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1. Master equation of Model M5
As stated in Point 1 in Model Specification and shown experimentally in Ref. (1), gene-copy independence means that each
mother and daughter copy pair constitutes an independent stochastic subsystem. Therefore, it is enough to study one of the two
subsystems.

Given the reactions associated with one of the subsystems of M5 (illustrated in Fig. 1D of main text), we can write the chemical
master equation (CME) describing the stochastic dynamics

dPn(nN, nM, t)
dt

=T(t)[Pn(nN − 1, nM, t)− Pn(nN, nM, t)]︸ ︷︷ ︸
transcription of nascent mRNA

+ k[(nN + 1)Pn(nN + 1, nM − 1, t)− nNPn(nN, nM, t)]︸ ︷︷ ︸
mRNA maturation

+ d[(nM + 1)Pn(nN, nM + 1, t)− nMPn(nN, nM, t)]︸ ︷︷ ︸
degradation of mature mRNA

+Φ(t)Pn(nN, nM, t)︸ ︷︷ ︸
gene state switching

,

where
Pn(nN, nM, t) = [P00

n (nN, nM, t) P10
n (nN, nM, t) P01

n (nN, nM, t) P11
n (nN, nM, t)]⊤,

where nN and nM denote the numbers of nascent mRNA and mature mRNA respectively. The first and second binary digit in
superscripts label the gene state of the mother copy and its daughter copy produced during replication: 1 for OFF state and 0 for
ON state. Hence, P00

n (nM, nN, t) is the probability of having two actively transcribing genes. The subscript n stands for the cell
cycle number or equivalently the cellular generation number. Note that t is the cell age which varies between 0 and td, the time
at which cell division occurs. Transcription details are encoded in the diagonal matrix

T(t) = diag[2ρu(t), ρu(t), ρu(t), 0]

where ρu(t) = ρ0eαt (Point 4 in Model Specification), while the details of gene switching are encoded in the matrix

Φ(t) =




0 0 0 0
0 0 0 0
0 0 −σb σ−

u
0 0 σb −σ−

u

 t ∈ [0, tr),


−2σb σ+

u σ+
u 0

σb −σb − σ+
u 0 σ+

u
σb 0 −σb − σ+

u σ+
u

0 σb σb −2σ+
u

 t ∈ [tr, td),

where the change from σ−
u to σ+

u at replication time tr is a reflection of Point 6 in Model Specification, whereas the mRNA
maturation, degradation of mature mRNA and gene state switching capture the processes described in Points 2, Point 3 and
Point 1 in Model Specification, respectively.

Next we describe the non-reactive processes in the model, i.e. replication and cell division. At the replication time tr, the
pre-replication and post-replication probabilities are linked by the equation

Pn(nN, nM, t+r ) = ΠPn(nN, nM, t−r )

where Π represents the transition probability undergoing the gene replication process. The variables t+r and t−r stand for the
time before and after gene replication respectively.

The following two choices of Π represent the two possible conditions for gene states during replication as mentioned in Model
Specification Point 5: (i) daughter copy inherits gene state from the mother copy, and (ii) all copies are reset to OFF state upon
replication,

Π =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

 case (i),


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1

 case (ii).

At cell age (td) a cell divides into two daughter cells (Point 7 in Model Specification), and the generation number increases by one.
The pre-division and post-division probabilities are linked by the equations

P11
n+1(nN, nM, 0) = ∑

n′
N,n′

M

B(nN|n′
N)B(nM|n′

M)P11
n (n′

N, n′
M, td) + ∑

n′
N,n′

M

B(nN|n′
N)B(nM|n′

M)P10
n (n′

N, n′
M, td),

P01
n+1(nN, nM, 0) = ∑

n′
N,n′

M

B(nN|n′
N)B(nM|n′

M)P01
n (n′

N, n′
M, td) + ∑

n′
N,n′

M

B(nN|n′
N)B(nM|n′

M)P00
n (n′

N, n′
M, td),

P10
n+1(nN, nM, 0) = P00

n+1(nN, nM, 0) = 0.

[1]
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These equations model the random allocation of nascent and mature mRNA into two daughter cells according to a binomial
distribution. Since only the mother copy is tracked, the probabilities with daughter copy being at an ON gene state (the second
digit in subscript being 0, i.e., P10

n+1 and P00
n+1) are set to zero. The binomial distribution kernel is

B(nN|n′
N) =

(
n′

N
nN

)
2−n′

N .

At any time, the joint probability of nN nascent mRNA and nM mature mRNA P̄(nN, nM, t) of the whole of the two subsystems
can be computed via a convolution

P̄n(nN, nM, t) = ∑
i,j

Pn(nN − i, nM − j, t)Pn(i, j, t) and Pn(nN, nM, t) = P11
n (nN, nM, t) + P01

n (nN, nM, t) + P10
n (nN, nM, t) + P00

n (nN, nM, t).

This result follows from the independence of the two subsystems and the fact that they are identical.
All stochastic simulations using the finite state projection algorithm and the stochastic simulation algorithm reported in the

main text simulate the processes described in this section. The master equation is too complex to solve exactly and hence approx-
imations are needed which we describe from Sections 3 onwards.

2. Estimation of experimental parameter values
2.1. Table 1 in Main Text. The data processing for each line in this table is summarized as follows:

• Line 1: The values of ρu, σb, σu are extracted from the bottom tabular of Supplemental Table 3 of Ref. (2). As noted in the
latter paper, d is a fixed value taken from (3); this gives a half life of the mRNA of POL1 equal to 10 min which is equivalent
to d = ln 2/τ1/2 = 0.0693 min−1.

• Line 2: Same as Line 1 except that the half life of mRNA corresponding to PDR5 is 14 min (3) which means d = 0.0495 min−1.

• Line 3: The degradation rate d is extracted from Table F in Supplementary file 1 of Ref. (1), being 0.14 hr−1 = 0.0023 min−1.
The other three parameters are extracted from Table A in Supplementary file 2 of Ref. (1).

• Line 4: Same as Line 3. The degradation rate d is 0.13 hr−1 = 0.0022 min−1.

• Line 5: The values of σb and σu are extracted from Fig. 3g of (4), while the values of d and ρu are obtained from Lines 7 and
11 in the left-column text (p. 4) of (4), respectively.

• Line 6: The degradation rate d is in Line 8 under Eq. (2) in Section Mathematical modeling of c-Fos serum induction data
in SI of (5), which is from literature Ref. (6). The half life of c-Fos mRNA is 15 min, indicating d = ln 2/15 = 0.462 min−1.
The other kinetic parameters are from Line 2 in Table S1 of the SI of Ref. (5).

• Lines 7-10: All the four kinetic parameters are quoted from Table S1 of Ref. (7) (Genes Acly, Actb, Srebf1, Insr1 fed PP
(periportal)), and converted from units hr−1 to min−1.

• Line 11: The values of ρu, σb and σu of 6935 genes are imported from Table S1 of Ref. (8), which have all been normalized by
decay rate d. The half life time of mRNA (3575 out of 6935 genes) are found in the file slam_seq.csv in (https://github.com/
sandberg-lab/txburst/tree/master/data), from which the decay rates d are calculated. With the decay rates d, the absolute
values of ρu, σb and σu can be computed as well. The mean of the absolute values of ρu, σb, σu and d over 3575 genes are
summarized in Line 11 of Table 1. The burst size, fraction ON time and timescale ratio δ are computed for each gene, and
their mean values over 3575 genes are listed in Table 1.

• Line 12: The decay rate normalized data are from Table S6 of Ref. (8). The decay rate is absent so that we compute the mean
of ρu, σb and σu with respect to degradation rate d.

• Line 13: The mean values reported are calculated from Table S1, which were obtained from the authors of Ref. (9).

2.2. Estimation of td (division time) and tr (replication time). Experimental values are collected in Table S2 and discussed
below.

• Line 1: The cell cycle time is from the line under Fig. 2 in Ref. (10), while the replication time is calculated from the first
line in Table 2 in the same paper.

• Line 2: The value is indicated in Fig. 5 of Ref. (2).

• Line 3: Both values are from (https://bionumbers.hms.harvard.edu/files/Cell%20cycle%20times.pdf).

• Line 4: The cell cycle and replication time are from Section 9 (τDIV, p. 20) and Fig. 3B of Ref. (1).
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Table S1. Data from Suter et. al. (9) which was used to compute values in Line 13 of Table 1 Main text

Cell type σu σb ρu d Burst size Fraction ON time Timescale
(Gene) (min−1) (min−1) (min−1) (min−1) (ρu/σb) (σu/(σu + σb)) δ

Mouse fibroblasts (DBP_FRT) 0.0061 0.067 1.60 0.0065 23.9 0.084 10.93
Mouse fibroblasts (Per2_het) 0.0029 0.261 1.14 0.0093 4.4 0.011 89.83
Mouse fibroblasts (Per2_hom) 0.0028 0.149 1.28 0.0093 8.6 0.018 53.11

Mouse fibroblasts (GT:Glutaminase) 0.0251 0.256 2.49 0.0153 9.7 0.089 10.21
Mouse fibroblasts (GT:Serpine1) 0.0346 0.296 1.00 0.0168 3.4 0.105 8.55
Mouse fibroblasts (GT:Prl2C2) 0.0265 0.129 3.82 0.0123 29.7 0.171 4.86

Mouse fibroblasts (GT:Sh3kbp1) 0.0344 0.231 1.86 0.0183 8.1 0.130 6.71
Mouse fibroblasts (GT:Ctgf) 0.0077 0.128 4.69 0.0055 36.6 0.057 16.66

Mouse fibroblasts (H1) 0.0085 0.174 3.61 0.0102 20.7 0.046 20.51
Mouse fibroblasts (H2) 0.0109 0.148 4.65 0.0102 31.5 0.069 13.57

Mouse fibroblasts (1M1C) 0.0073 0.099 1.13 0.0102 11.5 0.069 13.49
Mouse fibroblasts (1M2C) 0.0124 0.126 3.82 0.0102 30.3 0.090 10.15
Mouse fibroblasts (2M1C) 0.0087 0.164 1.60 0.0102 9.8 0.050 18.86
Mouse fibroblasts (2M2C) 0.0119 0.144 4.30 0.0102 29.9 0.076 12.08
Mouse fibroblasts (3M1C) 0.0094 0.137 0.86 0.0102 6.3 0.064 14.54
Mouse fibroblasts (3M2C) 0.0089 0.157 1.74 0.0102 11.1 0.054 17.66

Table S2. Cell cycle and gene replication time in literature

Cell type Cell cycle (min) Replication time (G1+S) (min) Reference
Yeast 150 55 (10)
Yeast 85 / (2)

Mouse fibroblasts (NIH3T3) 1140 900 (11)
Mouse embryonic stem cell 780 600 (Oct4) / 400 (Nanog) (1)

2.3. Estimation of σ+
u . The values of σ+

u for Oct4 and Nanog are calculated from α in Table A of Supplementary file 2 of (1),
being 0.63 × 9.2 × 10−3 = 5.8 × 10−3 and 0.71 × 1.9 × 10−3 = 1.3 × 10−3.

2.4. Estimation of k. Experimental values are collected in Table S3 and discussed below.

• Line 1: The value of k is converted from tprod in Line 2 of Table S1 in Ref (5) (k = 1/tprod).

• Lines 2-3: The values of k come from Table A of Supplementary file 2 of Ref (1).

Table S3. mRNA maturation and decay times in literature

Cell type (Gene) k (min−1) d (min−1) Reference
Human osteosarcoma (c-Fos) 1.25 0.0462 (5)

Mouse embryonic stem cells (Nanog) 0.13 0.0022 (1)
Mouse embryonic stem cells (Oct4) 0.29 0.0023 (1)

Another source for the ratio k/d is Extended Data Fig. 2f of Ref. (12), wherein the mode of the ratio is 8.
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3. Calculating an approximate marginal distribution of nascent mRNA
3.1. Analytical marginal distribution of nascent mRNA in a telegraph model (no cell division, replication or dosage com-
pensation). Table 1 (main text) shows that σb ≫ σu for many eukaryotic genes, i.e. most genes spend most of their time in the
OFF state. In this section we will use this observation to calculate the approximate distribution of nascent mRNA; for now our
calculation will ignore cell division and replication (hence we simply denote the gene activation rate as σu and we do not track the
cellular generation time). Note that since the production and degradation rates of nascent mRNA are not dependent on mature
mRNA there is no description of the latter in the master equations that follow.

The master equation for the distribution of nascent mRNA numbers (of a single copy gene system) is given by
dP0(nN)

dt
=ρu(t)[P0(nN − 1)− P0(nN)] + k[(nN + 1)P0(nN + 1)− nNP0(nN)]− σbP0(nN) + σuP1(nN),

dP1(nN)

dt
=k[(nN + 1)P1(nN + 1)− nNP1(nN)] + σbP0(nN)− σuP1(nN),

[2]

where σu is a piecewise constant function in time, and P0(nN) and P1(nN) are the probability of nN nascent mRNAs when the
gene is ON and OFF respectively. The argument t is suppressed for simplicity. Note that the probability of nN nascent mRNAs
is given by the sum P(nN) = P0(nN) + P1(nN). Defining the generating functions for the two probabilities as

G0(z1) =
∞

∑
nN=0

znN
1 P0(nN), G1(z1) =

∞

∑
nN=0

znN
1 P1(nN),

we can rewrite Eq. [2] as a set of two coupled partial differential equations{
∂tG0(z1) =ρu(t)(z1 − 1)G0(z1) + k(1 − z1)∂z1 G0(z1)− σbG0(z1) + σuG1(z1),

∂tG1(z1) =k(1 − z1)∂z1 G1(z1) + σbG0(z1)− σuG1(z1).
[3]

Further letting u = z1 − 1, one can simplify Eq. [3] as{
∂tG0 =ρu(t)uG0 − ku∂uG0 − σbG0 + σuG1,

∂tG1 =− ku∂uG1 + σbG0 − σuG1.
[4]

Summing the two equations in Eq. [4] and letting G = G0 + G1, we have{
∂tG0 + ku∂uG0 = ρu(t)uG0 − σbG0 + σuG1,

∂tG + ku∂uG = ρu(t)uG0.

By means of the method of characteristics, we have the following set of ordinary differential equations (ODEs)

dt
ds

= 1 ⇒ t = s,

du
ds

= ku ⇒ u = u0eks,

dG0
ds

= ρu(t)uG0 − σbG0 + σuG1 [5]

dG
ds

= ρu(t)uG0, [6]

with u0 = u|s=0. If we define δ = σb/σu and divide both sides of Eqs. [5] and [6] by σu then we obtain
dG0
ds̃

= ρ̃u(t)uG0 − δG0 + G1

dG
ds̃

= ρ̃u(t)uG0,
[7]

where ρ̃u(t) = ρu(t)/σu and s̃ = σus. Then, we further divide both equations in Eq. [7] by δ and denote ϵ = 1/δ to obtain
ϵ

dG0
ds̃

= btuG0 − G0 + ϵG1

ϵ
dG
ds̃

= btuG0,
[8]

with bt being ρu(t)/σb (the mean nascent mRNA burst size). Since from Table 1 in the main text, we know that σb ≫ σu it then
follows that ϵ is a small positive real number, and hence as per perturbation theory, we postulate that G0 and G have a series
expansion in ϵ of the form

G0 = G(0)
0 + ϵG(1)

0 +O(ϵ2), G = G(0) + ϵG(1) +O(ϵ2).
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Matching the coefficients of different orders in ϵ in Eq. [8], the following set of equations ensue

Order ϵ0: btuG(0)
0 − G(0)

0 = 0 ⇒ G(0)
0 = 0,

Order ϵ1:



dG(0)
0

ds̃
= btuG(1)

0 − G(1)
0 + G(0) − G(0)

0

⇒ btuG(1)
0 − G(1)

0 + G(0) = 0,

dG(0)

ds̃
= btuG(1)

0 ,

all of which reduce to
dG(0)

ds̃
= − btu

btu − 1
G(0) = − ρu(t)u

ρu(t)u − σb
G(0).

Combining with u = u0eks and ρu(t) = ρ0eαt, it is equivalent to

dG(0)

ds
= − ρ0eαsσuu0eks

ρ0eαsσuu0eks − σb
G(0).

Note that here we have used the relation ρu(t) = ρ0eαt which models growth-dependent transcription as explained in Section 1.
The solution immediately follows and is given by

G(0) = C(u0)(ρ0u0e(α+k)s − σb)
− σu

α+k , [9]

with C(u0) being a function of u0 to be determined from initial condition. Suppose that the initial condition for this process is
g(u) = G(0)|t=0, which is known a priori. For instance, the initial marginal distribution of i nascent mRNA molecules is P(i) = pi,
and then g(u) = ∑i pi(u + 1)i. Letting s be equal to 0 (or equivalently t = 0), it follows u = u0 and g(u) = g(u0), and we can
establish the following relation

g(u0) = C(u0)(ρ0u0 − σb)
− σu

α+k ,

from which we can solve for C(u0) to obtain
C(u0) = g(u0)(ρ0u0 − σb)

σu
α+k .

Substituting the latter in Eq. [9] and replacing u0 = ue−kt, we can calculate the leading-order solution of G from Eq. [9] as

G(u, t) = g(ue−kt)

(
ρ0e−ktu − σb
ρ0eαtu − σb

) σu
α+k

. [10]

In the special case α = 0 (no growth-dependent transcription), in the steady-state limit of long times, Eq. [10] reduces to

G(z1) =

(
σb

σb − ρ0(z1 − 1)

) σu
k

which implies the probability distribution of nascent mRNA is negative binomial and of the form NB
(

σu
k , ρ0

ρ0+σb

)
, a result previ-

ously reported in (13).

3.2. Reduced model of nascent mRNA dynamics (no cell division, replication or dosage compensation). Next we show that
the results of the previous section can be obtained from a reduced model which does not have an explicit gene state description.
This will be useful in later sections when we derive results for mature mRNA and protein.

We start by assuming that nascent mRNA is actively transcribed in bursts whose size are distributed according to a negative
binomial distribution with mean burst size βt = β0eαt. This implies the time-dependent propensity function describing nascent
mRNA production is f (t, n) =

f0(β0eαt)n

(1+β0eαt)n+1 where f0 and β0 are constants to be determined. In other words, we consider the
reaction system

∅
f (t,n)−−−→ nN, N k−→ ∅. [11]

The master equation describing the stochastic dynamics of this system is given by

∂tP(nN, t) =
∞

∑
i=0

f0(β0eαt)i

(1 + β0eαt)i+1 [P(nN − i, t)− P(nN, t)] + k[(nN + 1)P(nN + 1, t)− nNP(nN, t)],
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and the corresponding generating function equation is

∂tG(u, t) + ku∂uG(u, t) =
f0β0eαtu

1 − β0eαtu
G(u, t).

This can be solved by the method of characteristics which leads to the following set of ODEs

dt
ds

= 1 ⇒ t = s,

du
ds

= ku ⇒ u = u0eks,

dG
ds

=
f0β0eαtu

1 − β0eαtu
G.

which simplifies to

dG
ds

=
f0β0u0e(α+k)s

1 − β0u0e(α+k)s
G, [12]

The solution of this ODE is given by
G = C(u0)(β0u0e(α+k)s − 1)−

f0
α+k .

Hence following the same reasoning as in the previous section, given an initial condition on generating functions g(u), the exact
solution to [11] is

G = g(ue−kt)

(
1 − β0ue−kt

1 − β0ueαt

) f0
α+k

. [13]

Interestingly, comparing Eq. [10] and Eq. [13], one can conclude that the reduced model of bursty nascent mRNA [11] has the
same probability distribution of nascent mRNA as the telegraph model in the limit of large σb/σu, provided we choose the free
constants to be β0 = b0 = ρ0/σb and f0 = σu.

3.3. Approximate marginal distribution of nascent mRNA in model M5 (including cell division, replication and dosage
compensation). We now extend the reduced model of the previous section to take into account the rest of the processes present
in model M5 namely cell division, replication and dosage compensation. The advantage of using the reduced model rather than
a telegraph model is the fact that we can avoid discussing the change of gene state during gene replication, i.e. the choice of Π
matrix.

The number of nascent mRNAs at a particular cell age t of a given cell cycle n is contributed by two processes: (i) the decay
(maturation) of nascent mRNAs inherited from the previous cycle, and (ii) the production of new nascent mRNAs in cell cycle
n. The two processes are independent across cell generations. Therefore, it further allows us to establish a compact relation on
generating functions of nascent mRNA

Gn(u, t) = Gn(ue−kt, 0)︸ ︷︷ ︸
death process

Gnew
n (u, t)2︸ ︷︷ ︸

new born mRNA

∀t ∈ [0, td), [14]

where Gn(u, t) is the generating function corresponding to the marginal distribution of nascent mRNA at cell age t and cell cycle
n, Gn(u, 0) is the initial condition at the beginning of cell cycle n, and Gnew

n (u, t) is the generating function for new born nascent
mRNA, which will be detailed later. Noted that the power of 2 in the right hand side of Eq. [14] arises from the diploidy, the
number of independent subsystems.

Since in the limit of σb ≫ σu, the mapping of the telegraph model onto the effective model Eq. [11] dispenses with a discussion
on gene states when gene replicates, all gene copies are independent and so are the species associated with them. Hence the
generating function Gnew

n (u, t) can be further decomposed into two components GA(u, t) and GB(u, t), which are contributed by
mother and daughter copy respectively. Consequently Eq. [14] can be generally written as

Gn(u, t) = Gn(ue−kt, 0)G2
A(u, t)G2

B(u, t) ∀t ∈ [0, td). [15]

Next we introduce cell division which results in a binomial partitioning of the number of nascent mRNA at time td. Since
we only considering nascent mRNA and since in our reduced model there are no explicit gene states then it follows that Eq. [1]
reduces to the simpler form

Pn+1(nN, 0) = ∑
n′

N

B(nN, n′
N)Pn(n′

N, td) = ∑
n′

N

(
n′

N
nN

)
2−n′

N Pn(n′
N, td),
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From the definition of generating function Gn+1(z1, 0) = ∑nN znN
1 Pn+1(nN, 0), it follows that

Gn+1(z1, 0) =∑
nN

∑
n′

N

(
n′

N
nN

)
2−n′

N Pn(n′
N, td)z

nN
1

=∑
n′

N

Pn(n′
N, td)

(
1
2

)n′
N

∑
nN

(
n′

N
nN

)
(z1)

nN × 1n′
N−nN

=∑
n′

N

Pn(n′
N, td)

(
1
2

)n′
N
(z1 + 1)n′

N

=Gn

(
z1 + 1

2
, td

)
.

The second equality comes from swapping the summation operator, the third equality is by the binomial theorem, and the fourth
is yielded by the definition of generating function. Note that this implies that binomial partitioning is akin to the operation

z1 7→ z1 + 1
2

.

Since u = z1 − 1, it follows that the equivalent mapping on u is

u = z1 − 1 7→ z1 + 1
2

− 1 =
u
2

.

Therefore, we have a simpler expression for cell division in terms of variable u

Gn+1(u, 0) = Gn

(u
2

, td
)

. [16]

Combining Eq. [15] and Eq. [16] together we obtain a recursive relation between the generating functions across two successive
cell cycles

Gn+1(u, 0) = Gn

(u
2

, td
)
= Gn(ηu, 0)G2

A

(u
2

, td
)

G2
B

(u
2

, td
)

[17]

where η = e−ktd /2.
To complete the time-dependent solution we need to derive the explicit forms of GA and GB for nascent mRNA. We remind

the reader that these are the generating functions describing the dynamics of nascent mRNA which is produced in the present
cell cycle (taking into account transcription, maturation and dosage compensation) due to the mother and daughter copy. By
using Eq. [13], it follows that the generating functions for mother and daughter copy GA(u, t) and GB(u, t) of nascent mRNA are
piece-wisely defined as

GA(u, t) =



(
ρ0ue−kt − σb
ρ0ueαt − σb

) σ−u
α+k

t ∈ [0, tr),

(
ρ0ue−kt − σb

ρ0ue−k(t−tr)+αtr − σb

) σ−u
α+k
(

ρ1ue−k(t−tr) − σb
ρ1ueα(t−tr) − σb

) σ+u
α+k

t ∈ [tr, td),

[18a]

GB(u, t) =


1 t ∈ [0, tr),(

ρ1ue−k(t−tr) − σb
ρ1ueα(t−tr) − σb

) σ+u
α+k

t ∈ [tr, td).
[18b]

The first part t ∈ [0, tr) of GA(u, t) describes the stochastic dynamics of nascent mRNA born in the pre-replication time. Note
that the initial condition is zero and σu = σ−

u . The second part t ∈ [tr, td) of GA(u, t) describes that the stochastic dynamics of
nascent mRNA born in the post-replication time. This is given by Eq. [13] with g replaced by the initial condition which is the
generating function at replication time (from the expression for t ∈ [0, tr)); also note that σu = σ+

u (due to dosage compensation),
ρ0 is replaced by ρ1 = ρ0eαtr since this is the transcription rate at replication time, and time t is replaced by t − tr. Since there is
no transcription activity in the pre-replication time for the daughter copy, the generating function GB(u, t) is trivially equal to 1
for t ∈ [0, tr). The second part t ∈ [tr, td) of GB(u, t) can be found similarly as for GA(u, t).

Hence summarizing Eqs. [15], [17], [18a] and [18b] together explicitly define the approximate marginal distribution for nascent
mRNA for all cell ages and all generations in our model M5.
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Indeed, the probability distributions for Eqs. [18a] and [18b] can be found exactly. For simplicity, we only illustrate the
technique for GB(u, t). Denoting ψ0 = ρ1e−k(t−tr)/σb, ψ1 = ρ1eα(t−tr)/σb, ψ2 = σ+

u /(α + k) and q = ψ1/(ψ1 + 1), the generating
function GB can be decomposed as

GB(z1, t) = (ψ0 + 1 − ψ0z1)
ψ2︸ ︷︷ ︸

binomial

(
1 − q

1 − qz1

)ψ2

︸ ︷︷ ︸
negative binomial

.

Since the generating function is a z-transform of probability distribution, the multiplication in z-domain is equivalent to a con-
volution in probability domain, hence suggesting that the probability of GB(u, t) can be computed by parts:

PB(n) =
n

∑
i=0

PB0(i)PB1(n − i)

where PB0(i) corresponds to the expansion of binomial part (similar to a binomial distribution but with non-integer trials and
one negative coefficient)

PB0(i) =
Γ(ψ2 + 1)

Γ(i + 1)Γ(ψ2 − i + 1)
(−ψ0)

i(ψ0 + 1)ψ2−i

and PB1(i) corresponds to the negative binomial distribution

PB1(i) =
Γ(i + ψ2)

Γ(i + 1)Γ(ψ2)
(1 − q)ψ2 qi.

4. Approximate marginal distribution of mature mRNA in model M5 (including cell division, replication and
dosage compensation)

The derivation for mature mRNA follows very similarly to that for nascent mRNA. First we construct the generating function
describing mature mRNA dynamics in the absence of cell division, replication and dosage compensation (similar to what we did
in Section 3.2). The extension of effective reaction system [11] to include mature mRNA is

∅
f (t,n)−−−→ nN, N k−→ M d−→ ∅ [19]

Note that the effective bursty nascent mRNA production is due to the implicit assumption of σb much larger than σu. For each
gene copy, the master equation describing the stochastic dynamics is

∂tP(nN, nM, t) =
∞

∑
i=0

f0(β0eαt)i

(1 + β0eαt)i+1 [P(nN − i, nM, t)− P(nN, nM, t)] + k[(nN + 1)P(nN + 1, nM − 1, t)− nNP(nN, nM, t)]

+ d[(nM + 1)P(nN, nM + 1, t)− nMP(nN, nM, t)],

and the corresponding generating function equation is given by

∂tG(u, v, t) + k(u − v)∂uG(u, v, t) + dv∂vG(u, v, t) =
f0β0eαtu

1 − β0eαtu
G(u, v, t), [20]

with f0 = σu and β0 = ρ0/σb as shown in Section 3.2. Applying the method of characteristics on Eq. [20], we have the following
set of ODEs

dt
ds

= 1 ⇒ t = s,

du
ds

= k(u − v),

dv
ds

= dv ⇒ v = v0eds,

dG
ds

=
f0β0eαtu

1 − β0eαtu
G.

with v0 = v|s=0. Next we assume that nascent mRNA is fast degraded such that it becomes an intermediate and can be eliminated
from the equations above (14). This assumption is realistic since k ≫ d holds for the experimental data that we collected from
various sources (see Section 2 Table S3). In particular for mouse embryonic stem cells, the timescale of nascent mRNA (1/k) is of
the order of a few minutes while the timescale of mature mRNA (1/d) is several hours. The fast equilibrium assumption implies
that du/ds is small, equivalently implying u = v. Hence, using the latter result, the set of ODEs reduces

dG
ds

=
f0β0v0e(α+d)s

1 − β0v0e(α+d)s
G. [21]
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Comparing Eq. [21] with Eq. [12] we see that the two are precisely the same if we replace u0 by v0 and k by d. Since Eq. [12]
corresponds to the reaction scheme [11], it hence follows that Eq. [21] corresponds to the effective reaction scheme

∅
f (t,n)−−−→ nM, M d−→ ∅.

Hence under the assumption that nascent mRNA is fast, the intermediate steps of production of nascent mRNA and its transfor-
mation into mature mRNA, are reduced to the direct production of mature mRNA. In other words, since nascent mRNA is short
lived, its dynamics does not affect that of mature mRNA. A special case of the fast nascent mRNA assumption presented here,
namely where the transcription rate is independent of time, is indeed implicit in standard models of gene expression which have
only an explicit description of mature mRNA dynamics.

By arguments akin to those used previously in solving for nascent mRNA, we immediately have the solution for the generating
function corresponding to the marginal distribution of mature mRNA

G(v, t) = g(ve−dt)

(
ρ0e−dtv − σb
ρ0eαtv − σb

) σu
α+d

. [22]

Note that Eqs. [13] and [22] are the same if we replace k by d. Indeed it is straightforward to show that all the equations derived in
Section 3.3 for nascent mRNA follow for mature mRNA provided that we replace k by d. Hence we have obtained the approximate
marginal distribution for mature mRNA for all cell ages and all generations in our model M5.

5. Derivation of the cyclo-stationary moments
Based on the analytic solution given by Eqs. [15] and [16], we now derive the stationary solutions for the mean and variance of
fluctuations of mRNA in the limit of infinite cell cycles, i.e. the moments in the cyclo-stationary limit. Note that in this limit the
moments at a particular cell age t are independent of the generation (15). Prior to proceeding to the main results, we define the
following notations to simplify the presentation:

nA,t = ∂uGA(u, t)|u=0, nB,t = ∂uGB(u, t)|u=0,

σ2
A,t = ∂2

uuGA(u, t)|u=0 + nA,t − n2
A,t, σ2

B,t = ∂2
uuGB(u, t)|u=0 + nB,t − n2

B,t,

The first line corresponds to the mean of the molecule numbers of mother copy and daughter copy while the second line gives
the corresponding variance of molecule number fluctuations.

The first step is to find the cyclo-stationary initial condition (at cell age t = 0) for the mean. To this end, we take the derivative
on Eq. [17] with respect to u, evaluate it at u = 0 and then enforce the cyclo-stationary condition (⟨nN⟩n+1,0 = ⟨nN⟩n,0 = ⟨nN⟩0)
to obtain

⟨nN⟩0 = η⟨nN⟩0 + nA,td + nB,td ,

with operator · indicating “cyclo-stationary”, hence

⟨nN⟩0 =
nA,td + nB,td

1 − η
. [23]

Taking the second-order derivative with respect to u on both sides of Eq. [17], we obtain

σ2
nN,0 + ⟨nN⟩2

0 − ⟨nN⟩0 =
1
2

[
4η⟨nN⟩0nB,td + 4nA,td nB,td + n2

A,td
+ 2η2(σ2

nN,0 + ⟨nN⟩2
0 − ⟨nN⟩0)

+4η⟨nN⟩0nA,td + (σ2
A,td

− nA,td + n2
A,td

) + n2
B,td

+ (σ2
B,td

− nB,td + n2
B,td

)
]

which when simplified leads to the cyclo-stationary initial condition (at cell age t = 0) for the variance

σ2
nN,0 =

(1 + 2η)(nA,td + nB,td ) + σ2
A,td

+ σ2
B,td

2 − 2η2 . [24]

Now we find the full time-dependent solution for the cyclo-stationary mean and variance. Taking the derivative of Eq. [15]
with respect to u and evaluating at zero, we have

⟨nN⟩t = ξ⟨nN⟩0 + 2nA,t + 2nB,t, [25]

with ξ = e−kt. Taking second-order derivative of Eq. [15] and evaluating at zero, leads to

σ2
nN,t + ⟨nN⟩2

t − ⟨nN⟩t =4ξnB,t⟨nN⟩0 + 8nA,tnB,t + 4ξnA,t⟨nN⟩0 + ξ2
(

σ2
nN,0 + ⟨nN⟩2

0 − ⟨nN⟩0

)
+ 2n2

A,t + 2(σ2
A,t − nA,t + n2

A,t) + 2n2
B,t + 2(σ2

B,t − nB,t + n2
B,t),
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which admits the solution

σ2
nN,t = ξ2σ2

nN,0 + ξ(1 − ξ)⟨nN⟩0︸ ︷︷ ︸
cell division

+ 2σ2
A,t︸ ︷︷ ︸

intrinsic noise

+ 2σ2
B,t︸︷︷︸

gene replication

. [26]

In summary, Eqs. [23] and [25] define the cyclo-stationary mean of nascent mRNA while Eqs. [24] and [26] define the cyclo-
stationary variance of nascent mRNA. By the results of Section 4, it follows that the same expressions hold for mature mRNA if
k is replaced by d, and nN by nM.

6. Including cell cycle variability
Next we discuss how the variability of cell cycle affects the distributions of mRNA numbers in a population of cells. Previously
we have assumed a synchronized population of cells with fixed cell cycle time (Fig. S3A). Now we assume that the cell cycle times
td are random variables independently drawn from an Erlang distribution (of which exponential distribution is a special case),
which is consistent with experimental findings (16); this is illustrated in Fig. S3B. The first pronounced observation is that there
exists a steady state in the normal sense for the population of cells instead of cyclo-stationary states as shown in Fig. S4A, which
arises from the shuffling effect introduced by the cell cycle variability. Since different cells may be in different generations, the
generating function of the mRNA numbers at time T is denoted as Gv(u, T) (subscript v for cell cycle variability). Hence we are
interested in finding an analytic expression in the limit of infinite time, i.e., limT→∞ Gv(u, T). Note that the second argument of
Gv(u, T) represents the absolute time, whereas the second argument of generation function of the n-th generation Gn(u, t) is the
cell age.

Let Td be a series of cell cycle times {td1, · · · , tdi, · · · }, where each tdi is i.i.d. sampled from a given cell cycle distribution
(denoted as pv(tdi)) such as the Erlang distribution. For a time of interest T, the cell generation n is then defined by the unique
integer satisfying ∑n−1

i=1 ttd i ≤ T < ∑n
i=1 ttd i . Hence, generally the generation number n is a random number and a function of a

given realization Td and time of interest T. Following that, the cell age of time T becomes

t = T −
n−1

∑
i=1

tdi. [27]

We assume that the cell cycle distribution pv(tdi) is zero for tdi < td. The assumption is practically valid as we note from Fig.
3A in the main text that the probability of cell cycle time less than 500 min is almost none. We also assume that gene replication
occurs in the middle of a cell cycle, i.e. tri = tdi/2. This assumption is only for simplicity and can be lifted for generalization. It
is further assumed that e−εdtd ≪ 1 for some small ε ∈ [0, 1/2), which is the case for the mRNA degradation rates presented in
Table S1 and the cell cycle distributin Fig. 3A for mouse fibroblast cells. For simplicity, we also do not consider growth-dependent
transcription (α = 0). The time symbols and their interpretations are summarized in Table S4.

We consider a special deterministic sequence T̄d, wherein each element is the mean of the cell cycle distribution ⟨td⟩. The
following proof entails three parts: (i) we shall show that the difference between Gn(u, tdn|Td) and Gn(u, ⟨td⟩|T̄d) is of the order
of exp(−εdtd) for n → ∞ (equivalently T → ∞). (ii) the cell cycle progression (t/tdn) distribution is shown to be uniform when
the cell cycle time distribution is Erlang. (iii) the last step requires finding the generation function at the observation time T in
the presence of cell cycle variability.

6.1. Finding generating function solution upon cell division for large generations. By iterating Eqs. [15] and [17] from 1 to n,
we get that

Gn(u, tdn|Td) =
n

∏
i=1

G2
A(ηiu, tdi)G

2
B(ηiu, tdi), [28]

while G1(u, 0|Td) = 1 for any Td. The decay factor can be written as ηi = ∏n
j=i+1 exp(−dtd j)/2n−i, and ηn = 1. Since

exp(−εdtd) ≪ 1, then we have ηi ≪ 1 for i < n.

Table S4. Summary for all time symbols used in the proof.

Time symbol Interpretation
td i Cell cycle time for generation i of a cell, randomly sampled form a given cell cycle distribution
td Lower bound of cell cycle time
⟨td⟩ Mean cell cycle time
Td A series of cell cycle times {td1, · · · , td i , · · · }
T̄d Deterministic cell cycle time sequence {⟨td⟩, · · · , ⟨td⟩, · · · }
T Observation time
t Cell age, t = T − ∑n−1

i=1 td i
n Cell generation
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Taking logarithms on both sides of Eq. [28] and using Eqs. [18a] and [18b] we obtain

ln Gn(u, tdi|Td) =2
n

∑
i=1

ln GA(ηiu, tdi) + ln GB(ηiu, tdi)

=
2
d

n

∑
i=1

σ−
u

[
ln(1 − b0e−dtd i ηiu)− ln(1 − b0e−dtd i/2ηiu)

]
+ 2σ+

u

[
ln(1 − b0e−dtd i/2ηiu)− ln(1 − b0ηiu)

]
,

with b0 = ρ0/σb. Note that u ∈ [−1, 0] and ln(1 + x) ≈ x for small positive x. Hence, it can be further shown that

ln Gn(u, tdi|Td) = −4σ+
u

d
ln(1 − b0u) +O(e−εdtd ).

Note that the leading order term of ln Gn(u, tdi|Td) is independent of tdi and Td. Thus, it allows us to do the following approxi-
mation

Gn(u, tdn|Td) ≈ Gn(u, ⟨td⟩|T̄d), [29]

for n → ∞ provided that exp(−εdtd) is small. The physical intuition behind this conclusion is that the distribution of mRNA
numbers can only be a weak function of cell cycle duration due to the fast mRNA equilibration. Using Eqs. [16] and [29], it
follows that Gn(u, 0|Td) ≈ Gn(u, 0|T̄d) for large n. Equivalently,

Gn(u, 0|Td) ≈ Ḡ(u, 0|T̄d), [30]

which is the cyclo-stationary (deterministic) solution of cell age t = 0 and cell cycle time ⟨td⟩.

6.2. Finding the cell cycle progression distribution in the steady state. The next step is to find the distribution of cell age t for
different realizations Td. More precisely, we will show that the distribution of cell cycle progression t/tdn is uniform. It is known
that the Erlang waiting time distribution (for cell cycle time) admits a multi-stage decomposition whereby the waiting time of
each stage is exponential. Specifically, we divide a cell cycle into s stages and let the switching rates to a next stage be equal to a.
The probability of finding a cell in the ith stage at time τ is denoted as pi(τ). The temporal evolution of the vector of probabilities
P(τ) = [p1(τ), · · · , ps(τ)]⊤ is then given by

d
dτ

P(τ) = AP(τ),

with

A =


−a 0 · · · a
a −a · · · 0
...

...
. . .

...
0 0 · · · −a

 .

It is easy to conclude that

P(∞) = [1/s, · · · , 1/s]⊤. [31]

6.3. Finding the generating function at the observation time T. By the definition of Gv(u, T), we have by using Eq. [15] that
for large T

Gv(u, T) = ⟨Gn(ue−dt, 0|Td)G
2
A(u, t|Td)G

2
B(u, t|Td)⟩.

Further combining with Eq. [30], we have

Gv(u, T) ≈ ⟨Ḡ(ue−dt, 0|T̄d)G
2
A(u, t|Td)G

2
B(u, t|Td)⟩. [32]

The approximation in Eq. [32] indicates the elimination of one random variable n for large T, and we still have one random
variable – cell age t as per Eq. [27]. Then, Eq. [31] suggests the following discretized approximation

Gv(u, T) ≈
s

∑
i=1

pi(∞)⟨Ḡ(ue−di∆, 0|T̄d)G
2
A(u, i∆|td)G

2
B(u, i∆|td)⟩. [33]

The new variable ∆ = td/s is still random since td is stochastic. We change GA and GB conditional on Td to td because they are
generating functions only for one cycle initiated with zero mRNA. We also let

Ĝ(u, t|td) = Ḡ(ue−dt, 0|T̄d)G
2
A(u, t|td)G

2
B(u, t|td)
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Fig. S1. Illustration of integral interval partition

for brevity, and Eq. [33] can then be rewritten as

Gv(u, T) ≈
s

∑
i=1

pi(∞)⟨Ĝ(u, i∆|td)⟩. [34]

The continuous analog of Eq. [34] is

Gv(u, T) ≈
⟨

1
td

∫ td

0
Ĝ(u, t|td)dt

⟩
=
∫ ∞

0

1
td

∫ td

0
Ĝ(u, t|td)dtdpv(td) =

∫ td

0

1
td

∫ td

0
Ĝ(u, t|td)dtdpv(td)︸ ︷︷ ︸

A

+
∫ ∞

td

1
td

∫ td

0
Ĝ(u, t|td)dtdpv(td)︸ ︷︷ ︸

B

.

The part A is zero since pv(td) = 0 for td ≤ td. We further analyse the inner integral in part B

1
td

∫ td

0
Ĝ(u, t|td)dt =

1
td

∫
t∈A∪B∪C∪D

Ĝ(u, t|td)dt

where A = [0, εtd], B = [εtd, td/2], C = [td/2, td/2+ εtd] and D = [td/2+ εtd, td], which stands for the pre-replication transition
period, the pre-replication steady state, the post-replication transition period and the post-replication steady state (see Fig. S1).

Then, we have the following three observations:
(i) When t ∈ B ∪ C ∪ D, exp(−εdtd) ≪ 1 gives that Ḡ(ue−dt, 0|T̄d) ≈ 1, representing the physical insight that steady state is

independent of initial conditions.

(ii) According to Eq. [18a], for t ∈ B, GA(u, t|td) ≈ G−
A (u, ∞) =

(
σb

σb−ρ0u

)σ−
u /d

. Similary for t ∈ D, GA(u, t|td) ≈ G+
A (u, ∞) =(

σb
σb−ρ0u

)σ+
u /d

.
(iii) According to Eq. [18b], for t ∈ A ∪ B, GB(u, t|td) = 1, while GB(u, t|td) ≈ G+

A (u, ∞) for t ∈ D.
The three observations tell us that Ĝ(u, t|td) is approximately indepentent of t and td for t ∈ B and t ∈ D. Thus, we have

1
td

∫
t∈B

Ĝ(u, t|td)dt ≈
td/2 − εtd

td
[G−

A (u, ∞)]2 =
1
2
[G−

A (u, ∞)]2 +O(ε),

1
td

∫
t∈D

Ĝ(u, t|td)dt ≈
td/2 − εtd

td
[G+

A (u, ∞)]4 =
1
2
[G+

A (u, ∞)]4 +O(ε).
[35]

For t ∈ A and t ∈ C, there exists ξA ∈ A and ξC ∈ C such that

1
td

∫
t∈A

Ĝ(u, t|td)dt =
εtd
td

Ĝ(u, ξA) = O(ε) and 1
td

∫
t∈C

Ĝ(u, t|td)dt =
εtd
td

Ĝ(u, ξC) = O(ε), [36]

according to the mean-value theorem.
Next we propose a mean-field approximation to B and have that

C =
∫ ∞

td
dpv(td)

∫ ⟨td⟩

0

1
⟨td⟩

Ĝ(u, t|⟨td⟩)dt.

Analogously, we can partition the interval [0, ⟨td⟩] into A, B, C and D four sets (by replacing td therein with ⟨td⟩). Hence, Eqs.
[35] and [36] immediately become valid for C (again by replacing td therein with ⟨td⟩). Therefore, one can conclude that the
differences between B and C is of the order of O(ε).
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Further, using the definitions of Ḡ(u, t) and Ĝ(u, t|⟨td⟩), one can derive that

C =
∫ ∞

0
dpv(td)

∫ ⟨td⟩

0

1
⟨td⟩

Ḡ(u, t)dt =
1

⟨td⟩

∫ ⟨td⟩

0
Ḡ(u, t)dt.

Hence summarizing, we have shown that an approximate analytic solution to Gv(u, T) for large T is

lim
T→∞

Gv(u, T) ≈ 1
⟨td⟩

∫ ⟨td⟩

0
Ḡ(u, t)dt, [37]

provided the condition e−εdtd ≪ 1 for some ε ∈ [0, 1/2],
This means that the transcriptional dynamics of the stochastic gene expression model with cell cycle variability (Fig. S3B) is

approximated by a model for an asynchronous cell population but with identical cell cycle time (see Fig. S3C). Note that the
cyclo-stationary generating function Ḡ(u, t) in the integral above is the generating function of the effective negative binomial
distribution constructed from the cyclo-stationary mean and variance, as described in the main text. Simulations indicate that
the approximation given by Eq. [37] is accurate for various choices of cell cycle distributions (see Fig. S4B,C). Furthermore we
found that Eq. [37] agrees very well with SSA predictions using experimentally determined parameters and cell cycle distribution
for 16 mouse fibroblast genes (See Fig. 3A,B in main text and Fig. S5). Surprisingly, the solution Eq. [37] is still accurate for cell
cycle time distribution being exponential (see Fig. S4), which suggests that the condition exp(−εdtd) ≪ 1 may be relaxed to
exp(−εd⟨td⟩) ≪ 1.

6.4. Comparison to the exact solution for the mean mRNA numbers. In support of the proof above, by using the method
presented in Ref. (17), we next provide an exact calculation for the mean mRNA numbers under the condition that the cycle time
distribution is exponential and gene dosage compensation is perfect (σ+

u = 0.5σ−
u ). Under the aforementioned condition, the

temporal evolution of the mean within a cell cycle becomes

d
dt

⟨nM⟩t = 2κ − d⟨nM⟩t,

which is exactly Eq. [35] in Ref. (17) with κ =
ρ0σ−

u
σb+σu

≈ ρ0σ−
u

σb
since σb ≫ σu. The number 2 on the right hand side arises from the

presence of two gene copies, and perfect gene dosage compensation so that four gene copies behave like two on the mean level.
Hence, we can calculate the mean at steady state exactly by means of Eq. [37] in Ref. (17), which reads

⟨nM⟩ss =
2κ

d
− κ

d2⟨td⟩
1 − ⟨e−dtd ⟩

1 − ⟨e−dtd ⟩/2
.

Here ⟨e−dtd ⟩ can be computed from Eq. [13] in Ref. (17) and is equal to

⟨e−dtd ⟩ =
∫ ∞

0

1
⟨td⟩

e−
t

⟨td⟩ e−dtdt =
1

1 + d⟨td⟩
.

Hence we have,

⟨nM⟩ss =
4κ⟨td⟩

1 + 2d⟨td⟩
.

On the other hand, using Eqs. [23] and [25], the cyclo-stationary mean is given by

⟨nM⟩t =
2κ

d
· 2 − e−d⟨td⟩ − e−dt−d⟨td⟩

2 − e−d⟨td⟩
.

Then, the average of the cyclo-stationary mean can be calculated as

⟨nM⟩avg =
1

⟨td⟩

∫ ⟨td⟩

0
⟨nM⟩tdt =

2κ

d
· −e−d⟨td⟩ + (2ed⟨td⟩ − 1)−1 + d⟨td⟩

d⟨td⟩
≈ 2κ

d

Therefore, the approximation error is

|⟨nM⟩ss − ⟨nM⟩avg| ≈ 2κ

∣∣∣∣ 2⟨td⟩
1 + 2d⟨td⟩

− 1
d

∣∣∣∣ ∝
1

d⟨td⟩
,

which confirms that the error in the approximation Eq. [37] is approximately proportional to the ratio of the mRNA lifetime and
the average cell cycle time.
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6.5. Adder mechanism. Previously we have taken a phenomenological approach to modelling cell cycle time variability. Here
we consider the more specific case where this variability is due to stochasticity in the cell growth rates and a form of cell size
control. The model in the main text uses the “timer mechanism” to determine when to divide a cell into two; specifically, when
the cell age t reaches td, a cell divides into two. It has been argued (18) that the timer mechanism cannot provide size homeostasis.
We here focus on an alternative mechanism, the adder, which has received the most attention in the literature. Let us denote the
volume of a cell upon birth and at cell age t as V0 and Vt respectively, such that the incremental volume is δV = Vt − V0. The
adder mechanism assumes that a cell divides when the incremental volume δV exceeds a constant threshold ∆V, independent of
the cell volume at birth. As per the data shown in Ref. (19), the volume growth is almost linear. Hence, we establish that given a
particular generation we have

V0 + rgrowtd = Vf, [38]

where rgrow is the growth rate (constant for a given generation) and Vf is the volume of a cell at mitosis. Equivalently, one can
also rewrite Eq. [38] as

td =
∆V

rgrow
.

Hence if the growth rate is variable across different generations then the cell cycle length shows a similar variability. For example
if the growth rate distribution follows an inverse gamma distribution (Fig. S6A) then the cell cycle length is gamma distributed
(Fig. S6B). Again we assume the transcription rate is independent of cell volume i.e. α = 0, and gene replication occurs in the
middle of the cell cycle, i.e. tr = td/2. Modifying the SSA to take into account the adder mechanism of size control and an inverse
gamma distribution of growth rates, we can obtain from stochastic simulations the distribution of mature mRNA numbers across
the population of cells (blue dots in Fig. S6C). This agrees very well with the distribution of mature mRNA estimated from Eq.
[37] with the mean cell cycle time ⟨td⟩ given by the mean of the gamma distribution in Fig. S6B.

7. Derivation of the error in the negative binomial approximation of the telegraph model
A popular effective model of our full model M5 is the telegraph model

G
ρu−→ G + M, M d̂−→ ∅, G

σb−⇀↽−
σu

G∗ [39]

Note that d̂ = d + ln 2/td, where d is mature mRNA degradation and ln 2/td approximates the dilution effect of cell division (20).
The mean and variance on M of the telegraph model at steady state are

⟨n⟩tele =
ρ̂uσ̂u

σ̂u + σ̂b
and σ2

tele =
ρ̂uσ̂u(σ̂2

b + σ̂u + σ̂2
u + σ̂b(1 + ρ̂u + 2σ̂u))

(σ̂b + σ̂u)2(1 + σ̂b + σ̂u)
,

where ρ̂u = ρu/d̂, σ̂u = σu/d̂, σ̂b = σb/d̂. The negative binomial approximation NB(r, p) to the telegraph model is then obtained
by equating the first two moments of this distribution to the exact first two moments of the telegraph model, namely,

r =
⟨n⟩2

tele
σ2

tele − ⟨n⟩tele
, p = 1 − ⟨n⟩tele

σ2
tele

.

Given r and p, it is easy to find the non-central 3rd moment of the negative binomial distribution as a function of r and p which
we denote as ⟨n3⟩NB. Similarly, the non-central 3rd moment of the telegraph model [39] can be also found and denoted as ⟨n3⟩tele.
Then, the absolute error between the 3rd moments of the telegraph model and of its negative binomial approximation is defined
as

Θ = |⟨n3⟩NB − ⟨n3⟩tele| =
2ρ̂3

uσ̂bσ̂u(1 + σ̂u)

(σ̂b + σ̂u)2(1 + σ̂b + σ̂u)2(2 + σ̂b + σ̂u)
.

In the main text we show that this expression serves as a simple but accurate index of how well the negative binomial can
approximate the time-dependent distribution of model M5.

8. Approximate marginal distribution of protein for model M5
Next we extend the effective system [19] to include protein translation and degradation

∅
f (n)−−→ nN, N k−→ M d−→ ∅, M λ−→ M + P, P

dp−→ ∅.
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Note that the bursts of nascent mRNA were earlier derived by assuming that the gene spends most of its time in the OFF state.
We shall specifically consider the case of non growth-dependent transcription, i.e. α = 0 for the following results. For each gene
copy, the chemical master equation reads

dP(nN, nM, nP)

dt
=

∞

∑
i=0

f0βi
0

(1 + β0)i+1 [P(nN − i, nM, nP)− P(nN, nM, nP)] + k[(nN + 1)P(nN + 1, nM − 1, nP)− nNP(nN, nM, nP)]

+ d[(nM + 1)P(nN, nM + 1, nP)− nMP(nN, nM, nP)] + λ[nMP0(nN, nM, nP − 1)− nMP0(nN, nM, nP)]

+ dp[(nP + 1)P(nN, nM, nP + 1)− nPP(nN, nM, nP)],

[40]

By assuming generating functions of the form

G =
∞

∑
nN=0

∞

∑
nM=0

∞

∑
nP=0

znN
1 znM

2 znP
3 P(nN, nM, nP)

the chemical master equation Eq. [40] can also be equivalently represented as

∂tG =
f0β0(z1 − 1)

1 − β0(z1 − 1)
G + k(z2 − z1)∂z1 G − d(z2 − 1)∂z2 G + λz2(z3 − 1)∂z2 G − dp(z3 − 1)∂z3 G,

where the arguments z1, z2, z3 and t are suppressed for simplicity. Using u = z1 − 1, v = z2 − 1 and w = z3 − 1, we have

∂tG =
f0β0u

1 − β0u
G + k(v − u)∂uG − dv∂vG + λ(v + 1)w∂vG − dpw∂wG. [41]

By means of the method of characteristics, we have the following set of ODEs

dt
ds

= 1 ⇒ t = s,

du
ds

= k(u − v)

dv
ds

= [dv − λ(v + 1)w]

dw
ds

= dpw ⇒ w = w0edps,

dG
ds

=
f0β0u

1 − β0u
G,

with w0 = w|s=0.
The first step towards solving Eq. [41] for the marginal distribution of protein is to eliminate the variables of both nascent and

mature mRNAs as they are fast intermediates. This assumption is motivated by the large experimentally measured values of k/d
and d/dp for many genes (see main text for discussion). This of course suggests that du/ds and dv/ds are small. It hence follows
that

u = v, dv − λ(v + 1)w = 0,

which together with w = w0 exp(dps) yield

u =
λw0edps

d − λw0edps .

Hence, the set of ODEs reduce to

dG
ds

= − ρuσuλw0edps

(ρu + σb)λw0edps − σbd
G

by using the definitions of f0 = σu and β0 = ρ0/σb explicitly. Assuming the initial condition G|t=0, u=0, v=0 = g(w), the analytic
solution for protein marginal distribution can be immediately obtained as

G = g(we−dpt)

[
b(ρu + σb)we−dpt − σb

b(ρu + σb)w − σb

] ρuσu
dp(ρu+σb)

, [42]

where b = λ/d is the mean protein burst size (mean number of proteins produced during the lifetime of mature mRNA).
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It is straightforward to show that Eqs. [15] and [17] also hold for the case of proteins. By the same reasoning as in Section 3.3
and using Eq. [42] one finds the expressions for GA and GB are given by

GA(w, t) =



[
b(ρu + σb)we−dpt − σb

b(ρu + σb)w − σb

] ρuσ−u
dp(ρu+σb)

, t ∈ [0, tr),

[
b(ρu + σb)we−dpt − σb

b(ρu + σb)we−dp(t−tr) − σb

] ρuσ−u
dp(ρu+σb)

[
b(ρu + σb)we−dp(t−tr) − σb

b(ρu + σb)w − σb

] ρuσ+u
dp(ρu+σb)

t ∈ [tr, td),

[43a]

GB(w, t) =


1 t ∈ [0, tr),[

b(ρu + σb)we−dp(t−tr) − σb
b(ρu + σb)w − σb

] ρuσ+u
dp(ρu+σb)

t ∈ [tr, td).
[43b]

Hence summarising, Eqs. [15], [16], [43a] and [43b] together define the temporal evolution of the protein marginal distribution
when the gene is mostly in the OFF state and protein timescales are significantly slower than those of nascent and mature mRNA.

9. Including gene-protein interactions (feedback loop)
The stochastic model including feedback dynamics will be analyzed by the recent developed method – linear mapping approxima-
tion (LMA) (21). The underlying idea is to map a gene regulatory system with bimolecular interactions (known as a nonlinear
system) onto a system involving only effective first-order reactions (known as linear system). If the exact time-dependent solution
of the linear system is known then the LMA provides a computational recipe by which an approximate time-dependent solution
of the nonlinear system can be obtained. Specifically the recipe involves: (i) finding the mapped linear system by removing
protein from the reversible protein-gene interactions in the nonlinear system; (ii) finding the effective binding rates of the linear
system by solving the moment equations of its master equation. Note that the mapping between the constants of the linear and
nonlinear systems involves the use of a conditional mean-field approximation; (iii) calculating the time-average of these effective
rates; (iv) finding the time-dependent probability distribution solution of the master equation of the linear system assuming con-
stant rates; (v) replacing the constant rates in (iv) by the time-average of the effective rates found in (iii). Note that steps (iii)-(v)
are equivalent to the first term of the Magnus expansion of the master equation of the linear system.

9.1. Illustrative Example. We will first illustrate the computational recipe of the LMA by using an example – an auto-regulatory
feedback loop adapted from Ref. (21). Specifically, the reaction scheme is given by:

G
ρu−→ G + P, G∗ ρb−→ G∗ + P, G + P

σb−⇀↽−
σu

G∗, P
dp−→ ∅. [44]

The first step is to find the linear network corresponding to Eq. [44] which is obtained by replacing the bimolecular reaction
therein with a first-order reaction leading to

G
ρu−→ G + P, G∗ ρb−→ G∗ + P, G

σ̃b−⇀↽−
σu

G∗, P
dp−→ ∅. [45]

Here σ̃b is the effective reaction rate which is dependent (in some way still to be found) on the rate constants of the non-linear
network. Next we write down the moment equations of the linear network Eq. [45] which are given by

M :


∂t⟨ng⟩ =− σ̃b⟨ng⟩+ σu(1 − ⟨ng⟩),
∂t⟨nP⟩ =ρu⟨ng⟩+ ρb(1 − ⟨ng⟩)− dp⟨nP⟩,

∂t⟨nPng⟩ =ρu⟨ng⟩+ σu⟨nP⟩ − (dp + σu + σ̃b)⟨nPng⟩.
[46]

The moments can be solved from Eq. [46] together with the effective rate parametrization

σ̃b = σb⟨nP|ng = 1⟩ = σb
⟨nPng⟩
⟨ng⟩

, [47]

where the second step holds because ng is Boolean. The quantity ⟨nP|ng = 1⟩ stands for the mean number of protein conditional
on gene state G. Note that Eq. [47] implements a conditional mean-field approximation to the propensity of the bimolecular reac-
tion in reaction scheme Eq. [44]. A sufficient condition for this approximation to hold is that the number of proteins conditioned
on state G is large enough such that the fluctuations of this quantity about the mean are small. This condition is however not
necessary: for instance, the approximation is still accurate when the modes of the protein distribution conditioned on each state
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(ρu/d and ρb/d) are very close to each other since in this case, gene switching doesn’t play a significant role in determining the
protein distribution.

By solving Eqs. [46] and [47] simultaneously, we have the solution for σ̃b from t = 0 to any time of interest T. The time-
dependent solution to the protein distribution of the linear reaction scheme Eq. [45] is reported in Ref. (22) and also Eqs.
(13)(14) in Ref. (21). The solution depends on rate constants ρu, ρb, dp, σu, σ̃b and the time of interest T, and is denoted
as S(ρu, ρb, σu, dp, σ̃b, T). Note that the solution assumes that all the reaction rates are constant; in other words, the solution
S(ρu, ρb, σu, dp, σ̃b, T) is valid if σ̃b is a constant. To use the solution, we apply the time-averaging approximation

σb =
1
T

∫ T

0
σ̃bdt, [48]

and the protein distribution of the feedback loop Eq. [44] is approximately given by S(ρu, ρb, σu, dp, σb, T). It can be shown that
implementing the time-averaging approximation Eq. [48] corresponds to the first term of the Magnus expansion of the time-
dependent solution of the master equation of the linear network Eq. [45] with time-varying rate constant σ̃b. The approximation
error of the LMA is dominated by the error stemming from the time-averaging approximation which increases with the value of
σb; a more detailed discussion of the approximation error can be found in Ref. (21).

9.2. Application to Model M5. Next we will outline each step of the computational recipe and show how it can be used to obtain
an approximate time-dependent solution of an auto-regulatory feedback loop version of M5 (Fig. 1C in main text). This means
replacing the reactive components of the model (centre of Fig. 1C in main text) by the following scheme:

G0
ρu−→ G0 + N, G∗

0
ρb−→ G∗

0 + N, G0 + P
σb−⇀↽−
σu

G∗
0 , N k−→ M, M λ−→ M + P,

G1
ρu−→ G1 + N, G∗

1
ρb−→ G∗

1 + N, G1 + P
σb−⇀↽−
σu

G∗
1 , M d−→ ∅, P

dp−→ ∅,

Note that G0 and G1 are the two gene copies prior to replication. The reactions with rate ρb stand for the leakage of gene expression
and are introduced for generality. Protein P binds to both gene copies with rate σb and unbinds with rate σu. This interaction is
bimolecular and the heart of the feedback loop. For simplicity, transcription rates ρu and ρb are assumed to be independent of
cell volume (α = 0).

Step (i). The linear system corresponding to the nonlinear feedback loop above is obtained by ignoring the protein in the
bimolecular reactions

G0
ρu−→ G0 + N, G∗

0
ρb−→ G∗

0 + N, G0
σ̃b0−⇀↽−
σu

G∗
0 , N k−→ M, M λ−→ M + P,

G1
ρu−→ G1 + N, G∗

1
ρb−→ G∗

1 + N, G1
σ̃b1−⇀↽−
σu

G∗
1 , M d−→ ∅, P

dp−→ ∅,
[49]

as illustrated in Fig. S8. Here σ̃b0 and σ̃b1 are the effective binding rates to be determined from moment predictions, which will
be detailed later. If the mRNA maturation process is fast and mature mRNA is unstable, Eq. [49] further reduces to

G0
ρu−→ G0 + iP, G∗

0
ρb−→ G∗

0 + iP, G0
σ̃b0−⇀↽−
σu

G∗
0 , P

dp−→ ∅,

G1
ρu−→ G1 + iP, G∗

1
ρb−→ G∗

1 + iP, G1
σ̃b1−⇀↽−
σu

G∗
1 ,

[50]

where i is a random variable and the corresponding protein production reactions occur with probability bi

(1+b)i+1 and b = λ/d.
Step(ii). The moments of the master equation of the linear system [50] prior to gene replication is given by a set of coupled

differential equations

∂t⟨nP⟩n =ρub(⟨ng0⟩n + ⟨ng1⟩n) + ρbb(2 − ⟨ng0⟩n − ⟨ng1⟩n)− dp⟨nP⟩n,

∂t⟨ng0⟩n =− σ̃b0⟨ng0⟩n + σu(1 − ⟨ng0⟩n),

∂t⟨ng1⟩n =− σ̃b1⟨ng1⟩n + σu(1 − ⟨ng1⟩n),

∂t⟨nPng0⟩n =(ρu + ρb)b⟨ng0⟩n + (ρu − ρb)b⟨ng0ng1⟩n − (dp + σu + σ̃b0)⟨nPng0⟩n,

∂t⟨nPng1⟩n =(ρu + ρb)b⟨ng1⟩n + (ρu − ρb)b⟨ng0ng1⟩n − (dp + σu + σ̃b1)⟨nPng1⟩n,

∂t⟨ng0ng1⟩n =σu⟨ng0⟩n + σu⟨ng1⟩n − (2σu + σ̃b0 + σ̃b1)⟨ng0ng1⟩n.

[51]

where ⟨.⟩n is the mean in generation n. According to the LMA, the effective binding rates of the linear system are functions of
time and of the parameters of the non-linear system. They are are functions of the moments of the linear system and are given
by

σ̃b0 = σb
⟨nP|ng0 = 1⟩n

Ω(t)
= σb

⟨nPng0⟩n

Ω(t)⟨ng0⟩n
and σ̃b1 = σb

⟨nP|ng1 = 1⟩n

Ω(t)
= σb

⟨nPng1⟩n

Ω(t)⟨ng1⟩n
. [52]
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Here nP is the number of molecules of protein P, ng0, ng1 are Boolean variables taking the value of 1 if the promoter is in state G0
or G1 and the value 0 if it is in state G∗

0 or G∗
1 , respectively. The cell volume Ω(t) is a function of cell age t, and changes linearly

as Ω(t) = 1+ t/td. The last step in Eq. [52] holds because ng0 and ng1 are Boolean. Due to the symmetry of ng0 and ng1, Eq. [51]
can be written more compactly

∂t⟨nP⟩n =2ρub⟨ng0⟩n + 2ρbb(1 − ⟨ng0⟩n)− dp⟨nP⟩n,

∂t⟨ng0⟩n =− σ̃b0⟨ng0⟩n + σu(1 − ⟨ng0⟩n),

∂t⟨nPng0⟩n =(ρu + ρb)b⟨ng0⟩n + (ρu − ρb)b⟨ng0ng1⟩n − (dp + σu + σ̃b0)⟨nPng0⟩n,

∂t⟨ng0ng1⟩n =2σu⟨ng0⟩n − 2(σu + σ̃b0)⟨ng0ng1⟩n.

[53]

Results analogous to Eq. [53] can be derived for the post-replication period, and both can be compactly written as


∂t⟨nP⟩n =2θρub⟨ng0⟩n + 2θρbb(1 − ⟨ng0⟩n)− dp⟨nP⟩n,

∂t⟨ng0⟩n =− σ̃b0⟨ng0⟩n + σu(1 − ⟨ng0⟩n),

∂t⟨nPng0⟩n =[ρu + (2θ − 1)ρb]b⟨ng0⟩n + (2θ − 1)(ρu − ρb)b⟨ng0ng1⟩n − (dp + σu + σ̃b0)⟨nPng0⟩n,

∂t⟨ng0ng1⟩n =2σu⟨ng0⟩n − 2(σu + σ̃b0)⟨ng0ng1⟩n,

[54]

where θ = 1 if it is in pre-replication period t ∈ [0, tr) and θ = 2 if it is in post-replication period t ∈ [tr, td). Due to cell division,
the moments of two successive generations are linked by

⟨nP⟩n+1|t=0 =
1
2
⟨nP⟩n|t=td ,

⟨ng0⟩n+1|t=0 =⟨ng0⟩n|t=td ,

⟨nPng0⟩n+1|t=0 =
1
2
⟨nPng0⟩n|t=td ,

⟨ng0ng1⟩n+1|t=0 =⟨ng0ng1⟩n|t=td .

[55]

Hence all the moments up to second order (of the linear system) for any cell cycle n and any cell age t can be obtained by solving
together Eqs. [52], [54] and [55]. Substituting these moments in Eq. [54] leads to the effective rates of the linear system.

Step (iii). The next step is to find the time-average of the effective rates

σb0 = σb1 =


σb

1
t

∫ t

0

⟨nPng0⟩n|τ
Ω(t)⟨ng0⟩n|τ

dτ t ∈ [0, tr),

σb
1

t − tr

∫ t−tr

tr

⟨nPng0⟩n|τ
Ω(t)⟨ng0⟩n|τ

dτ t ∈ [tr, td).

Given the model is defined piecewisely, one need to find the values of σb0 for all the times tr and td of all generations and the
final time of interest. For example, if one is interested in distributions of mRNA and protein numbers at cell cycle n and cell age
t, then all the values of σb0|i,j for cell age j ∈ {tr, td} and cell cycle i < n and σb0|n,t need to be found as well.

Steps (iv) and (v). Next one finds the time-dependent solution of the master equation of the linear system (assuming constant
parameter values) followed by replacing the bimolecular rates in the linear system by the time-averaged effective rates derived
earlier. The time-dependent solution of the master equation of the linear system with constant parameters is essentially what we
have done in previous sections, except that it needs minor modification to account for gene expression leakage. Specifically the
generating function for mature mRNA is given by Eq. [15] (with k replaced by d) and GA and GB specified as

GA(u, t) =



(
ρ∆ue−dt − σb0

ρ∆u − σb0

) σ−u
d

exp
[ ρb

d
(1 − e−dt)

]
t ∈ [0, tr),

(
ρ∆ue−dt − σb0

ρ∆ue−d(t−tr) − σb0

) σ−u
d
(

ρ∆ue−d(t−tr) − σb0
ρ∆u − σb0

) σ+u
d

exp
[ ρb

d
(1 − e−dt)

]
t ∈ [tr, td),

[56a]

GB(u, t) =


1 t ∈ [0, tr),(

ρ∆ue−d(t−tr) − σb0
ρ∆u − σb0

) σ+u
d

exp
[ ρb

d
(1 − e−d(t−tr))

]
t ∈ [tr, td),

[56b]
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Similarly it can be shown that for the protein distributions, the generating function is given by Eq. [15] (with k replaced by dp)
and GA and GB specified as

GA(w, t) =



(
bwe−dpt − 1

bw − 1

) ρb
dp
[

b(ρ∆ + σb0)we−dpt − σb0
b(ρ∆ + σb0)w − σb0

] ρ∆σ−u
dp(ρ∆+σb0)

, t ∈ [0, tr),

(
bwe−dpt − 1

bwe−dp(t−tr) − 1

) ρb
dp
[

b(ρ∆ + σb0)we−dpt − σb0
b(ρ∆ + σb0)we−dp(t−tr) − σb0

] ρ∆σ−u
dp(ρ∆+σb0)

(
bwe−dp(t−tr) − 1

bw − 1

) ρb
dp
[

b(ρ∆ + σb0)we−dp(t−tr) − σb0
b(ρ∆ + σb0)w − σb0

] ρ∆σ+u
dp(ρ∆+σb0)

t ∈ [tr, td),

[57a]

GB(w, t) =


1 t ∈ [0, tr),(

bwe−dp(t−tr) − 1
bw − 1

) ρb
dp
[

b(ρ∆ + σb0)we−dp(t−tr) − σb0
b(ρ∆ + σb0)w − σb0

] ρ∆σ+u
dp(ρ∆+σb0)

t ∈ [tr, td).
[57b]

The parameter ρ∆ in Eqs. [56a], [56b], [57a] and [57b] is equal to ρu − ρb.

10. Including time-dependent transcription rate
Here we discusses how to extend the solution Eq. [10] to handle time-dependent transcription rate. First, we denote the second
term of the right hand side of Eq. [10] as

gtv(u, ρu, t) =

(
ρue−ktu − σb

ρuu − σb

) σu
k

,

by setting α to 0. A general form of the transcription rate ρu(t) can be discretized into a piecewise constant function in time, i.e.,
{ρ1, ρ2, · · · , ρn} with ∆t being the time interval. In view of Eq. [10] and assuming the initial condition G(u, 0) = 1 for brevity,
the solution at time T = (n − 1)∆t + t (t ≤ ∆t) is then well approximated by

G(u, T) ≈
n−1

∏
i=1

gtv(ue−k((n−1−i)∆t+t), ρi, ∆t)× gtv(u, ρn, t) [58]

given sufficiently small ∆t. The solution Eq. [58] can be used to assemble GA and GB in Eq. [2] in the main text.

11. Technical details about Fig 3
Specifically we chose the values of ρu, d, σ−

u and σb from 1051 genes of CAST allele data of mouse embryonic stem cells (Table
S3 of Ref. (8)); since the estimation in this paper did not take into account dosage compensation, σ−

u is equalled to the the rate of
switching from OFF to ON reported in the paper. The rest of the parameters, α, td, tr, σ+

u , were permuted over the 4 dimensional
lattice constituted by {0, 10−3}, 600 to 1000 in steps of 100, 0.3td to 0.8td in steps of 0.1td and 0.3σ−

u to 0.8σ−
u in steps of 0.1σ−

u ,
respectively. The values of td are in a range centered on the value of 780 mins reported in (1), the values of tr span the cell
cycle duration, and the value of σ+

u is a fraction of σ−
u as required by dosage compensation. Note that α = 0 corresponds to the

case of no growth-dependent transcription while α = 10−3 (with td = 780 mins) corresponds to a cell with growth-dependent
transcription and whose volume before cell division is approximately twice that at birth.

12. Technical details about Fig 5

Panel A. The kinetic parameters are: ρu = 1.8 min−1, σb = 0.9 min−1, σ−
u = 3 × 10−3 min−1, σ+

u = 0.71σ−
u , tr = 800 min,

td = 1560 min, dp = 3 × 10−4 min−1, k = 10 min−1, λ = 1.2d, α = 0. Specifically, the cell cycle duration td is selected to be
26 hours close to the data reported for NIH3T3 in the SI of (23), the gene replication occurs roughly in the middle of cell cycle.
According to (23), the median of protein half life (∼17 hr) is close to the cell cycle, while the half life of mRNA is 1.7 hr (ratio
=10), being reasonably within the range of experimental data. The transcription rate ρu and gene inactivation rate σb are close to
those reported in (4). The gene activation rate σ−

u is also within the experimental range, for example close to Per2_het gene in (9).
The translation rate is selected to give a low protein burst size which constrains the protein numbers within a computationally
friendly region.

Panel B. dp is 10 times larger than that in Panel A, and d, λ are scaled (10 times larger compared to Panel A) accordingly. All the
other parameters remain the same as Panel A.
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Fig. S2. Approximate analytic solution accurately predicts marginal distributions of nascent and mature mRNA for non-zero α in time. For details see the caption
of Fig. 1 of main text. Note that all parameters except α are as specified in Fig. 1 of main text.
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Fig. S3. Illustration of different single cell scenarios: (A) synchronized cells with constant cell cycle length; (B) unsynchronized cells with variable cell cycle length;
(C) unsynchronized with constant cell cycle length. Note that ti is the time at which generation i starts, T is the measurement time, and td i is a random cell cycle
duration sampled from a distribution with mean ⟨td⟩.
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Fig. S4. Stochastic gene expression model with cell cycle time variability. (A) Plot of the mean mature mRNA number versus time calculated from the SSA
for synchronized cells with constant cell cycle length and for cells with different cell cycle time distributions shown in (B). The Erlang distributions are given by
Erlang(h1,h2) which is defined as P(td) = hh1

2 th1−1
d e−h2 td /(h1 − 1)!; all the Erlang distributions have the same mean of about 24 hours which is the average cell

cycle time for mouse fibroblasts (see Fig. 3A in main text). Note that the mean mature mRNA numbers reach the same steady state value though different cell
cycle time distributions are used. (C) Steady-state distributions of mature mRNA numbers calculated using the SSA for the cell cycle length distributions in (B)
are found to be well described by the approximation Eq. [37]. The steady-state distribution of mature mRNA for synchronized cells with fixed cell cycle length at
t = 4600 min is shown for comparison. The kinetic parameters used in the simulations are those of the gene 1M1C (see Table S1); the other parameters are k = 1
min−1, σ+

u = 0.71σ−
u and α = 0.
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Fig. S6. Stochastic gene expression model with adder size-control mechanism. (A) shows that the distribution of growth rate of each generation is an inverse
gamma distribution, i.e., InverseGamma(h1, h2) whose PDF is defined as P(rgrow) =

(
h2

rgrow

)h1
exp

(
− h2

rgrow

)
/rgrowΓ(h1). Here h1 = 15 and h2 = 0.01. The growth

rate is defined as the normalized incremental volume (=1) divided by cell cycle time, i.e., cell cycle time × growth rate = incremental volume = 1. (B) shows
that the corresponding distribution of cell cycle time is a gamma distribution, i.e., Gamma(h1, h2) defined by the PDF P(td) =

(
td
h2

)h1
exp

(
− td

h2

)
/tdΓ(h1). Here

h1 = 15 and h2 = 100. (C) shows that the analytic solution Eq. [37] agrees well with the steady-state distribution computed using the SSA of our model with adder
mechanism. The kinetic parameters for (C) is that of gene 1M1C reported in Table S1. The other parameters are: k = 1 min−1, σ+

u = 0.71σ−
u and α = 0.
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Fig. S7. Cumulative frequency distribution for the ratio of mRNA and protein decay rates for NIH3T3 mouse fibroblasts estimated in Ref. (23). The protein and
mRNA half lives are from Supplemental Table 3 of Ref. (23). The ratio d/dp is calculated by dividing the protein half life by the mRNA half life after excluding
non-value pairs. Half of all proteins decay at least five times slower than mRNA.
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