Supporting information

Isolation and Rationale for the Formation of Isomeric Decarbamoylmitomycin C-N⁶-

deoxyadenosine Adducts in DNA

Owen Zacarias[†], William Aguilar[†], Manuel M. Paz[‡], Sergey Tsukanov[†], Maggie Zheng[†], Shu-Yuan Cheng[†], Padmanava Pradhan^{Δ} and Elise Champeil^{†, §,*}

† John Jay College of Criminal Justice, 524 west 59th street, New-York, NY, 10019, United States

‡ Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

§ Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States

^Appradhan@ccny.cuny.edu, The City College of New York, Marshak Science Building, MR-1024, 160 Convent Avenue, New York, NY 10031. United States

Corresponding Author:

Elise Champeil@jjay.cuny.edu. John Jay College of Criminal Justice, 524 west 59th street, New York, NY, 10019.

Table of content:

	<u>pages</u>
Figure S1: HPLC chromatogram of pure 5a and 5b under conditions described in	S 3
methods.	
Figure S2. HPLC chromatograms of (a) digest of DMC-oligonucleotide complex	S 4
formed under DMC bifunctional activation with oligonucleotide 9 (b) co-injection	
with adduct 5a (c) co-injection with adduct 5b .	
Figure S3. HPLC chromatograms of (a) digest of DMC-oligonucleotide complex	S5
formed under DMC bifunctional activation with duplex 6 (b) co-injection with $5a$ (c)	
co-injection with adduct 5b .	
Figure S4. HRMS of adduct 5a.	S 6
Figure S5. HRMS of adduct 5b.	S 7
Figure S6: HPLC of (a) digest of duplex 6 treated with DMC under bifunctional	S 8
conditions without nuclease P_1 ; (b) same sample with co-injection of standard 5a ; (c)	
same sample with co-injection of standard $\mathbf{5b}$; (d) same sample but digest of duplex 6	
includes nuclease P ₁ .	
Figure S7: UV spectra of compounds X and Y.	S 8
Table S1: Frequencies of DNA adducts detected in short oligonucleotides after	S9-S10
alkylation by DMC under bifunctional conditions at 0°C and 37°C.	
Figure S8: ¹ H NMR spectrum of compound 5a.	S 11
Figure S9: 2-D COSY NMR spectrum of compound 5a.	S12

Figure S10: ¹ H NMR spectrum of compound 5b.	S13
Figure S11: 2-D COSY NMR spectrum of compound 5b.	S14

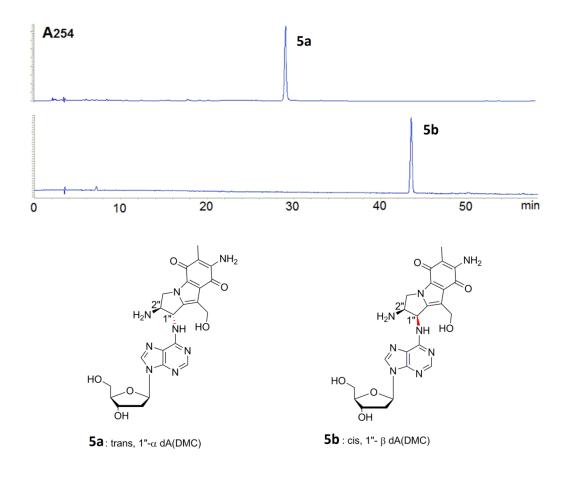


Figure S1: HPLC chromatogram of pure 5a and 5b under conditions described in methods.

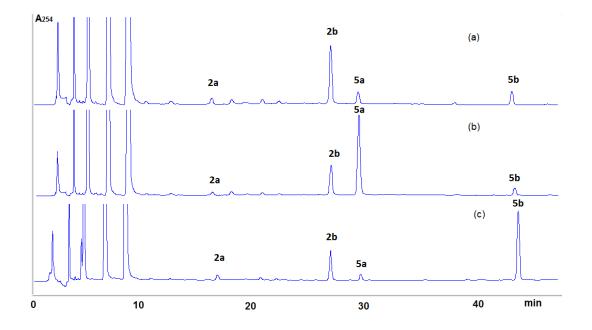
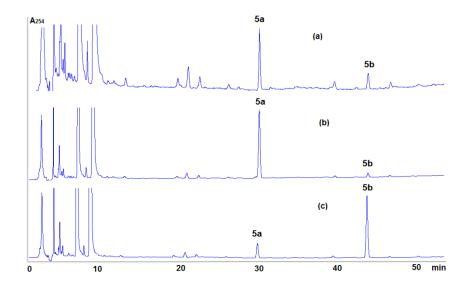



Figure S2. HPLC chromatograms of (a) digest of DMC-oligonucleotide complex formed under DMC bifunctional activation with oligonucleotide 9 (b) co-injection with adduct 5a (c) co-injection with adduct 5b.

Figure S3. HPLC chromatograms of (a) digest of DMC-oligonucleotide complex formed under DMC bifunctional activation with duplex 6 d(AAAAAAAAAAAAA).(TTTTTTTTTTTTTTTT) (b) co-injection with 5a (c) co-injection with adduct 5b.

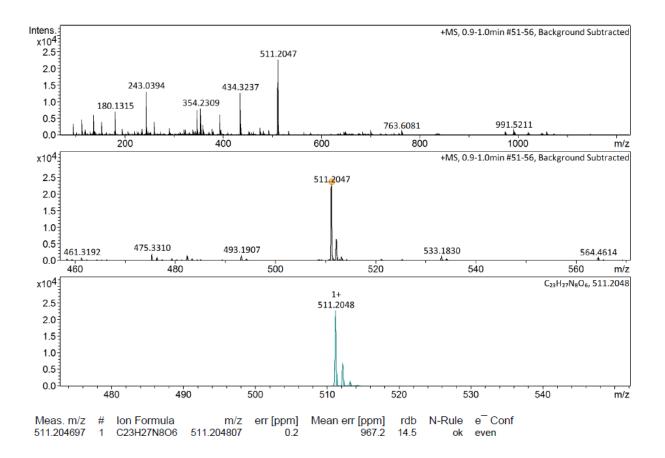


Figure S4. HRMS of adduct 5a.

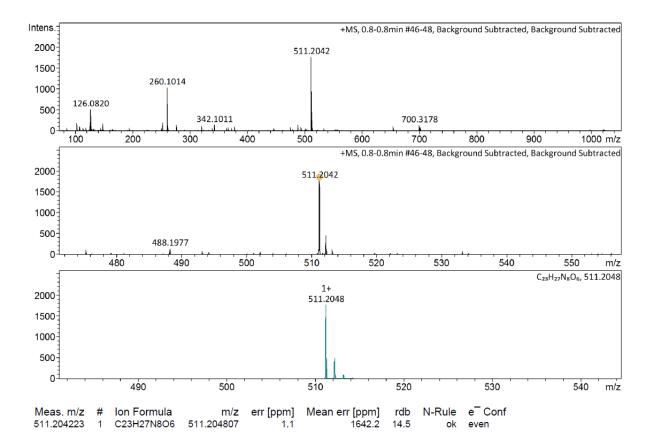
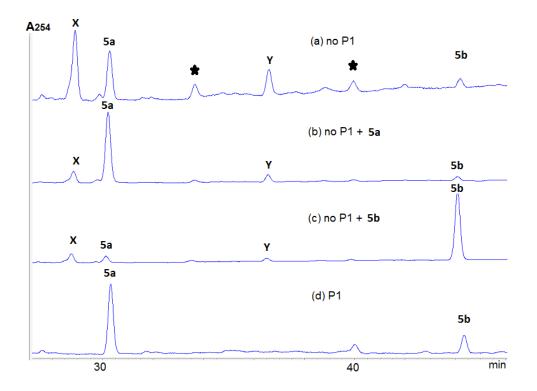



Figure S5. HRMS of adduct 5b.

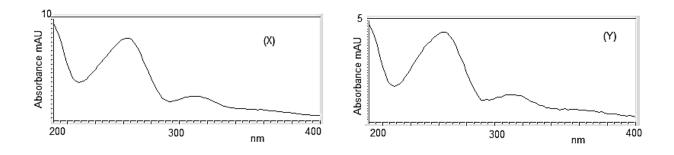
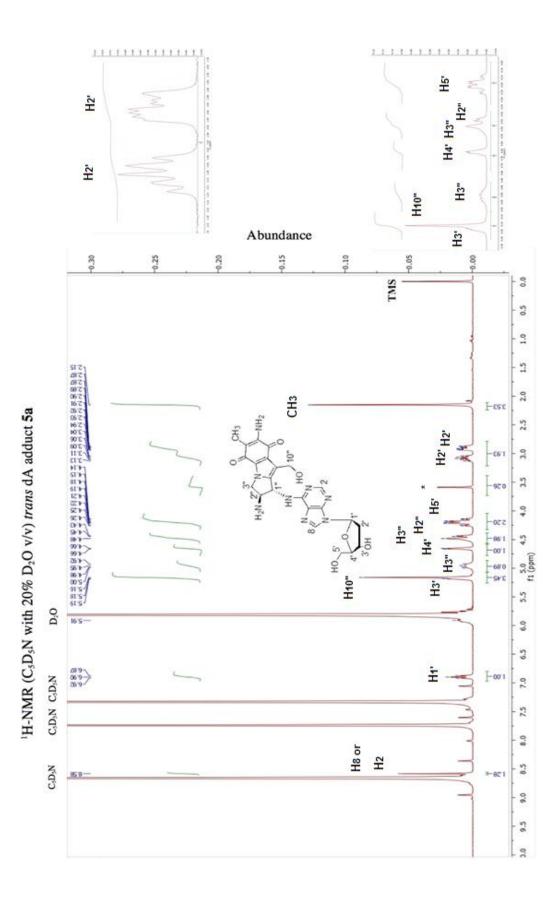


Figure S7: UV spectra of compounds X and Y.


Table S1. Frequencies of DNA Adducts Detected in Short Oligonucleotides under Bifunctional Conditions at 0°C and 37°C. ND= non-detected, NA=non-available.

	Frequencies (%) of adducts detected					
Oligonucleotide	dG _(DMC)	dA _(DMC)	\mathbf{R}^{a}	5a	5b	Log(5a/5b)
6: 5'-AAAAAAAAAAA	na	0.22	na	0.17	0.045	0.47
3'-TTTTTTTTTTTTTT		(±0.02)		(±0.02)	(±0.005)	
7: 5'-AAAAAGCAAAAA	3.23	0.068	47.5	0.061	0.007	0.93
3'TTTTTCGTTTTT	(±0.6)	(±0.003)		(±0.003)	(±0.007)	
8 : 5'-TATATATATA T A	na	0.11	na	0.039	0.070	-0.27
3'- <mark>AT</mark> ATATATATAT		(±0.008)		(±0.002)	(±0.009)	
9: 5'-TTATTGCAATTA	4.77	0.39	12.2	0.16	0.23	-0.16
3'-AATAACGTTAAT	(±0.15)	(±0.02)		(±0.03)	(±0.01)	
10: 5'-TATATGCATATA	1.22	0.18	6.8	0.045	0.14	-0.48
3'-ATATACGTATAT	(±0.3)	(±0.02)		(±0.009)	(±0.015)	
11: 5'-GAAAAAAAAAA	2.08	0.08	26	0.07	0.01	0.68
3'-CTTTTTTTTTTTT	(±0.2)	(± 0.004)		(±0.0008)	(±0.005)	
12: 5'-GAAAAAAAAAAA	1.06	0.06	17.7	0.05	0.01	0.60
3'-CTTTTTTTTTTTCT	(±0.01)	(±0.003)		(±0.002)	(±0.001)	
13: 5'-GAAAAAAAAAA	2.05	0.05	41	0.017	0.032	-0.28
3'-CTTTTTTTTTTGT	(±0.07)	(±0.003)		(±0.001)	(±0.002)	
14: 5'-AAAAAAAAAAAAA	0.28	0.021	13.3	0.021	ND	NA
3'-TTTTTTTTTTTTG	(±0.01)	(±0.002)		(±0.002)		
15: 5'-AGAAAAAAAAA	0.30	0.01	30	0.01	ND	NA
3'-TCTTTTTTTTTC	(±0.001)	(±0.001)		(±0.001)		
16: 5'- AC AAAAAAAAAG	1.71	0.048	36	1.048	ND	NA
3'-TGTTTTTTTTTC	(±0.03)	(± 0.005)		(±0.005)		
17: 5'-ATATAGCTATAT	3.95	0.36	11.0	0.27	0.08	0.53
3'-TATATCGATATA	(±1.1)	(± 0.06)		(± 0.003)	(± 0.006)	
18: 5'-ATATACGTATAT	2.30	0.14	16.4	0.12	0.019	0.80
3'-TATATGCATATA	(±0.06)	(±0.02)		(±0.02)	(±0.003)	
19 : 5'- AT TATTGCTATT	4.41	0.13	33.9	0.10	0.026	0.59
3'-TAATAACGATAA	(±0.25)	(±0.015)		(±0.01)	(± 0.004)	
20 : 5'- AT TATCGTTATT	1.27	0.26	4.9	0.20	0.058	0.54
3'-TAATAGCAAT <mark>AA</mark>	(±0.03)	(± 0.08)		(±0.06)	(±0.02)	
21 : 5'- AT TATCGATAT	0.64	0.15	4.3	0.095	0.05	0.28
3'-TAATAGCTATAA	(±0.01)			(±0.005)	(±0.002)	
22: 5'-GCAAAAAAAAGC	1.23	ND	NA	ND	ND	NA
3'-CGTTTTTTTTCG	(±0.13)					
23: 5'-CGAAAAAAAACG	0.81	ND	NA	ND	ND	NA
3'-GCTTTTTTTTGC	(±0.10)					
24: 5'-GAAAAAAAAAAA	1.12	ND	NA	ND	ND	NA
3'-CTTTTTTTTTTTC	(±0.15)					
25 : 5'-AAAAAAAAAAAA	NA	0.071	NA	0.049	0.022	0.65

(single strand)		(± 0.008)		(±0.004)	(±0.004)	
26 : 5'-GAAAAAAAAAAA	ND	0.031	NA	0.025	0.006	0.62
(single strand)		(± 0.002)		(± 0.002)	(±0.0005)	
27 : 5'-TTAGG	0.054	0.064	0.84	0.050	0.014	0.54
(single strand)	(±0.0001)	(± 0.002)		(±0.002)	(±0.0005)	
28 : 5'-ATTATTGCTATT	0.44	0.27	1.6	0.19	0.07	0.43
(single strand)	(±0.005)	(±0.01)		(±0.015)	(±0.001)	
29 : 5'- ATTATCGTTATT	0.42	0.48	0.87	0.35	0.13	0.43
(single strand)	(±0.03)	(±0.07)		(±0.05)	(±0.03)	
30 : 5'-ATATAGCTATAT	ND	0.11	NA	0.076	0.031	0.39
(single strand, 37° C)		(±0.005)		(±0.003)	(±0.002)	
$a \mathbf{D} = d\mathbf{C}/d\mathbf{A}$ at $0^{\circ}\mathbf{C}$						

^{*a*} R=dG/dA at 0° C.

Figure S8: ¹H NMR spectrum of compound **5a**.

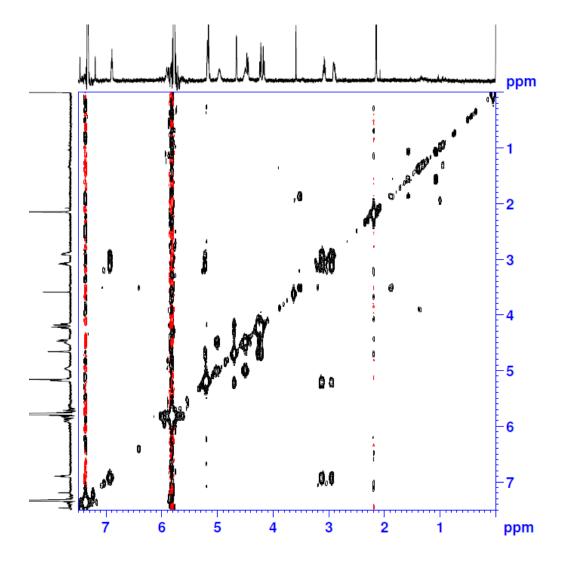
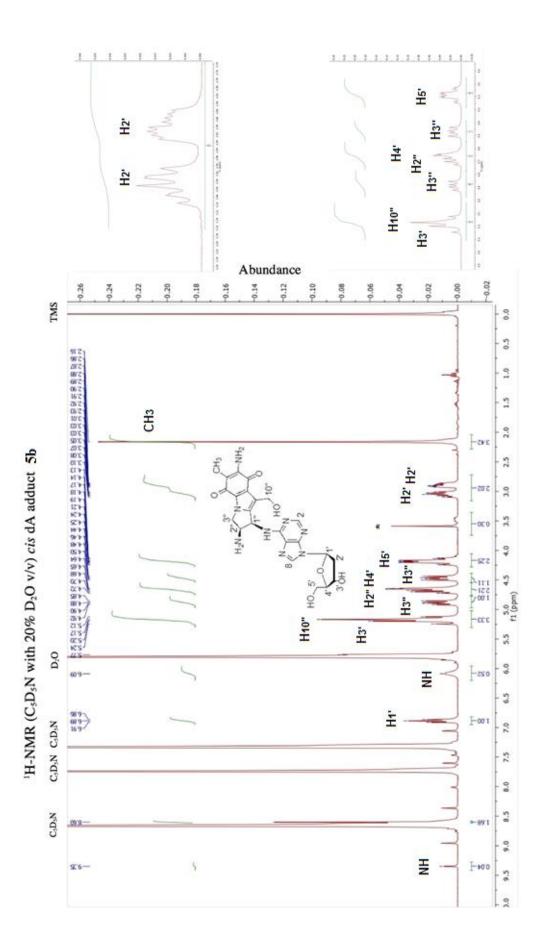
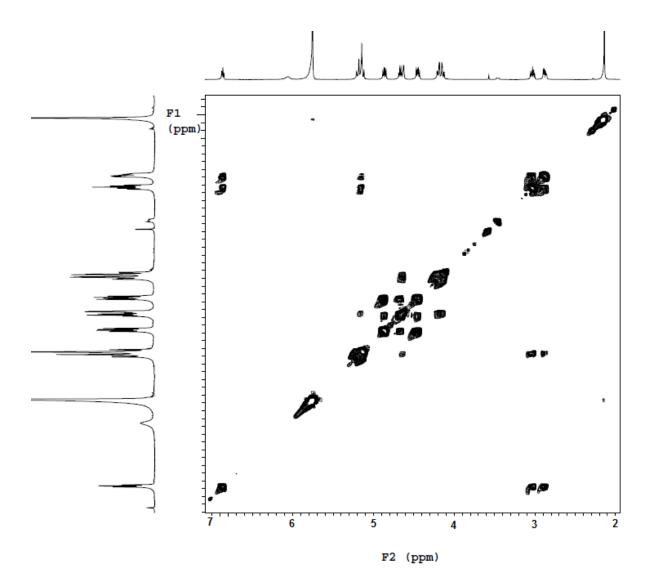




Figure S10: ¹H NMR spectrum of compound 5b.

