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Here we supplement the main text with additional methodological details, results of
secondary analyses, and conceptual discussion.

1 Calculation of the polygenic scores (PGS)

A polygenic score (PGS), often called the polygenic risk score in disease prediction, is
calculated from a set of SNPs that are tested in the initial GWAS sample for association
with a trait of interest. Effect sizes are estimated for each marker to construct a PGS in a
replication sample. The basic definition of the PGS is

Ŝ =

m∑
j=1

β̂jGj ,

where Ŝ is the individual’s polygenic score, β̂j is the weight of SNP j as derived from the
GWAS training sample, and Gj is the individual’s count of the reference allele at SNP j.

Polygenic scores for years of education (EduYears) in the current study were derived
from downloadable EA3 summary statistics using the LDpred software package, which
uses the correlations between SNPs estimated in an external reference panel to convert
the univariate regression coefficients making up the GWAS summary statistics to what are
effectively partial regression coefficients [1]. We used the MCTFR white parents as the
reference panel. Following the EA3 authors [2], we set the LDpred shrinkage parameter
equal to unity—the highest possible value and the one leading to the least shrinkage of
the PGS weights. The developers recommend trying a grid of values and choosing the
one leading to the best prediction accuracy in the validation sample, but we eschewed this
optimization in order to avoid any possibility of “double dipping.” Because the MCTFR
was part of EA3, data from the target MCTFR sample were removed from the SSGAC
GWAS before weights were derived.

2 Analysis details

Data were analyzed and figures were created in R [3–6]. Only those individuals with
data indicating white European ancestry were included in analyses. Participants with
alternate or missing ethnicity data were excluded; a PGS declines in accuracy when used
in a population different from the one studied in the training sample. All polygenic scores
were standardized prior to data analysis. In cases where β coefficients were compared for
different phenotypes, these coefficients were standardized by multiplying the slope by the
standard deviation of the predictor over the standard deviation of the outcome variable. In
all cases where two regression models were compared and assessed for significant differences,
all missing data were removed for each variable present in the models, ensuring that while
the compared samples were sometimes smaller as a result, the models were necessarily
fitted to the same datasets for these comparisons.
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Bootstrap resampling over twin pairs was used to compute standard errors and P values
for offspring predictions in order to ensure that the statistical inferences are not affected
by the non-independence of twins from the same family. Bootstrapping was computed over
100 iterations.

3 The correlation between midparent and offspring PGS

As a quality-control check on our genotyping and polygenic scoring, we calculated the
correlation between the midparent and offspring PGS. The value of this correlation in the
population is theoretically predicted to be somewhat greater than

√
1/2; it will be exactly

this value in the absence of assortative mating. A derivation of this fact can be found in
elementary texts [e.g., 7]. We found a sample correlation of 0.73 (Table 1), in very good
accord with the theoretical prediction.

4 An apparent effect of genetic nurture cannot be explained
by unreliability of the offspring PGS

Fig. 1 shows that in the absence of an environmentally mediated effect of the parent PGS on
the offspring phenotype, the offspring PGS d-separates the parent PGS from the offspring
phenotype [8, 9]; consequently, in a regression model predicting the offspring phenotype
with the PGS of both parent and offspring, only the offspring PGS should have predictive
power. It has been suggested to us that this reasoning may be flawed if the PGS is noisy
as a result of sampling error in the GWAS, because in this case the parent PGS might
compensate for the unreliability of the offspring PGS. This suggestion seems to be inspired
by standard psychometric theory, in which the predictive validity of a composite measuring
a single common factor increases with the number of measurements contributing to the
composite [10].

This suggestion is in fact incorrect, as we now demonstrate.

4.1 Negative controls with unreliable PGS do not show the behavior of
EduYears

Perhaps the simplest argument against the unreliability of the offspring PGS as an explana-
tion of our findings is that we did not observe a comparable pattern in our negative-control
phenotypes (Fig. 3).

4.2 Genotyping/imputation are highly accurate

To the extent that the offspring’s SNP genotypes are called incorrectly as a result of
genotyping/imputation error, the use of the parents’ SNP genotypes may indeed increase
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the prediction R2. Genotyping/imputation is typically quite accurate, however, and the
closeness of our sample correlation between midparent and offspring PGS to its theoretical
value (see the previous section) confirms this accuracy in our own case [11]. Consequently,
any improvement in the prediction R2 for this reason should be quite small. We henceforth
do not treat this possibility further.

4.3 Simulation of training GWAS, polygenic scoring, and out-of-sample
validation does not show incremental predictive value of parent PGS

We conducted simulations to test the soundness of our argument that the weights in the
parent PGS are distorted by exactly the same sampling errors and so cannot lead to an
improvement in the prediction of the offspring phenotype. In simple simulations based
on a genome where all pairs of causal sites are unlinked and in linkage equilibrium, we
found conclusively that the addition of the parent PGS does nothing to ameliorate GWAS
sampling error (results not shown). To examine the more realistic case of linkage and LD,
we conducted more complex simulations based on the MCTFR genetic data.

To minimize computational burden, we only used chromosome 1. We randomly selected
1,520 SNPs present in the intersection of our MCTFR imputed dataset and the 1000
Genomes Phase 3 European reference panel to be the causal sites affecting the simulated
phenotype; this density is consistent with the total number of SNPs affecting EduYears,
as estimated in a recent paper [12]. To ensure the clear predictive validity of the PGS, we
gave these SNPs a normal distribution of per-standardized-allele effects consistent with a
contribution to heritability equaling 0.15. We postmultiplied the correlation matrix of the
SNPs (estimated in 1000 Genomes) by the vector of per-standardized-allele effects (a sparse
vector with 1,520 nonzero entries) to obtain the vector of per-standardized-allele univariate
regression coefficients. In more detail, we assumed the negligibility of any correlation
between SNPs in different LD blocks defined by the method of Berisa and Pickrell [13] and
concatenated the results of postmultiplying the correlation matrix of an individual block
with the effect vector of just the SNPs in that block. To simulate GWAS sampling error,
we took a random draw from the multivariate normal distribution with a mean vector of
zero and a covariance matrix equal to the LD correlation matrix scaled by the reciprocal of
the simulated GWAS sample size. We then added this random draw to the vector of per-
standardized-allele univariate regression coefficients to obtain a vector of simulated GWAS
summary statistics. Note that this method is similar to the second method employed by
O’Connor and Price (Supplementary Note, pp. 22–23) [14]. We examined three different
GWAS sample sizes: 30 thousand, 100 thousand, and 300 thousand. For each distinct size
of the GWAS training sample, we resampled the identities and effect sizes of the causal
SNPs.

To generate simulated phenotypes, we used GCTA [15] to take the dot product of each
MCTFR individual’s imputed genotypes and the causal effects. For each distinct GWAS
sample size, we simulated 200 replicates. Note that the replicates varied the non-genetic
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residuals of the individuals but retained the same causal SNPs and their effect sizes.
We combined the simulated summary statistics with an LD reference panel consisting

of the MCTFR parents to obtained LDpred PGS weights for all ∼39,000 genotyped SNPs
on chromosome 1 in the MCTFR dataset. (In our real data analysis, we used a PGS based
on genotyped SNPs because imputed data in the MCTFR dataset are not available for
non-whites, whom we plan to study in other projects. Even though the genotyped SNPs
are a subset of all common SNPs, the predictive power of a PGS based on genotyped
SNPs is still close to maximal because the genotyped SNPs tag nearly all common genetic
variation [16, 17].) We set the prior shrinkage parameter to unity—as in our real data
analysis, although a different value might have led to a higher prediction R2. We then
used PLINK 1.9 [18] to calculate each individual’s PGS on the basis of these weights.

In the validation stage of the simulation, we estimated the coefficients of two regression
models. The first model used only the offspring’s own PGS as a predictor of the offspring
phenotype. The second model used the PGS of the offspring, mother, and father. A
significant increment in the prediction R2 as a result of adding the mother and father PGS
would show that the noisiness of the offspring PGS can indeed be ameliorated by the use
of the parent PGS as additional predictors.

The results of our simulation are summarized in Supplementary Fig. S1. There are
some anomalies, but overall the results demonstrate the implausibility of GWAS sampling
error as an explanation of what appears to be genetic nurture.

• As expected, the baseline prediction R2 increased with each (approximate) tripling of
GWAS sample size (4.0, 6.4, and 7.5 percent of the phenotypic variance respectively).

• At the smallest simulated sample size (30,000), the increment in the prediction R2

(adjusted for number of predictors) from the addition of the parent PGS was sta-
tistically significant (P < 10−7). We do not have an explanation of this result.
Regardless, the unadjusted increment in the prediction R2 was quantitatively quite
small, amounting to an additional 0.3 percent of the phenotypic variance. Recall that
in our real data analysis of EduYears, the addition of the midparent PGS led to an
increment of 1.8 percent.

• At the intermediate sample size (100,000), the increment in the prediction R2 (ad-
justed for number of predictors) did not reach statistical significance (P = 0.75) and
was quantitatively small (0.1 percent).

• At the largest sample size (300,000), the increment in the prediction R2 (adjusted for
number of predictors) did reach nominal statistical significance (P = 0.04) but was
actually negative; without adjustment for number of predictors, the increment was a
positive but minuscule 0.03 percent.

The simulation results thus fail to support the notion that, in the absence of genetic
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nurture, the use of the parent PGS as covariates can substantially improve the prediction
R2.

5 An apparent effect of genetic nurture in our data is un-
likely to be the result of population stratification

In the first submitted version of this manuscript, we employed the GWAS summary statis-
tics of the GIANT Consortium [19, 20] to construct our height and BMI PGS. In all of our
initial analyses, regardless of the phenotype, we set the LDpred shrinkage parameter to 0.3,
as we found this value to produce the maximal validation R2 for EduYears. In response
to a reviewer’s suggestion to refrain from optimization of the shrinkage parameter, we set
it to unity for the revised manuscript and thereby found that the incremental predictive
power of the parent PGS increased significantly and substantially in the case of height. In
the course of investigating this anomaly, we found that the distribution of the height PGS
(with the shrinkage parameter equal to unity) was extremely right-skewed with a substan-
tial second mode, quite unlike that of the normally distributed EduYears PGS. Because of
the central limit theorem, a skewed multimodal distribution is extremely unlikely in the
absence of population stratification. That is, our sample probably represents at least two
cryptic subpopulations with very different averages of the height PGS.

Two groups have recently shown that the height GWAS on which we initially relied [19]
was subject to a form of population stratification such that alleles apparently associated
with height have higher frequencies in Northern Europe [21, 22]. Suppose, for the sake of
argument (but not unrealistically), that our sample of Minnesota families contains a sub-
set with unusually high Scandinavian ancestry [23, 24]. If compared to other individuals
with the same values of the height PGS, the Scandinavians will be shorter because their
height PGS reflects to some extent their ancestry rather their genetic potential for height.
But since the parent PGS provides additional information about ancestry, the parents of
the Scandinavians will have a higher PGS than the parents of the non-Scandinavians, and
thus the parent PGS can provide a correction of the overprediction. That is, the partial
regression coefficients of offspring and parent PGS will have opposite sign—specifically, the
parent PGS having a negative sign—because a high parent PGS indicates Scandinavian
ancestry. This was exactly the borderline-significant pattern observed in our first submis-
sion, and the pattern became stronger upon switching the LDpred shrinkage parameter
from 0.3 to 1 (perhaps because more aggressive shrinkage somewhat purifies the PGS of
population stratification in the original GWAS).

For this reason we decided to use different GWAS as the data sources for our anthro-
pometric PGS. Specifically, we used the UK Biobank summary statistics provided by Loh
et al. [25]. Besides offering the advantage of larger sample size, these GWAS used a more
homogenous population and applied to their single cohort a linear mixed model to deal
with residual confounding. It has been shown that these height summary statistics are
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largely free from the population stratification present in the GIANT Consortium summary
statistics that we initially employed [19]. And indeed, when the PGS derived from these
statistics was used to predict height in our MCTFR sample, we no longer observed a statis-
tically significant partial regression coefficient of parent PGS in the case of height (Fig. 3;
p = .67). We also did not observe a statistically significant partial regression coefficient of
parent PGS in the case of BMI (p = .55).

The question then arises as to whether population stratification can explain the signif-
icant incremental predictive power of the parent PGS in the case of EduYears. We think
this is extremely unlikely to be the case. First, the GIANT Consortium’s GWAS of height
shows a mean chi-square statistic of 2.92 and a rather large LD Score regression intercept
of 1.28 [21, Supplementary Table 5]. Despite a larger mean chi-square statistic of HapMap3
SNPs in EA3 (3.81), the LD Score regression intercept in that GWAS is only 1.11 [2]. Fur-
thermore, to construct our PGS, we used a version of the EA3 summary statistics without
the contribution of 23andMe, which would tend to reduce whatever stratification is present
in the full meta-analysis, because a larger proportion comes from the homogeneous UK
Biobank cohort and none at all from the likely heterogeneous 23andMe sample. Second,
we have applied some of the analyses in the Sohail and Berg papers to the downloadable
EA3 summary statistics and found no evidence of severe population stratification (results
not shown). For example, when applying the tSDS analysis to EA3, the results look ex-
tremely similar to those in the UKB panel of Sohail et al.’s Fig. 3a and not at all like those
in the GIANT panel.

In summary, we discontinued the use of the summary statistics from the GIANT Con-
sortium to construct our height and BMI PGS and switched to the UK Biobank summary
statistics provided by Loh et al. The latter summary statistics are based on a larger
and more homogenous sample. The resulting PGS show absolutely no evidence of parent
genetics providing incremental predictive power.

6 Within-family prediction and incremental effect of parent
PGS as complementary strategies

Because the operation of genetic nurture implies both a within-family effect smaller than
implied by the population GWAS results and a significant partial regression coefficient of
the parent PGS, it might seem that the demonstration of both consequences is redun-
dant. Here we point out why these two items of evidence are not redundant but rather
complementary.

A within-family effect smaller than implied by the population GWAS follows from an
environmentally mediated effect of parent genotype, but the converse is not true. That is,
there are alternative explanations of a smaller within-family effect. One such explanation
is assortative mating. In one of many striking passages in The Genetical Theory of Natural
Selection, R.A. Fisher wrote
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[i]n human stature, for example, the correlation found between married persons
is sufficient to ensure that each gene tending to increase the stature must be
associated with other genes having a like effect, to an extent sufficient to make
the average excess [i.e., univariate regression coefficient] associated with each
gene substitution exceed its average effect [i.e., within-family effect] by about
a quarter. [26, p. 31]

The possibility that assortative mating explains the EduYears discrepancy has been exam-
ined extensively [2]. Since assortative mating was not found to be a plausible explanation
for the whole of the discrepancy, the EA3 authors suggested the mechanism of genetic
nurture1. The approach of EA3 does rely on the critical assumption that the phenotypic
correlation between mates is the result of a preference for mates with either higher or simi-
lar values of EduYears, which leads in turn to the phenotypic correlation being larger than
the correlation between the true polygenic scores. There are some hints in the literature
that this assumption may be incorrect—that, perhaps because EduYears is merely a down-
stream effect of some other trait affecting assortment, spousal genetic similarity actually
exceeds similarity with respect to phenotypic EduYears [e.g., 29].

The upshot of all this is that the conditional significance of the parent PGS as a predic-
tor of offspring phenotype is by no means a redundant piece of evidence in the prosecution
of parent genotype for affecting EduYears through an environmental mechanism.

Supplementary Fig. S2 compares the within-family effects of the PGS on our four
outcomes to the between-family coefficients (i.e., the coefficient in the regression of the
twinship mean outcome on the twinship mean PGS). The between-family coefficients in
Supplementary Fig. S2 are larger than the individual-level coefficients in Fig. 2 of the
main text, but this is to be expected. If the individual-level coefficient is not equal to the
within-family coefficient, then the individual-level coefficient is not necessarily equal to the
between-family coefficient either [selzam2019]. In any case, the qualitative interpretation
of Supplementary Fig. S2 is the same: the between-family coefficient for EduYears is
larger than its corresponding within-family coefficient, pointing to some combination of
assortative mating and genetic nurture.

7 Magnitude of genetic nurture as estimated in different
studies

Previous studies of genetic nurture have used estimation procedures slightly different from
ours. We now comment on the relationship between these procedures so as to determine
the extent to which our estimate of genetic nurture is consistent with those obtained by
previous studies.

1Interestingly the EA3 authors failed to find a discrepancy in the case of height of the magnitude
predicted by Fisher, although later research has found evidence of assortative mating for height by other
means [27]. The shortfall may possibly be attributable to natural selection [28].
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The first published study of genetic nurture, by Kong et al. [30], used families of
genotyped parent-offspring trios. They partitioned each parent’s PGS into a portion that
was transmitted to the offspring and a portion that was not so transmitted. Note that the
offspring’s own PGS is simply equal to the transmitted portions of both parents.

In a multiple regression of the offspring’s phenotype on both transmitted and nontrans-
mitted PGS, let θT be the coefficient of the transmitted portion and θNT the coefficient of
the nontransmitted portion. Kong et al. took δ := θT − θNT to be the causal effect of the
offspring PGS on the offspring phenotype, free from inflation ascribable to genetic nurture.
To see the justification of this, first let γ denote the effect of the parent PGS operating
through genetic nurture. Then

(offspring PGST)δ + (parent PGST + parent PGSNT)γ

= (offspring PGST)δ + (parent PGST)γ + (parent PGSNT)γ

= PGST(δ + γ) + (parent PGSNT)γ.

It thus follows that θT is equal to δ + γ and θNT to γ alone. The difference θT − θNT

is indeed the direct causal effect of the PGS on the phenotype. Kong et al. then took
δ/θT as the percentage of the PGS regression coefficient in the prediction of the phenotype
attributable to the direct causal effect. The denominator, θT, will not be exactly equal to
the univariate PGS regression coefficient because of a slight correlation between PGST and
PGSNT induced by assortative mating, but the two quantities will be quite close.

In our own work, we first regressed the offspring phenotype on just the offspring’s own
PGS and subsequently on both the offspring and midparent PGS. We used the estimates
obtained in this way (Table 3) to compute a quantity equivalent to δ/θT as follows. We
placed in the numerator the coefficient of offspring PGS in the regression model predicting
the offspring phenotype with both offspring and midparent PGS, as this is also an estimate
of the direct causal effect. We placed in the denominator the sum of the numerator and half
the coefficient of midparent PGS; it is evident from the first line of the equation above that
the coefficient of midparent PGS is equal to 2γ, and thus our denominator is equivalent to
Kong et al.’s θT .

Supplementary Table S2 shows our estimated ratio as well as the others published to
date. Our estimate of 0.613 is the one that assigns the largest role to genetic nurture.
Standard errors are not available for any of these estimates; if these were to be calculated,
statistically significant heterogeneity would possibly be found. Nevertheless, even after we
allow for some heterogeneity, all estimates are consistent with at least 60 percent of the
correlation between the PGS and EduYears being attributable to the direct causal effect
of the offspring’s own PGS on their own EduYears.
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8 Effects of genotypes belonging to ancestors more remote
than the parents

The relationship between the midparent PGS and whatever parental traits may be affecting
the offspring EduYears may not be purely causal but rather itself reflect genetic nurture
to some extent. That is, the parents themselves may have received both genotypes and
trait-affecting environments from the uncontacted grandparents in our pedigrees. Here, we
explore this possibility in greater depth and argue that the majority of the confounding due
to genetic nurture is attributable to the parental generation rather than the grandparental
and more remote generations. Our discussion below abuses notation in that symbols used
previous ly may now have different meanings.

The direct causal effect of offspring genotype on offspring trait can be represented by

offspring PGS
α−→ offspring trait,

whereas parental confounding can be represented by

offspring PGS
1←− parent PGS

α←− parent trait
δ−→ offspring trait.

If genetic nurture perpetuates itself across generations, then we have grandparental con-
founding that can be represented by

offspring PGS
1←− parent PGS

1←− grandparent PGS
α−→

grandparent trait
δ−→ parent trait

δ−→ offspring trait.

In this path-diagrammatic representation, we have assumed invariance of the causal back-
ground across generations. That is, we have assumed that the effect of genotype on pheno-
type (α) and the direct effect of parent on offspring trait (δ) is the same from one generation
to the next. We have also assumed that there is no direct effect of grandparent trait on
offspring trait. Some recent evidence favors this assumption [31].

Although we are assuming that the parent trait that affects the offspring trait is the
same as the offspring trait itself (i.e., EduYears), our argument still follows if the parent
and offspring trait show a strong genetic correlation and comparable heritabilities. These
conditions in fact hold if the parent trait is indeed SES, a composite including EduYears and
income [32]. Furthermore, including parent EduYears by itself as a covariate does eliminate
the statistical significance of parent PGS as a predictor (Supplementary Table S1).

It is well known that the slope in the regression of offspring PGS on midparent PGS
is equal to unity [e.g., 7]. Calling the parental generation the first generation, the grand-
parental generation the second, and so on, we now prove that the slope in the regression
of the average PGS of one’s 2k ancestors in generation k on the average PGS of one’s 2k+1
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ancestors in generation k + 1 is always unity.

PGSk :=
1

2k

2k∑
i=1

PGS of ancestor i in generation k

=
1

2k

2k∑
i=1

1

2
(PGS of ancestor i’s mother + PGS of ancestor i’s father)

=
1

2k+1

2k+1∑
j=1

PGS of ancestor j in generation k + 1

:= PGSk+1,

where we ignore orthogonal zero-mean terms representing Mendelian segregation. Since we
have been able to go from the top to bottom line without the introduction of any terms or
factors, it follows that regression of PGSk on PGSk+1 indeed has a slope of unity.

An analogous argument shows that if the direct effect of the midparent phenotype on
offspring phenotype is δ, then the effect of the average ancestor’s phenotype in generation
k + 1 on that in k is also δ.

By the path-tracing rules, the direct effect of offspring PGS on the offspring trait makes
the contribution α to the total coefficient of the offspring PGS, the confounding in the
parental generation makes the contribution αδ, and the confounding in the grandparental
generation makes the contribution αδ2. In general, the contribution of confounding in the
kth previous generation is αδk. If the gene-environment correlations extend indefinitely
into the past, then the total coefficient of the offspring PGS is the infinite geometric series

∞∑
k=0

αδk =
α

1− δ
.

Suppose that genetic nurture leads to an inflation of the PGS direct effect α by about a
third (Supplementary Table S2). Setting the geometric series equal to 4α/3 and solving
for δ, we get the solution 1/4. Thus, (1/4)/(1/3) = 3/4 of the inflation attributable to
genetic nurture is the result of gene-environment correlation in the parental generation
and only 1/4 to the grandparental and more remote generations. This conclusion is not
particularly sensitive to the postulated size of the total inflation due to genetic nurture.
If we set the geometric series equal to 5α/3, consistent with a nearly 70-percent inflation,
then 60 percent of the total inflation is attributable to the parental generation.

A remaining issue is whether a direct effect of parent trait on offspring trait implied
by our calculation above (∼1/4) is plausible. One adoption study with plausibly random
assignment of adoptees to parents has found that the partial regression coefficient of rear-
ing mother’s EduYears in the prediction of adopted offspring’s EduYears is 0.097 with a
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standard error of 0.027; the covariates in this model included the logarithm of parents’ in-
come, although the latter was not significant [33]. The comparable coefficient in biological
families was found to be about three times larger. If we assume that 0.097 is an unbiased
estimate of the direct causal effect, that there is no assortative mating, and that the effect
of rearing father’s EduYears is equal to that of the mother’s, then the estimated effect of
midparent EduYears on offspring EduYears is 0.19 with a confidence interval extending
beyond 1/4. These assumptions are not realistic, but nevertheless it is evident that an
effect of roughly 1/4 is not at all unreasonable.
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Table S2: Estimated magnitudes of genetic nurture
from all published studies

Study N δ/θT
Kong et al. (2018) [30] 21,637 0.701
Bates et al. (2018) [34] 2,335 0.629
Belsky et al. (2018) [35] 804 NA
Liu (2018)—Framingham [31] 3,149 0.803
present study 2,517 0.613

Note: N , the number of families with a genotyped
child and at least one genotyped parent; δ/θT, the
estimated percentage of the offspring PGS’s corre-
lation with offspring EduYears that is attributable
to the direct causal effect of offspring PGS on off-
spring EduYears. The study by Belsky et al. re-
ports an effect in the same direction as the others
(i.e., δ̂/θ̂T < 1), but genetic data in its sample was
available from mothers only.
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Figure S1: Each bar height corresponds to the average over 200 simulation replicates of
the prediction R2 adjusted for the number of predictors (one vs. three). The error bars
enclose 95% confidence intervals. The lack of a conspicuous difference between bar heights
within the same sample size indicates that the parent PGS does not provide any substantial
increment to the R2 in the absence of the “genetic nurture” effect, even if the offspring
PGS is noisy as a result of sampling error in the training GWAS.
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Figure S2: Comparison of β coefficients of offspring PGS on outcomes between dizygotic
twinship (mean) and within dyzgotic twinship (difference) for years of education, high
school GPA, IQ score, and soft skills (N pairs = 415). Error bars represent ±1 standard
error. All values are standardized.
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