVQCWDTAFAIQAIMDAGLTEDPRWRPMLIKSLEFLEDQQIRENVK	451
S.cerevisiae_LSS	386	GVQTWDCAFAIQYFFVAGLAERPEFYNTIVSAYKFLCHAQFDTECVP	432
A.nidulans_LSS	447	DSQCHFFSRLGGWPFSTRYQGNVCSDCTGEALKSILMIE-RDSRFTRLTT	495
H.sapiens_LSS	429	DYQ-KYYRQMRKGGFSFSTLDCGWI <mark>VSDC</mark> TAEALKAVLLLQEKCPHVTEHIP	479
A.thaliana_CAS1	457	DLN-YWYRHISKGAWPFSTADHGWPISDCTAEGLKAALLLS-KVPKEIVGEPID	508
A.thaliana_CAS2	366	DLN-YWYRHISKGAWPFSTADHGWPISDCTAEGLKAALLLS-KVPKAIVGEPID	417
S.marinoi_CAS	893	SRD-KFYRHVSKGGWPFS <mark>TSAHGWPISDC</mark> TGEGLKGVLALM-DSPIVMDGVKRGILKDIE	950
C.criptica_CAS	419	NRD-KFYRHVSKGGWPFSTSAHGWPISDCTGEGLKGVLALM-NSPIVVEAVKTGVLKSID	473
N.crassa_LSS	452	DQD-KCYRHPRKGAWAFSNKDQGYAVSDCVSEALKSVIILQ-KTPGFPTLID	501
S.cerevisiae_LSS	433	GSYRDKRKGAWGFSTKTOGYTVADCTAEAIKAIIMVK-NSPVFSEVHHMIS	482

Supplementary Figure 6: Rooted phylogenetic tree of Sterol Methyl Transferases (SMTs) from various organisms. The bootstrapping test (replicate = 100) is indicated on each node in order to test the phylogeny. Nicotinate methyltransferase (NANMT) was used as outgroup. Red square = *S. marinoi*; Green square = *C. cryptica*; Light blue spot = other diatom.

Supplementary Figure 7:Un-rooted phylogenetic trees of key enzymes of C5-sterol desaturase, including DWF7 and ERG3, from various organisms. The bootstrapping test (replicate = 100) is indicated on each node in order to test the phylogeny. Red square = *S. marinoi*; Green square = *C. cryptica*; Light blue spot = other diatom.

Supplementary Figure 8:Un-rooted phylogenetic trees of key enzymes of DWF5, ERG4 and 7 dehydrocholesterol reductase from various organisms. The bootstrapping test (replicate = 100) is indicated on each node in order to test the phylogeny. Red square = *S. marinoi*; Green square = *C. cryptica*; Light blue spot = other diatom.

0.2

Supplementary Figure 9: Alignment of aminoacid sequences of DWF1 from *A. thaliana* and *S. lycopersicum*, SSR2 from *S. lycopersicum* and 24-DHCR from *Homo sapiens* and Sm-TR10998 from *S. marinoi*.

A.thaliana_DWARF1 -----KRKKTWVD-----YFVKFRWI -----KRKKNIMD-----LLVOFRWI S.lycopersicum_DWARF1 S.lycopersicum_SSR2 S.marinoi_Tr10998 -----KRKIQLVD-----FLLSFRWI MMDDEEQIKDGSTSSSGSSGSEHQVVKPSSIQQMQQTIKRKNDLSNESFCDRFIIQNRGI H.sapiens_DHC24 -----WEPAVSLAVCALLFLLWVRLKGLEF-----VLIHQRWV 11 A.thaliana_DWARF1 IVIFIVLPFSATFYFLIYLGDMWSESKSFEKRQKEHDENVKKVIKRLKG-RDASKDGLVC S.lycopersicum DWARF1 S.lycopersicum_SSR2 VVIFVVLPLSFLYYFSIYLGDVRSECKSYROROKEHDENVKRVVKRLKE-RNASKDGLVC IVIFFVLPFSFLYYFSIYLGDVKSERKSYKQRQMEHDENVKEVVKRLGQ-RNAEKDGLVC S.marinoi_Tr10998 FVTIFILPASFFLRLFHYIYD-WYVYL-FVNLSSRHDERVSHISAQVRD--AASQKKEMC FVCLFLLPLSLIFDIYYYVRA-WVVFK-LSSAPRLHEQRVRDIQKQVREWKEQGSKTFMC H.sapiens DHC24 *: .* :.:** +::.* : . . - 21 A.thaliana_DWARF1 TARKPWIAVGMRNVDYKRARHFEVDLGEFRNILEINKEKMTARVEPLVNMGOISRATVPM S.lycopersicum_DWARF1 S.lycopersicum_SSR2 TARKPWVAVGMRNVDYKRARHFEVDLSPFRNVLNIDTERMIAKVEPLVNMGQISRVTVPL TARPPWVVVGMRNVDYKRARHFEVDLSKFRNILDIDTERMVAKVEPLVNMGQMSRVTIPM S.marinoi_Tr10998 TSRPGWHSMSLREGLYKKDSKVAKIEIPLRDVLELDEANLTVRVEPLVTMGQLSRYLRSK H.sapiens_DHC24 TGRPGWLTVSLRVGKYKKTHK--NIMINLMDILEVDTKKQIVRVEPLVTMGQVTALLTSI 1.1* ** . 1 : ::*::: A.thaliana_DWARF1 NLSLAVVAELDDLTVGGLINGYGIEGSSHIYGLFADTVEAYEIVLAGGELVRATRDNEYS S.lycopersicum_DWARF1 S.lycopersicum_SSR2 NVSLAVVAELDDLTVGGLINGYGIEGSSHIYGLFSDTVVSYEVVLADGQVVRATKDNEYS NLSLAVLAELDDLTVGGLINGFGVEGSSHIFGLFSDTVVALEVVLADGRVVRATKDNEYS S.marinoi_Tr10998 GYCLQVTPELDDLTAGGLVNGFGVETSSHKYGLIOHTCTRFEVVLANGDVVTCT-ETDRP H.sapiens_DHC24 GWTLPVLPELDDLTVGGLIMGTGIESSSHKYGLFGHICTAYELVLADGSFVRCT-PSENS *:***.*..* .* DLYYAIPWSQGTLGLLVAAEIRLIKVKEYMRLTYIPVKGDLQALAQGYIDSFAPKDGDKS A.thaliana DWARF1 S.lycopersicum_DWARF1 S.lycopersicum_SSR2 DLFYAIPWSQGTLGLLVSAEIKLIPIKEYMKLTYKPVVGNLKEIAQAYMDSFSPRDGDQD DLFYAIPWSQGTLGLLVSAEIKLIPVDQYVKLTYKPVRGNLKELAQAYADSFAPKDGDQD S.marinoi_Tr10998 ELF3AIPWSHGTLGFLVSVDFKIIPCKSYVKMTYIPCHT----QEECVDVFERESRDLT H.sapiens_DHC24 DLFYAVPWSCGTLGFLVAAEIRIIPAKKYVKLRFEPVRG-----LEAICAKFTHESQRQE -----..*:.: : * A.thaliana DWARF1 K----IPDFVEGMVYNPTEGVMMVGTYASKEEAKKKGNKINNVGWWFKPWFYQHAQTALKK S.lycopersicum_DWARF1 NHEKVPDFVETMVYTPTEAVCMTGRYASKEEAKKKGNVINNVGWWFKTWFYOHAOTALKK NPSKVPEMVEGMIYGPTEGVMMTGMYASRNEAKRRGNVINNYGWWFKPWFYQHAQTALKR S.lycopersicum_SSR2 S.marinoi_Tr10998 N-----DFVEAIVYTKEEGVVMKATLVDEVNKSQ----VNPIGYFWKPWFYKYVQTFLSS H.sapiens_DHC24 N-----HFVEGLLYSLDEAVIMTGVMTDEAEPSK----LNSIGNYYKPWFFKHVENYLKT * * * . :* * ::*.**:::... *. : :** ::* .. : .. A.thaliana DWARF1 GOF-VEYIPTREYYHRHTRCLYWEGKLILPFGDQFWFRYLLGWLMPPKVSLLKATOGEAI S.lycopersicum_DWARF1 S.lycopersicum_SSR2 GEF-VEYIPTREYYHRHTRCLYWEGKLILPFGDQWWFRFLFGWAMPPKVSLLKATQGEYI GEF-VEYIPTRDYYHRHTRSLYWEGKLILPFGDQFWFRFLLGWLMPPKIALLKATQSEAI S.marinoi_Tr10998 H.sapiens_DHC24 GETATEYIPLTHYFHRHTRPLFWEMEEIIPSGNALWFRCLLGWLGPPHVKLLKKTQTETI NREGLEYIPLRHYYHRHTRSIFWELQDIIPFGNNPIFRYLFGWMVPPKISLLKLTQGETL *1***** 11** 1 *1* *1 ** *:** **11 RNYYHDMHVIQDMLVPLYKVGDALEWVHREMEVYPIWLCPHKLFKQPIKGQIYPEPGFEY A.thaliana DWARF1 S.lycopersicum_DWARF1 RNYYMENHVIQDMLVPLYKVGDALEWVHREMEVYPLWLCPHRLYRLPLKTMVYPEPGFEL S.lycopersicum_SSR2 S.marinoi_Tr10998 RNYYHDHHVIODLLVPLYKVGDCLEWVHREMEVYPIWLCPHRIYKLPVRPMIYPEPGFEK RRLYEQHHVIQDMLIPMGALADAINTFHDEIEVYPLWLCP--MALLP----SGDSGFMK RKLYEQHHVVQDMLVPMKCLQQALHTFQNDIHVYPIWLCP---FILP-----SQPGLVH H.sapiens_DHC24 *. * : **:**:*:*: : :.: .: :: ***:*** A.thaliana DWARF1 ENROGDTEDAQMYTDVGVYYAPGCVLRGEEFDGSEAVRRMEKWLIENHGFQPQYAVSELD S.lycopersicum_DWARF1 QKRQGDTKYAQMYTDVGVYYAPGPILRGEVFDGIEAVRKLESWLIENHGFQPQYAVSELT S.lycopersicum_SSR2 HKROGDTEYAOMYTDVGVYYVPGAVLRGEPFDGSEKCROLELWLIENHGFOAOYAVTELT S.marinoi Tr10998 PVVQDGQVVERMFVDVGAYGVP----MVSNFEARGTLRRLESFVRRVKGYQALYADCFM9 H.sapiens_DHC24 PKGNE----AELYIDIGAYGEP----RVKHFEARSCMRQLEKFVRSVHGFQMLYADCYMN *.:* :: : 11 *1*.* . *:. 1 * 1 EKSFWRMFNGELYEECRKKYRAIGTFMSVYYKSKKGRKTEKEVREAEQAHLETAYAEAD-A.thaliana DWARF1 S.lycopersicum_DWARF1 S.lycopersicum_SSR2 EKNFWRMFDGSLYENCRKKYRAIGTFMSVYYKSKKGKKTEKEVQEAEQETAEVETPEVDE EKNFWRMFDNGLYEQCRRKYKAIGTFMSVYYKSKKGRKTEKEVQEAEQEKAEQETPEAN-S.marinoi_Tr10998 RDEFREMFDHTAYDTLRTSYGAVDAFPEIYDKISRAARR--H.sapiens_DHC24 REEFWEMFDGSLYHKLREKLGCQDAFPEVYDKICKAARH------.... ***

SUPPORTING MATERIAL

Diatoms synthesize sterols by inclusion of animal and fungal enzymes in the plant pathway

Carmela Gallo¹, Simone Landi^{1,2}, Giuliana d'Ippolito¹, Genoveffa Nuzzo¹, Emiliano Manzo¹, Angela Sardo^{1,3}, Angelo Fontana¹

¹ National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.

² Univeristy of Naples "Federico II", Department of Biology, Cupa Nuova Cintia 21, 80126 Napoli, Italy

³ Stazione Zoologica "A. Dohrn", Villa Comunale, 80121 Napoli, Italy

FIGURE SM1. ¹H NMR spectrum (600 MHz, C₆D₆) of acetylated 24-methylene cholesterol from *S. marinoi*.

FIGURE SM2. ¹H NMR spectrum (600 MHz, CDCl₃) of natural dihydrobrassicasterol.

FIGURE SM3. ¹³C NMR spectrum (125 MHz, CDCl₃) of natural dihydrobrassicasterol.

FIGURE SM4. ¹H NMR spectrum (600 MHz, CDCl₃) of clionasterol from *C. cryptica*.

FIGURE SM5. COSY spectrum (600 MHz, CDCl₃) of clionasterol from *C. cryptica*.

FIGURE SM6. HSQC spectrum (600 MHz, CDCl₃) of clionasterol from *C. cryptica*.

FIGURE SM7. ¹H NMR spectrum (600 MHz, C₆D₆) of natural fucosterol.

FIGURE SM8. ¹H NMR spectrum (600 MHz, CDCl₃) of acetyl brassicasterol from *P. tricornutum*.

FIGURE SM9. COSY spectrum (600 MHz, CDCl₃) of acetyl brassicasterol from *P. tricornutum*.

FIGURE SM10. Nodal sterol biosynthesis related translated transcripts comparison between *Skeletonema marinoi* (Queries) and *Cyclotella cryptica* transcriptome (Database).

- Mevalonate Kinase: SM-MEVK (TR10489) obtains= CC-MEVK (TR35862)

Identity									
1. Query 2. TR35862 c0	1998 (CERNELLI AGEN WINNA KANSHIDOLE) Sife (CERNELLI AGEN WINNA KANSHIDOLE)	i Beneri (organiyannek)) (da (erin) 1 Beneri (organiyannek)) (da (erin)	ND BURDTRISPANTIKKOUCOASAT ND BURDTROBINITIKKOUCOASAT	GISACAYS, RANNARI, LARINACH CHUR AN CHUR GISACAYS, RANNARI, LARINACH CHUR AN CHUR GISACAYS, RANNARI, LARINACH CHUR AN CHUR AN CHUR AN CHUR AN CHUR	TAATT GGULRISKTII GAVI HENDOI IN SAVIRI VAAST GIT Taatt ggulrisktii oga vii savirist git	AND CHANNE VER COMPANY OF A 1990 And Change Ver Company of A 1990	KAR KOLO AKADA AN ARADAK Kar Kalo akada ka aradak	RELICIONISME ALEMANISMI (ALEMANISMI RELICIONISME ALEMANISMI (ALEMANISMI RELICIONISME ALEMANISMI (ALEMANISMI (ALEMANISMI))	ANDER OF A 420 DEPUTY OF Realts of A 420 DEPUTY OF
Quer	y Coverage: 99.	.68%							
Ident	ities: 84.3%								
Positi	ves: 92.7%								

- Squalene synthase: SM-SQS (TR5837) obtains=CC-SQS (TR905)

kry Ling mener af anna kanan an in a sa an	
Query Coverage: 83.4%	
Identities: 76.2%	
Positives: 86.8%	
- Cycloartenol synthase: SM-CAS (TR12960) obtains=C	C-CAS (TR3126)
len () () () () () () () () () () () () ()	
Query Coverage: 61.5%	
Identities: 84.7%	
Positives: 92.6%	

Cycloartenol-C-24-methyltransferase: SM-SMT1 (TR612) obtains = CC-SMT1 (TR45147)

- Sterol methyl transferase: SM-SMT2 (TR11812) obtains= CC-SMT2(TR29102)

ldentity 1. Query 2. TR29102 c0	TTIOPROQUSS: VTISPRSTK	STALSMGLKTQTVSKV TALSMGLKSSLLKTA	VQNPIITAAVAGTAL QSHPVATAAAGTAL	VG taavk vv At taavk fy	LDRPSRTYNENSV LDRPSRTYSETSV	AEEYDAWTQ Areydewtq	DGILEYYWGEHIHLGYY DGILEYYWGEHIHLGYY	E E EMK E E EMK E	GYKKKDF I QAKYDF I GYKKKDF I QAKYDF I	DEMMK FGG I DA DEMMK FGG I DV
Query Cove	erage: 84	4.6%								
Identities:	72.7%									
Positivies:	78.5%									
- Ste	erol 14 de	emethylase:	SM-CYP (TR	7602) c	obtains= C	С-СҮР (1	R23734)			

ldentity								
1. Query	BASBRYINGEN (TSALSI (1900) - ENERN (1900) I LESS (1900)	······································	AEFECTER RED MIN HER CONDUCTION	RLH ovander: F ye tt y: Ki ngen t ya ndi. Kended	SWOORDOS SIG <mark>eneration was find too</mark> ord wedG	C urse tealergideedaveati s b il eeeen kund ba eag	R L 🛛 - CH 🖉 CV 🕼 A PARTE VELE EULEI (KNKE	A IN ER AKNYERD AKADA OGWINA (CSIO) OC TURREAR RIDLAAK FPLE
2. TR237341c0	BREEDERNESLEALLENDERSUNDERTRUCKERFELREPOLO	IOSAN GERETE FORNONAN GEREC HLO-DO	TSUE CEE HORAWADOUT DECUTATE DECU	05F ICAUSORI/SED (VE S/ COD (<u>B</u> S)	KOVTHERNE DARGABEEDIK SAEDSIDE TOR-EDGEDISENS	ANYSO I DALINGUL ECHNYEATS TO ALEEEEN SO MOVE (S	- ATTLECOTS FREDERCOND (DRDED	RO-GE TRAVERU TAXALI) (GVIV) - QGUU (LQ ELRREARKROL SMPKEPLE

Query Coverage: 68.2%

Identities: 47%

Positivies: 64.8%

- 7 dehydrocholesterol reductase: SM-DWF5 (TR2636) obtains = CC-DWF5 (TR24068)

Positivies: 83.7%

- Delta(24(24(1)))-sterol reductase: SM-24SR (TR213) obtains= CC-24SR (TR29411)

Query Coverage: 100%

Identities: 75.5%

Positivies: 85.2%

Alignments and outputs were performed using the Geneious software (Kearse et al., 2012). Blast investigation were performed using *S.marinoi* translated transcripts as queries; database was constructed using *C. cryptica* transcriptome. Reverse investigation were performed to confirm the results. This investigation revealed equal results (Data not showed).

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 15;28 (12) 1647-9.

FilGURE SM11. Nodal sterol biosynthesis related translated transcripts alignments between *Skeletonema marinoi* and *Solanum lycopersicum*

- Cycloartenol synthase, SM-CAS (TR12960).

Identities: 43.7%

Positives: 58.2%

- Cycloartenol-C-24-methyltransferase, SM-SMT1 (TR612)

Identities: 32.4%

Positives: 50%

Identities: 34.2%

Positives: 50.4%

- Sterol methyl transferase, SM-SMT2 (TR11812)

Identities: 23.3%

Positives: 39.7%

- C-4 sterol methylsterol monooxygenase, SM-SMO(TR11964)

	1	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	362
Consensus						111.1			10.00		101.00			THE R P. LEWIS CO., Name		110.00		 	
Identity																			
1. SM-SMO									11.11						11 11			 	
2. Solyc06g005750						1000.0					10.00								

Identities: 25%

Positives: 41%

- 7 dehydrocholesterol reductase, SM-DWF5 (TR2636)

	1	50	100	150	200	250	300	350	400	450	500 5	21
Consensus					THE DOLLAR		HEALTH AND AND					
Identity												
1. SL-DWF5(Solyc01g009					Internet							
2. SM-DWF5												

Identities: 31%

Positives: 47.3%

FIGURE SM12. Nodal sterol biosynthesis related translated transcripts alignments between *Cyclotella cryptica* and *Solanum lycopersicum*

- Cycloartenol synthase, CC-CAS (TR3126).

	1 5	0 100	150	200	250	300	350	400	450	500	550	600	650	700	750	794
Consensus																
Identity																
1. CC-CAS																
2. SL-CAS																

Identities: 46%

Positives: 60.8%

- Cycloartenol-C-24-methyltransferase, CC-SMT1 (TR45147)

	1	50	100	150	200	250	300	350	400	450	483
Consensus									1 111 1		
Identity											
1. CC-SMT1	1								1 10 0 P		
2. SL-SMT(Solyc01g1118	11										

Identities: 33%

Positives: 45.2%

and 200 400 Consensus Identity 1110 mari ar 1111 1. CC-SMT1 2. SL-SMT(Solyc05g0086...

Identities: 33%

Positives: 45.9%

- Sterol methyl transferase, CC-SMT2 (TR29102)

Identities: 22.6%

Positives: 37.6%

- 7 dehydrocholesterol reductase, CC-DWF5 (TR24068)

Consensus Identity	1	50	100	150	200	250	300	350	400	450	500	535
1. CC-DWF5 2. SL-DWF5(Solyc01g009		1										

Identities: 35.5%

Positives: 52.6%

Alignments and outputs were performed using the Geneious software Alignments and outputs were performed using the Geneious software (Kearse et al., 2012)

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 15;28 (12) 1647-9.