Supplementary Information for: ## Diet influences the functions of the human intestinal microbiome Maria De Angelis¹, Ilario Ferrocino², Francesco Maria Calabrese^{1,3}, Francesca De Filippis⁴, Noemi Cavallo¹, Sonya Siragusa¹, Simone Rampelli⁵, Raffaella Di Cagno⁶, Kalliopi Rantsiou², Lucia Vannini⁷, Nicoletta Pellegrini⁸, Camilla Lazzi⁸, Silvia Turroni⁵, Nicola Lorusso³, Mario Ventura³, Marcello Chieppa⁹, Erasmo Neviani⁸, Patrizia Brigidi⁵, Paul W. O'Toole¹⁰, Danilo Ercolini⁴, Marco Gobbetti^{6*}, Luca Cocolin² ¹Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy. ²Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy. ³Department of Biology, University of Bari Aldo Moro, Bari, Italy. ⁴Department of Agricultural Sciences and Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy. ⁵Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy. ⁶Faculty of Science and Technology, Free University of Bozen, Italy. ⁷Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, and Inter-Departmental Centre for Industrial Agri-Food Research, Alma Mater Studiorum University of Bologna, Cesena, Italy. ⁸Food and Drug Department, University of Parma, Parma, Italy. ⁹National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Bari, Italy. ¹⁰Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. ^{*} Prof. Marco Gobbetti, Faculty of Science and Technology, Free University of Bozen, Italy, Email address: marco.gobbetti@unibz.it Tel.: +39 0471 017215. **Supplementary Figure S1.** Average-linkage clustering based on the Spearman distance of omnivores (O), vegans (V) and vegetarians (VG) and dietary information. The columns are color-coded as follows: red, O; green, V; and blue, VG. Rows and columns are clustered by Ward linkage hierarchical clustering. The intensity of the colors, denoted as the Z-score, represents the degree of correlation between samples and dietary information, as measured by Spearman's correlations; red indicates a high correlation, and blue indicates a low correlation. Sample codes include (i) the type of diet as O, omnivorous; V, vegan; or VG, vegetarian; and (ii) Mediterranean diet adherence as low, 0; medium, 1; or high, 2. **Supplementary Figure S2.** Correlation between dietary information and fecal microbiome composition. Heatplot showing Spearman's correlations between microbial genera and dietary information. Rows and columns are clustered by Euclidean distance and Ward linkage hierarchical clustering. The intensity of colors represents the degree of association between genera and nutrients, as measured by Spearman's correlations. Asterisks indicate significant correlations (FDR < 0.05). **Supplementary Figure S3.** Display of features of followed analysis workflow for meta-genomic and meta-proteomic data. Illumina and Mass spectrometry sequencing raw data files were analysed thanks to the software reported in red. Gene and protein annotation files converged in the Pathway Tools metabolic map reconstruction.