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Supplemental Methods 

 

Gene methylation status classification  

To classify genes as gbM, teM, or UM, the total number of cytosines and 

the methylated cytosines were counted for cytosines in each context (CG, CHG, 

and CHH) for the coding sequences (CDS) of the primary transcript for each gene. 

The percentage of methylated sites for each sequence context in all coding regions 

from each accession were used as the background probability of having 

methylation on a single site. Given a background probability and the total number 

of cytosines and methylated cytosines, a p-value was calculated using a binomial 

distribution to show the cumulative probability of having higher number of 

methylated cytosines on a given gene. Then a q-values were calculated by 

adjusting p values by Benjamin–Hochberg FDR to control the false discovery rate.   

Genes were classified as gbM if they had reads mapping to at least 20 CG 

sites and had a q-value < 0.05 for mCG and a q-value > 0.05 for mCHG and mCHH. 

Genes were classified as mCHG if they had reads mapping to at least 20 CHGs, 

a mCHG q-value < 0.05, and a mCHH q-value > 0.05. As mCG is commonly 

associated with mCHG, the q-value for mCG could be significant or insignificant in 

mCHG genes. Genes were classified as mCHH if they had reads mapping to at 

least 20 mCHH sites and a mCHH q-value < 0.05. Q-values for mCG and mCHG 

could be anything as both types of methylation are associated with mCHH. mCHG 

and mCHH genes were collectively referred to as teM genes. Genes were 

classified as unmethylated (UM) if they had reads mapping to at least 20 mCHH 

sites and had a q-value > 0.05 for all sequence contexts. For other cases, genes 

were classified into a low coverage category, since they did not meet the minimum 

requirement of number of reads mapping to the sequence context illustrated 

above.  

To characterize the difference between gbM genes and UM genes, a gene’s 

methylation status was further summarized based on its status among the 725 

accessions. For each gene, the percentage of four methylation classes (UM, teM, 

gbM and low coverage) were summarized over 725 accessions. Genes were 
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defined as UM genes if they are UM in over 90% of the accessions, without having 

been identified as gbM or teM in the remaining accessions. A gene was defined as 

gbM gene if it is gbM in at least one accession, unless there are more accessions 

with teM than gbM or the proportion of low coverage accessions was more than 

50%. All gbM genes and UM genes defined in this way were used for the following 

gene feature comparisons and training of prediction models. 

 

Gene features preparation 

Number of CWG (CAG or CTG) and CG (CGG or CGT or CGC or CGA) 

sites were calculated by scanning a gene’s primary transcript sequence with a 

three base window and step size of one base. Then, CWG and CG site frequencies 

were calculated by normalizing the number of each context to a gene’s primary 

transcript length. Genes relative location to the pericentromere was obtained from 

calculating the absolute distance between a gene’s location on the chromosome 

and the location of pericentromere, which was obtained from A. thaliana genome 

assembly annotation file (https://www.arabidopsis.org/download/). Gene 

expression levels used in the gene feature comparison between gbM genes and 

UM genes as shown in Figure 3 were the averaged FPKM values across all 

investigated 725 accessions for each gene.  

Substitution rates were calculated between CDS pairs between A. thaliana 

and A. lyrata. Reciprocal best BLAST with an e-value cutoff of <= 1e-08 was used 

to identify orthologs between A. thaliana and A. lyrata. Individual CDS pairs were 

aligned using PRANK (1), and Gblocks was applied to eliminate poorly aligned 

positions in an alignment with a cutoff of eight contiguous non-conserved positions 

and no gap positions allowed (2). The yn00 package in the program PAML for 

pairwise sequence comparison was used to estimate synonymous substitution 

rates, non-synonymous substitution rates, and adaptive evolution (dS, dN and w 

respectively) (3).  

 

Prediction model for gene’s methylation status 

https://www.arabidopsis.org/download/


 

 

3 

 

To build prediction models for a gene’s methylation status, a correlation 

matrix was created from the 10 genic features listed in Dataset S6, and three of 

them (exon number, number of CWG/CG sites on the coding sequences) were 

removed before the model training process, since they showed an absolute 

correlation of 0.6 or higher with gene length. Before model training, the features 

were transformed to normalized data by subtracting the mean for each feature and 

dividing by the standard deviation. Among all gbM and UM genes, training and 

testing datasets were created by random sampling of 50% of the genes into a 

training set balancing the proportion of gbM genes and UM genes based on the 

original gene set. A dozen machine learning algorithms (Figure S4B) were used to 

train the prediction models. Five default values were tried for the main parameters 

of each algorithm during the training process and values with the best performance 

were chosen in the final evaluation. However, it should be noted that all algorithms 

performed well (Figure S4B).  

The accuracy of each algorithm is determined by a 10-fold cross-validation 

method. The 10-fold cross-validation method involves randomly splitting the 

training dataset into 10 equal sized subsets. Of the 10 subsets, a single subset 

was retained as the validation data for testing the model, and the remaining 9 

subsets were used as training data. the cross-validation process was then 

repeated 10 times, with each of the 10 subsets used exactly once as the validation 

data. The process of randomly splitting the training dataset into 10 subsets was 

repeated 5 times. Together, the final model accuracy was taken as the mean of 50 

validations. Since the model trained by the random forest algorithm showed the 

highest prediction accuracy, it was applied to predict a gene’s methylation status 

in the testing set. The importance of features was estimated during model training. 

The prediction accuracy for all features was recorded, then testing was performed 

in the same way by permutating each feature. The difference between the 

prediction accuracy of the training dataset, including one permutated feature and 

that of the original dataset, were then averaged over all decision trees generated 

by the random forest algorithm and normalized by the standard deviation of the 
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differences. The model training and performance evaluation process was done 

with the support of the caret package (https://github.com/topepo/caret/) in R.

https://github.com/topepo/caret/
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Dataset S1 (separate file). Methylation status for each gene in each A. thaliana 

accession used in this study. 

Dataset S2 (separate file). The number of gbM, teM and UM genes in each 

accession.  

Dataset S3 (separate file). Distribution of the number of genes in each 

methylation category. 

Dataset S4 (separate file). Average frequency of epiallelic states for gbM genes. 

Dataset S5 (separate file). Values of genetic and epigenetic factors in each 

accession related to gbM gene number. 

Dataset S6 (separate file). Epiallele frequencies and genic features of coding 

genes in A. thaliana. 

Dataset S7 (separate file). Comparison of the distance to the centromere of 

gbM genes relative to UM genes in seven A. thaliana accessions. 

Dataset S8 (separate file). True and predicted methylation status for genes in the 

testing dataset. 

Dataset S9 (separate file). Distribution and enrichment p-value for mCHG-gain 

genes. 

Dataset S10 (separate file). Genes that gain CHG methylation in CMT3-

expressing E. salsugineum and their orthologs' methylation status in the A. 

thaliana. 

Dataset S11 (separate file). The number of genes for each accession that are 

otherwise classified as core gbM genes in the population which exhibit high 

levels of CHG methylation
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