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1 Description of disasters

The disasters that are studied in this paper are: Hurricanes Irma and Maria, Tohoku Tsunami and

Earthquake, Kumamoto Earthquake, and Kinugawa (Kinu River) Flood. The five disasters all vary in

intensity, type of disaster, and location of occurrence, which gives us a unique opportunity to conduct

a cross-comparative analysis of the disasters. In addition to the spatial distributions of housing damage

rates shown in Figure 1a, we provide a brief overview of all disasters, including the date and location

of occurrence, severity, and outcomes inflicted to human activities.

Hurricane Irma made landfall on Florida on September 10th as a category 4 hurricane and traversed

through the Florida peninsula, spawning storm surge and causing major inland flooding. Especially

in the Florida Keys, 25 percent of the homes were destroyed and 65 percent were damaged. Many

homes and businesses suffered damage or destruction, with more than 65,000 structures damaged to

some degree in West Central and Southwest Florida alone. The hurricane caused more than 7.7 million

homes and businesses to be out of power in the entire state of Florida, and at least 134 fatalities were

confirmed [4]. Total economic losses are estimated to be $ 55 billion [1].

The tropical cyclone Hurricane Maria developed on September 16, 2017 in the Atlantic Ocean

to the northeast of South America, and made landfall in southeastern Puerto Rico on September 20,

2017 with wind speeds of 155 miles per hour. Damage to Puerto Rico was severe and widespread fol-

lowing the Hurricane, with heavy rainfall, flooding, storm surge, and high winds causing considerable

damage [14]. Various infrastructure systems were heavily damaged, causing power outages and water

shortages for the entire island for months [17]. Fatalities as a consequence of Maria are still under

investigation, however the most recent estimates suggest between 793 to 8,498 excess deaths occurred

following the storm [11]. Total economic losses are estimated to be $ 92 billion.

The magnitude 9.0 earthquake that occurred in the western Pacific induced a huge tsunami that hit

the coastal areas of the Tohoku area in Japan. The tsunami reached the eastern coast of Honshu, Japan

within a couple of minutes after the quake and spilled into the interior to a maximum distance of 10km

[13, 16]. The loses incurred by the earthquake and tsunami together were extremely severe. According

to the Japan National Police Agency, there were intotal 13.392 people dead nationwide and 15,133

missing. It resulted in more than 335,000 refugees, damaged more than 190,000 buildings and caused

4.4 million households without power. The disaster caused total economic losses of approximately $

171-183 billion [13].

Kumamoto prefecture located in the Kyushu island of Japan was shook by a magnitude 6.5 earth-

quake on April 14th 2016, which was followed by a magnitude 7.3 earthquake on April 16th, 2016.

The earthquakes caused significant loss, destroying 8050 buildings and damaging 24,147. The total

number of fatalities was 69, while 1,747 were injured. More than 180,000 people evacuated imme-

diately after the earthquake, causing mass population displacements in the Kyushu region. The total
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Figure S1: Housing damage rates due to the disaster. Local government units (LGUs) where

housing damage was observed were classified as areas affected by the disaster. Mobile phone users

who were estimated to be living in the affected LGUs were chosen for analysis.

economic loss was estimated to be $ 24-46 billion [8].

Heavy rain in the Northern part of the Kanto area caused severe flooding of the Kinugawa (Kinu

River) on September 9th, 2015, which lasted for more than 3 days. More than 40 km2 was flooded,

causing 14 deaths and damage to over 22,000 houses in the Joso area. The total economic loss was

estimated to be $ 2.9 billion [12].

2 Areas of study

For each disaster, we first define the areas of study based on the extent of damage caused by the

disaster. The affected areas were defined as the set of local government units (LGUs) where housing

damage was observed due to the disaster. LGUs refer to counties in Florida and Puerto Rico, and

“shichoson (city/ward)” in Japan. Table S1 lists the names of all LGUs where housing damage was

observed due to each disaster. 78 from Puerto Rico, 49 from Florida, 30 from Tohoku Tsunami, 33

from Kumamoto Earthquake, and 10 from Kinugawa Flood were included in the analysis. There are

mainly 3 reasons to why we perform our analysis on the LGU scale. Firstly, due to the limitation

in the number of mobile phone user samples, analysis at a further finer scale would yield statistically

insignificant results especially in rural areas. Second, the LGU scale is the finest scale in which we can

obtain socio-economic data in Japan, unlike the US where data is available on the census tract level
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Table S1: Areas of study in the five disasters

Disaster Local Government Units

Hurricane Maria

(78)

Adjuntas, Aguada, Aguadilla, Aguas Buenas, Aibonito, Anasco,

Arecibo, Arroyo, Barceloneta, Barranquitas, Bayamon, Cabo Rojo,

Caguas, Camuy, Canovanas, Carolina, Catano, Cayey, Ceiba, Ciales,

Cidra, Coamo, Comerio, Corozal, Culebra, Dorado, Fajardo, Florida,

Guanica, Guayama, Guayanilla, Guaynabo, Gurabo, Hatillo,

Hormigueros, Humacao, Isabela, Jayuya, Juana Diaz, Juncos, Lajas,

Lares, Las Marias, Las Piedras, Loiza, Luquillo, Manati, Maricao,

Maunabo, Mayaguez, Moca, Morovis, Naguabo, Naranjito, Orocovis,

Patillas, Penuelas, Ponce, Quebradillas, Rincon, Rio Grande,

Sabana Grande, Salinas, San German, San Juan, San Lorenzo,

San Sebastian, Santa Isabel, Toa Alta, Toa Baja, Trujillo Alto,

Utuado, Vega Alta, Vega Baja, Vieques, Villalba, Yabucoa, Yauco

Hurricane Irma

(49)

Alachua, Baker, Bradford, Brevard, Broward, Charlotte, Citrus,

Clay, Collier, Columbia, DeSoto, Dixie, Duval, Flagler, Gilchrist,

Glades, Hamilton, Hardee, Hendry, Hernando, Highlands, Hillsborough,

Indian River, Lafayette, Lake, Lee, Levy, Manatee, Marion, Martin,

Miami-Dade, Monroe, Nassau, Okeechobee, Orange, Osceola,

Palm Beach, Pasco, Pinellas, Polk, Putnam, St. Johns, St. Lucie,

Sarasota, Seminole, Sumter, Suwannee, Union, Volusia

Tohoku Tsunami

(30)

Hachinohe, Misawa, Oirase, Miyako, Ohfunato, Kuji, Rikuzentakata,

Kamaishi, Ohtsuchi, Yamada, Iwaizumi, Tanohata, Noda, Hirono,

Sendai-Miyagino, Sendai-Wakabayashi, Ishinomaki, Shiogama,

Kesennuma, Natori, Tagajo, Iwanuma, E-Matsushima, Watari,

Yamamoto, Matsushima, Shichigahama, Rifu, Onagawa, Minamisanriku

Kumamoto Earthquake

(33)

Yanagawa, K-Chuo, Yatsushiro, Tamana, Yamaga, Kikuchi, Uto,

Kamiamakusa, Uki, Aso, Koshi, Misato, Gyokuto, Ohzu, Kikuyoh,

Minami-Oguni, Oguni, Ubuyama, Takamori, Nishihara, Minami-Aso,

Mifune, Kashima, Mashiki, Kosa, Yamato, Hikawa, Ashikita, Beppu,

Taketa, Yufu, Kokonoe, Shiiba

Kinugawa Flood

(10)

Shimotsuma, Joso, Toride, Tsukuba, Moriya, Bando, Tsukuba-Mirai,

Yachiyo, Noda, Kashiwa
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through the American Community Survey. Third, government agencies often make policy decisions

on the LGU scale, thus insights on that spatial scale would provide decision makers with relevant and

useful insights.

In each of these affected LGUs, information on housing damage rates were collected. For disasters

in the US, “housing damage rate” of a given county refers to the rate of houses approved for the

Individuals and Households Program of FEMA in each LGU [7]. For disasters in Japan, it refers to

the rate of houses classified as “totally destroyed” or “half destroyed” by the Cabinet Office of Japan

(COJ) [5]. Both datasets are publicly accessible. Figure S1 shows the housing damage rates in all of

the five disasters. Out of all the LGUs in Table S1, all 78 LGUs in Puerto Rico, 6 LGUs in Florida,

21 LGUs in Tohoku, 6 LGUs in Kumamoto, and 1 LGU in Kinugawa experienced extensive damage

(housing damage rates of more than 10%).

3 Analysis of mobile phone data

3.1 Data description

Mobile phone location data for the five disasters were provided by 3 different companies in Japan

and the US. Location data were collected by Yahoo Japan Corporation1 for Kumamoto Earthquake

and Kinugawa Flood, by Zenrin Data Com2 for Tohoku Tsunami and Earthquake, and Safegraph3

for Hurricanes Irma and Maria. All companies obtained the location information (time, longitude,

latitude) of mobile phones via the Global Positioning Satellite (GPS) system, as shown in Table S2.

The example ID is masked to protect privacy issues. GPS data were obtained from mobile phones of

individuals who agreed to provide their location data for research purposes, and all information were

anonymized to protect the security of users. Mobile phone location data are proprietary data owned

by private companies. Although such data are not available for open access due to the users’ privacy,

we will obtain permission to post processed data that are sufficient to reproduce the results obtained

in this study.

Table S3 shows the statistics of the mobile phone datasets. For each disaster, the area of study

included LGUs that experienced any housing damage, as shown in Figure S1. Cell phone data for 6

months before and after the disaster date was observed for all disasters. Each user was observed at

high frequency in all datasets, although there were differences in the average observations points per

user per day. The average observations vary across datasets (33 to 97), however, given that we only

observe the location where each user is staying each day over night, the granularity of these datasets
1https://www.yahoo.co.jp/
2http://www.zenrin-datacom.net/toppage
3https://www.safegraph.com/

6



Figure S2: Representativeness of mobile phone users The correlation between the census popula-

tion and the number of mobile phone users observed in each local government unit (counties in US,

cities in Japan) is high. The slopes (sample rates) in each dataset is around 1.5% except for Florida,

with 8.5%.
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Table S2: Fields and content of mobile phone location data

Field Description Sample

User ID Hashed unique user ID for each mobile phone user ###HA9K8FH6R

Timestamp Unix time of observation 1505771147

Longitude Longitude coordinate of the GPS observation -82.0836

Latitude Latitude coordinate of the GPS observation 27.4311

are high enough for our analyses. The total number of users in each dataset and the number of users

in the affected areas are shown in brackets.

For our macroscopic study on recovery trends, it is important to account for the spatial bias in mo-

bile phone users. To ensure that the data is not spatially biased, we plot the number of samples against

census populations for each LGU in Figure S2 for all datasets. We observe that for all datasets, the

number of mobile phone samples are highly correlated with census population for each county, with

Pearson’s correlation coefficient greater than 0.95, and also with high rank correlation (Spearman’s

correlation and Kendall’s Tau). Thus, we conclude that the mobile phone data has little bias in the

sample rates across different counties and that is representative of the entire population.

3.2 Home location estimation

Using the observed mobile phone location data, the home location of all users were estimated. It is well

known that human trajectories show a high degree of temporal and spatial regularity, each individual

having a significant probability to return to a few highly frequented locations, including his/her home

location [9]. Due to this characteristic, it has been shown that home locations of individuals can be

detected with high accuracy by clustering the individual’s stay point locations over night [3]. Home

locations of each individual was detected by applying mean-shift clustering to the nighttime staypoints

(observed between 8PM and 6AM), weighted by the duration of stays in each location [2, 10]. Mean

shift clustering was implemented using the scikit-learn package on Python4 .

3.3 Fitting population recovery trends

A user was classified to be displaced if the user was estimated to have stayed outside his/her estimated

home LGU. The displacement rate on a given day was calculated by dividing the number of displaced

users observed on that day by the total number of users.
4http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
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Table S3: Statistics of GPS data for all disasters. For all disasters, GPS location data of affected in-

dividuals were observed for approximately 6 months, including days before and after the disaster. All

datasets had more than 30 datapoints per day for each individual on average, allowing us to accurately

track where each individual stayed every night after the disaster.

Disaster Main Study Area
Observed

Period

Users

(affected)

Observations

(/day/user)

Hurricane Maria Puerto Rico
2017/9/1-

2018/3/15

53,511

(53,511)
82.8

Hurricane Irma Florida, USA
2017/9/1-

2018/3/1

1,730,326

(1,599,370)
97.0

Tohoku Tsunami Tohoku, Japan
2011/3/1-

2011/9/1

68,416

(10,697)
33.4

Kumamoto Earthquake Kumamoto, Japan
2016/4/1-

2016/10/1

80,933

(5,944)
40.7

Kinugawa Flood Ibaraki, Japan
2015/9/1-

2016/3/1

2,580

(437)
46.0
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To capture the short term fluctuations in the population recovery trends, the raw observations of

displacement rates were de-noised using Gaussian Process Regression. Gaussian Process Regression

(GPR) is a non-parametric probabilistic model for denoising and regression [15]. Gaussian Processes

(GPs) are extensions of multivariate Gaussian distributions to infinite dimensionality. GPs assume that

values observed at t = ti and t = tj are jointly Gaussian with zero mean and covariance given by a

covariance function k(ti, tj). In this model, we use the squared exponential covariance function and

we assume that the observed values y have i.i.d. Gaussian noise with variance σ2n added on, shown in

the following equation:

cov(f(ti), f(tj)) = k(ti, tj) = exp
( 1

2l2
|ti − tj |2

)
+ σ2nδi,j (1)

where δij is a Kronecker delta which is 1 if i = j and zero otherwise. In the GPR model, the

hyperparameters are the length scale l and the scale of the Gaussian noise of the observed values σn.

The model chooses the hyperparameters and covariances directly from the training data. To obtain

such optimal hyperparameters, the log marginal likelihood L(θ), shown below, is maximized with

respect to hyperparameters and noise level θ = l, σn.

L = log p(y|t) = −1

2
yT (K + σ2nI)

−1 − 1

2
log |K + σ2nI| −

n

2
log 2π (2)

The minimization of L(θ) is solved by conjugate gradients method [6]. To implement the GPR model,

we used the package available on scikit learn and implemented the model using Python codes5.

To capture the general trend of population recovery, the raw observations were fitted using a neg-

ative exponential function D(t) = (D0 −D160) exp (− t
τ ) +D160, where D0, D160, and τ denote the

displacement rates on day 0, day 160, and recovery time parameter, respectively. The three parameters

(D0, D160, and τ ) were estimated using the Powell method, which is a widely used optimization algo-

rithm. The robustness of the estimated exponential function parameters to temporal scales are shown

in Figure S3. We tested fitting the function with the i) raw observations, moving average estimate of

ii) 3 days window, iii) 7 days window, and iv) 14 day window. The parameter estimates and standard

errors are shown in each figure. We can observe that the parameter estimates are robust against data

variability, with very small standard error compared to the mean estimates. Moreover, the Pearson cor-

relation between the daily observed displacement rates and the estimated displacement rates from the

fitted exponential curves are high: Hurricane Maria: 0.85, Tohoku Tsunami: 0.95, Kinugawa Flood:

0.93, Hurricane Irma: 0.90, Kumamoto Earthquake: 0.73. Further, the fitted negative exponential

functions were normalized D̃(t) = D(t)−D160

D0−D160
, which should collapse to the same curve e−

t
τ if all

curves follow a negative exponential function.
5http://scikit-learn.org/stable/modules/gaussian_process.html
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Figure S3: Robustness of exponential fit. Fitting results with i) raw observations, moving average

estimate of ii) 3 days window, iii) 7 days window, and iv) 14 day window, for each disaster. The

parameter estimates and standard errors are shown in each figure.

4 Regression Analysis

4.1 Models

To understand the effect of the independent variables on the displacement rates and the speed of

recovery, we apply a generalized linear regression modeling framework. Because the displacement

rates are probabilities, 0 < D(t) < 1 holds for any t. Therefore, we apply a logit link function to the

displacement rates in the regression model. Similarly, because the recovery times take only positive

values (0 < τ ), we apply a log link function to the speed parameter. Equations (3) and (4) show

the generalized linear regression model where β are the regression coefficients, x are the independent

variables explained in the next section, and ε ∼ N (0, σ2) is the error term. The model parameters are

estimated via maximum likelihood estimation.

log
( D(t)

1−D(t)

)
= βTx+ ε (3)

log (τ) = βTx+ ε (4)
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4.2 Independent Variables

4.2.1 Socio-economic data

In the regression analyses of population recovery, socio-economic data were used as independent

variables. Table S4 lists the independent variables used in the study. The number of households and

median income data were log-transformed to truncate the skewness of the data (some cities such as

Miami-Dade County have extremely large values). For Florida and Puerto Rico, population data were

obtained from the US National Census6, and median income data were obtained from the American

Community Survey7. Similarly, for Japanese LGUs, population and income data were obtained from

the Statistics Bureau8 of the Ministry of Internal Affairs and Communications of Japan.

The proximity of city i to large cities is calculated by dp(i) =
∑
j∈S(i)Nj
Ni

, where Ni is the number

of households in city i, and S(i) is the set of cities that can be reached within 1 hour by vehicles from

city i. dp would be large for small cities that have large cities around it, and small for more isolated

cities. For cities with similar population levels, dp would be proportional to the total population of

surrounding cities. Similarly, we propose the proximity to wealthy cities by using the median income

value instead of the household number in the previous equation. This value would be large if the origin

city has a relatively low income and it is surrounded by wealthier cities nearby. Note that these two

complex variables capture not only the characteristics of the origin city, but that of the receptor cities.

4.2.2 Power damage

Figure S4 compares the recovery process of power outages in the four major disasters. The data of

Puerto Rico were collected from the website StatusPR9, which is a government operated website

that showed the recovery status of Puerto Rico after the Hurricane. Data of Hurricane Irma were col-

lected from the Florida Division of Diaster Management10. Power outage information in the Japanese

disasters were collected from the utility companies. All data are publicly available and accessible.

Figure S4 highlights the quick recovery of power in Florida and Japan (around 10 days until full

recovery) compared to Puerto Rico after Hurricane Maria (more than 80 days and still around 60%

availability).
6https://www.census.gov/
7https://www.census.gov/programs-surveys/acs
8https://www.stat.go.jp/
9http://status.pr/

10https://www.floridadisaster.org/
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Table S4: Descriptions, variable transformations, and sources of socio-economic data

Variable Description Trans. Data Source

Households Number of households in LGU log
Statistics Bureau (Japan)

ACS* (USA)

Median income Median household income in LGU log
Statistics Bureau (Japan)

ACS* (USA)

Housing damage Rate of households damaged in LGU -
Cabinet Office (Japan)

FEMA (USA)

Proximity to large cities

∑
j∈S(i)Nj
Ni

Ni: households in LGU i

S(i): nearby cities from i

- -

Proximity to wealthy cities

∑
j∈S(i)(MI)j

(MI)i

(MI)i: income in LGU i

S(i): nearby cities from i

- -

Infrastructure recovery Days until power recovery in LGU - Local government reports

*ACS: American Communty Survey

4.3 Regression results

Table S5 shows the correlations among the independent variables. Correlations between all pairs of

variables in all disasters were not significantly high, thus we included them in the regression analysis.

Infrastructure recovery time was excluded in the model for estimating D0, since this information

would not be available on day 0. Table S6, Table S7, and Table S8 show the regression results of the

best models for log ( D0
1−D0

), log ( D160
1−D160

), and log (τ), respectively, for each disaster in each column.

The set of independent variables for the best model for each disaster was chosen based on the lowest

AIC value and statistical significance (p < 0.1). The prediction results from the best models are

plotted in Figure 3c and 3d in the manuscript against the true values. For the initial displacement

rates log ( D0
1−D0

), housing damage rates were the most significant variables as expected, (also shown

in Figure 4 in the manuscript), with the exception of Puerto Rico. In Puerto Rico, median income

values and proximity to wealthier cities were a better predictor of initial evacuation. For the long

term (t = 160) displacement rates, the significant variables varied across different disasters. We

see that median income has a positive association with long term displacements, which indicate that

people with more income were able to evacuate and migrate to places that were not hit by the disaster.

Recovery speed had the lowest predictability out of all objective variables. Again, the significant

13



Figure S4: Recovery speed of power outages. Comparison of recovery from power outages across

the four major disasters. For Hurricane Irma (Florida, USA), Tohoku Tsunami (Tohoku, Japan), and

Kumamoto Earthquake (Kyushu, Japan), it took less than 10 days from the disaster day to restore more

than 90% if the power outages. On the other hand, it took more than 200 days after Hurricane Maria

for full recovery of power in Puerto Rico.

variables were different across different disasters. The findings and insights are discussed in the main

manuscript in detail. Table S9 shows the regression results for various timings. We can observe that

the effects of key variables in each disaster stay similar in general over time, with minor differences

across timings.

4.4 Case study of intra-LGU variability in Miami-Dade County

In this study, regression analysis on the recovery parameters were conducted on the local government

unit (LGU) scale (i.e. counties in Puerto Rico and Florida, and city/ward/towns in Japan). This was

mainly due to the limitation in the number of mobile phone user samples; analysis at a further finer

scale would yield statistically insignificant results especially in rural areas. Moreover, the LGU scale

is the finest scale in which we can obtain socio-economic data in Japan, unlike the US where data is

available on the census tract level through the American Community Survey.

Despite such limitations in the data, the intra-LGU variability in the socio-economic characteris-

tics is of great importance in understanding spatial heterogeneity in population displacement and re-

covery patterns. Here we show a case study of Miami-Dade county after Hurricane Irma, which does

not suffer from either of the data limitations; a large city with enough mobile phone user samples,

located in the US with census-tract level socio-economic data. We were able to collect the number

14



Tohoku Tsunami HDR log(NH) log(MI) PLC PWC IRT

Housing Damage Rate 1

log(Number of Households) -0.22 1

log(Median Income) -0.14 0.51 1

Proximity to Large Cities 0.22 -0.18 0.39 1

Proximity to Wealthy Cities 0.7 0.082 -0.0026 -0.064 1

Infrastructure Recovery Time 0.18 0.31 0.6 0.68 0.039 1

Hurricane Irma HDR log(NH) log(MI) PLC PWC IRT

Housing Damage Rate 1

log(Number of Households) 0.095 1

log(Median Income) -0.036 0.53 1

Proximity to Large Cities -0.058 -0.65 -0.26 1

Proximity to Wealthy Cities 0.72 -0.082 0.078 -0.077 1

Infrastructure Recovery Time -0.29 -0.37 -0.52 0.34 -0.4 1

Hurricane Maria HDR log(NH) log(MI) PLC PWC IRT

Housing Damage Rate 1

log(Number of Households) -0.34 1

log(Median Income) -0.25 0.48 1

Proximity to Large Cities 0.28 -0.31 -0.0093 1

Proximity to Wealthy Cities 0.19 0.061 -0.015 -0.18 1

Infrastructure Recovery Time 0.15 0.39 0.14 0.59 -0.12 1

Kumamoto Earthquake HDR log(NH) log(MI) PLC PWC IRT

Housing Damage Rate 1

log(Number of Households) -0.22 1

log(Median Income) 0.075 0.65 1

Proximity to Large Cities 0.53 -0.44 -0.11 1

Proximity to Wealthy Cities 0.48 -0.15 -0.072 0.064 1

Infrastructure Recovery Time 0.44 0.018 0.18 0.6 0.092 1

Table S5: Correlation between the variables used for regression.
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Dependent Variable: log( D0
1−D0

)

Tohoku Tsunami Hurricane Irma Hurricane Maria Kumamoto Eq.

Intercept
-8.21**

(3.46)

0.18

(0.78)

20.17***

(5.39)

-40.55***

(6.32)

Housing Damage Rate
7.35***

(1.27)

4.71***

(1.00)
-

4.37***

(0.81)

log(Households)
0.65*

(0.34)

-0.12**

(0.05)
- -

log(Median Income) - -
-1.94***

(0.55)

3.75***

(0.61)

Proximity to Large Cities - - - -

Proximity to Wealthy Cities -
-0.03*

(0.02)

-0.018***

(0.006)
-

Observations 30 49 78 33

Adjusted R2 0.51 0.44 0.22 0.59

AIC 126.67 79.91 233.60 102.32

Significance F < 0.01*** < 0.01*** < 0.01*** < 0.01***

Table S6: Regression models with for displacement rates on day 0 for all disasters
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Dependent Variable: log( D160
1−D160

)

Tohoku Tsunami Hurricane Irma Hurricane Maria Kumamoto Eq.

Intercept
-16.36**

(6.72)

-0.57**

(0.28)

-6.29***

(1.87)

-23.54***

(7.49)

Housing Damage Rate
2.01***

(0.51)

0.91**

(0.43)

1.06**

(0.46)
-

log(Households)
-0.34***

(0.11)

-0.096***

(0.023)
- -

log(Median Income)
1.76**

(0.70)
-

0.53***

(0.186)

1.99***

(0.72)

Proximity to Large Cities
-0.0036**

(0.00172)
- - -

Proximity to Wealthy Cities - - - -

Infrastructure recovery speed
-0.014*

(0.0069)
-

-0.006*

(0.0032)

-0.27**

(0.12)

Observations 30 49 78 33

Adjusted R2 0.48 0.31 0.12 0.17

AIC 42.02 1.648 60.71 118.84

Significance F < 0.01*** < 0.01*** < 0.01*** < 0.01***

Table S7: Regression results for displacement rates on day 160
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Dependent Variable: log(τ)
Tohoku Tsunami Hurricane Irma Hurricane Maria Kumamoto Eq.

Intercept
3.71***

(0.36)

1.98***

(0.21)

1.19**

(0.53)

36.28***

(11.89)

Housing Damage Rate - -
3.47**

(1.34)
-

log(Households) - - - -

log(Median Income) - - -
-3.143***

(1.15)

Proximity to Large Cities -
-0.0099*

(0.0050)

-0.0075***

(0.0027)
-

Proximity to Wealthy Cities
-0.15***

(0.039)
- - -

Infrastructure recovery speed - - - -

Observations 30 49 78 33

Adjusted R2 0.33 0.058 0.19 0.13

AIC 80.078 168.19 223.511 140.92

Significance F < 0.01*** < 0.1** < 0.01*** < 0.01***

Table S8: Regression results for recovery speed
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Tohoku Tsunami t = 0 10 20 30 60 160

Intercept -8.21** -30.79*** -39.80*** -28.37*** -21.92*** -16.36**

Housing Damage 7.35*** 4.34*** 4.38*** 3.45*** 2.88*** 2.01***

log(Households) 0.65* -0.37*** -0.32* -0.30*** -0.36*** -0.34***

log(Median Income) - 3.13*** 3.95*** 2.84*** 2.29*** 1.76**

Proximity to Large Cities - -0.0069** -0.011*** -0.0069*** -0.0056*** -0.0036**

Infrastructure recovery - -0.0147* -0.025** -0.019*** -0.018*** -0.014*

Adjusted R2 0.51 0.60 0.72 0.78 0.48

Hurricane Irma t = 0 10 20 30 60 160

Intercept 0.18 0.17 0.29 -4.04* -0.42 -0.57**

Housing Damage Rate 4.71*** 2.14*** 0.67* 0.72* - 0.91**

log(Households) -0.12** -0.16*** -0.16*** -0.14*** -0.11*** -0.096***

log(Median Income) - - - 0.37* - -

Proximity to Wealthy Cities -0.03* - - - - -

Adjusted R2 0.44 0.51 0.46 0.48 0.38 0.31

Hurricane Maria t = 0 10 20 30 60 90 120 160

Intercept 20.17*** 4.73*** 4.28*** 3.22*** -3.28* -4.93*** -5.21*** -6.29***

Housing Damage Rate - - - - 1.26*** 0.91** - 1.06**

log(Households) - -0.46*** -0.43*** -0.35*** -0.22*** -0.10** -0.27*** -

log(Median Income) -1.94*** - - - 0.44** 0.49*** 0.72*** 0.53***

Proximity to Wealthy Cities -0.018*** - - - - - - -

Infrastructure recovery speed - - - - - - - -0.006*

Adjusted R2 0.22 0.26 0.32 0.29 0.31 0.20 0.17 0.12

Kumamoto Earthquake t = 0 10 20 30 60 160

Intercept -40.55*** -34.02*** -27.18*** -23.51*** -24.50*** -23.54***

Housing Damage Rate 4.37*** 4.16*** 3.65*** 3.16*** 2.87*** -

log(Median Income) 3.75*** 3.02*** 2.35*** 1.99*** 2.09*** 1.99***

Infrastructure recovery - - - - - 0.27**

Adjusted R2 0.59 0.52 0.44 0.36 0.34 0.21

Table S9: Regression results for displacement rates on various timepoints log( D(t)
1−D(t))
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Figure S5: Long term displacement rates D160 plotted against housing damage rates for each
community in the four major disasters. For all disasters, the correlation between housing damage

rates and long term displacement rates are weaker than that with initial displacement rates, implying

that recovery of communities are governed by more factors in addition to housing damage rates. In

some communities such as Noda and Tanohata after the Tohoku Tsunami (a), displacement rates even

increased compared to initial displacement rates after the Tohoku Tsunami.
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Figure S6: Heterogeneity of community recovery patterns given similar initial displacement
rates. Recovery patterns D(t) of each community plotted against number of days after the disaster

for all disasters. Community recovery patterns are divided into three groups depending on the initial

displacement rates D0. Colors indicate the disaster, similar to previous figures. Broad black line

shows the average values of the recovery patterns in the group. The results show that long term

recovery outcomes are heterogeneous despite similar initial displacement conditions.
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Figure S7: Correlation between census-tract level features in Miami-Dade

of households, median income, and housing damage rates in each census tract after Hurricane Irma.

Figure S7 shows the correlations and scatter plots of each of the variables. The number of households

and median income resemble a log-normal distribution (note the log-scale). Regression analysis were

performed on displacement rates on dats t = 0, 5, 10, 20, 60 in a similar manner as the previous ex-

periments, using the three aforementioned variables. Table S10 lists the regression coefficients, their

significance, and the adjusted R2 for the different timepoints. The most striking difference between

the county-level analysis and the census tract level analysis was that housing damage rate had a neg-

ative correlation with displacement rates at all times on the census tract level. This was due to the

strong negative correlation between median income levels and housing damage rates, and the fact that

wealthier people were able to evacuate more from the hurricane. Figure S8 shows the observed and

predicted displacement rates on the census tract level for 4 different timepoints (t = 0, 5, 10, 60). We

can observe the low correlation coefficient in all timepoints compared to the county-level analysis (e.g.

Figure 3), and that we are not able to explain the census tract level heterogeneity very well. This may

be due to the small sample size in each census tract, which is an average of 40.7 (Figure S9). A more

robust estimation using sparse mobile phone user samples would be needed to give better estimations

on the census tract granularity.
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Figure S8: Prediction of displacement rates in Miami-Dade

Figure S9: Histogram of mobile phone user samples in Miami-Dade census tracts
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Hurricane Irma; Miami-Dade t = 0 5 10 20 60

Intercept -8.69*** -7.43*** -7.17*** -10.48*** -9.11***

Housing Damage Rate -3.34*** -1.32*** -3.97*** -1.31*** -2.02***

log(Households) 0.08** 0.07** 0.14*** 0.28*** 0.17***

log(Median Income) 0.63** 0.35*** 0.21*** 0.35*** 0.32***

Adjusted R2 0.19 0.072 0.12 0.12 0.06

Table S10: Regression results for displacement rates on various timepoints of census tracts in
Miami-Dade County log( D(t)

1−D(t))
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