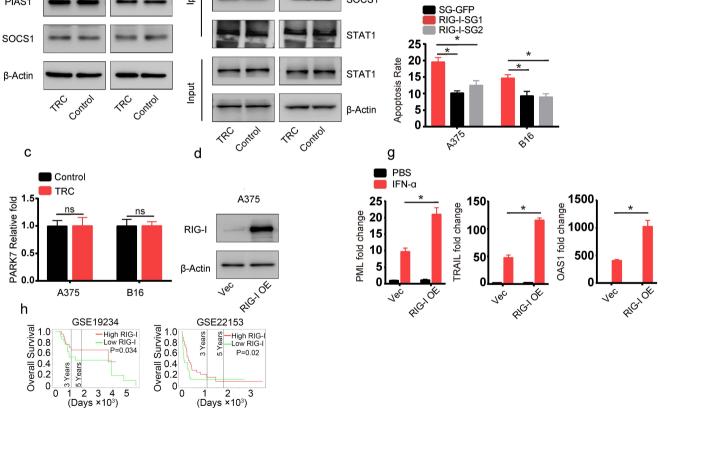

Target mRNA	Primer	Sequence
Human PML	Forward	GGATGAAGTGCTACGCCTCG
	Reverse	TCCCCTGGGTGATGCAAGA
Murine Pml	Forward	TGAACCAGTTTCCGTGCAGAA
	Reverse	TGAAATTCCTCCTGTATGGCTTG
Human TRAIL	Forward	TGCGTGCTGATCGTGATCTTC
	Reverse	GCTCGTTGGTAAAGTACACGTA
Murine Trail	Forward	ATGGTGATTTGCATAGTGCTCC
	Reverse	GCAAGC AGGGTCTGTTCAAGA
Human OAS1	Forward	AGTTGACTGGCGGCTATAAAC
	Reverse	GTGCTTGACTAGGCGGATGAG
Murine Oas1	Forward	GGGCCTCTAAAGGGGGTCAAG
	Reverse	TCAAACTTCACTCCACAACGTC
Human RIG-I	Forward	CTGGACCCTACCTACATCCTG
	Reverse	GGCATCCAAAAAGCCACGG
Murine RIG-I	Forward	CAGATCCGAGACACTAAAGGGA
	Reverse	TCCTCATCAGCCTTGCTTTCA
Human OCT3/4	Forward	CTTGAATCCCGAATGGAAAGGG
	Reverse	GTGTATATCCCAGGGTGATCCTC
Murine Oct3/4	Forward	CACCATCTGTCGCTTCGAGG
	Reverse	AGGGTCTCCGATTTGCATATCT
Human NANOG	Forward	AAGGTCCCGGTCAAGAAACAG
	Reverse	CTTCTGCGTCACACCATTGC
Murine Nanog	Forward	AGGACAGGTTTCAGAAGCAGA
	Reverse	CCATTGCTAGTCTTCAACCACTG
Human SOX-2	Forward	TGGACAGTTACGCGCACAT
	Reverse	CGAGTAGGACATGCTGTAGGT
Murine Sox-2	Forward	GCGGAGTGGAAACTTTTGTCC


Supplementary Table S1. The sequences of primers for RT-PCR.

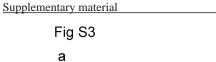
	Reverse	CGGGAAGCGTGTACTTATCCTT
Human STAT3	Forward	CAGCAGCTTGACACACGGTA
	Reverse	AAACACCAAAGTGGCATGTGA
Human β-actin	Forward	CATGTACGTTGCTATCCAGGC
	Reverse	CTCCTTAAT GTCACGCACGAT
Murine β -actin,	Forward	GGCTGTATTCCCCTCCATCG
	Reverse	CCAGTTGGTAACAATGCCATGT

Supplementary material Fig S1

е

RIG-I

59-GFP SORWAY


PIAS1 ^{β-Actin}

f SOCS1

SHP2

A375

SORWAR

B16

A375

SHP1

SHP2

PIAS1

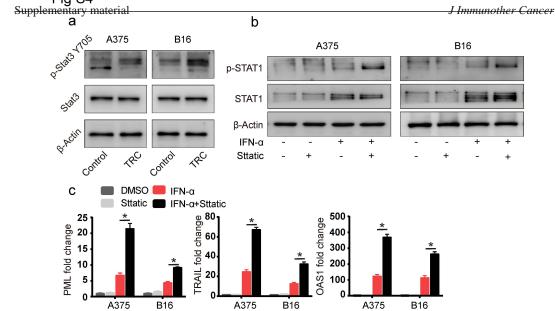
b

lp anti-STAT1

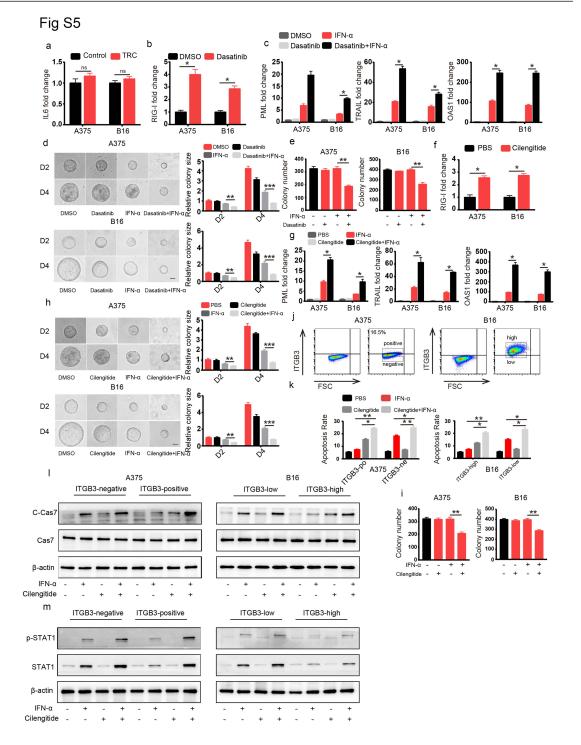
A375

B16

B16


50RWA'

SPICEP SPICE


50 RWAZ

RIG-I

β-Actin

Li Y, et al. J Immunother Cancer 2020; 8:e000111. doi: 10.1136/jitc-2019-000111

Li Y, et al. J Immunother Cancer 2020; 8:e000111. doi: 10.1136/jitc-2019-000111

1 Supplementary Figure legends

Figure S1.(a) B16 TRCs and A375 TRCs were treated with 1000 U/mL human 2 recombinant IFN-a or 200 ng/mL murine recombinant IFN-a for 48 h. Cells were 3 collected, and analysed cell cycle with BD cell-cycle analysing kit. Flask-cultured 4 tumor cells were used as control (b) RPMI 8226 TRCs and HepG2 TRCs were treated 5 6 with 1000 U/mL human recombinant IFN-a for 48 h. Cell lysates were collected, and caspase 3, caspase 7 and their cleaved forms were analysed by immunoblotting. Flask-7 cultured tumor cells were used as control. (c) RPMI 8226 TRCs and HepG2 TRCs were 8 9 treated with 1000 U/mL human recombinant IFN-α for 48 h. The cells were isolated, stained with annexin V and 7-AAD and analysed by flow cytometry. Columns indicate 10 three independent replicate experiments. Flask-cultured tumor cells were used as 11 control. (d) A375 and B16 TRCs were treated with 1000 U/mL human recombinant 12 IFN-α or 200 ng/mL murine recombinant IFN-α for 48 h. Total RNA was extracted and 13 14 reverse transcribed, and gene expression was analysed by RT-qPCR.(e) A375 and B16 15 TRCs were treated with 1000 U/mL human recombinant IFN- α or 200 ng/mL murine recombinant IFN-a for 48 h. Cells were collected and seeded on corning ultra-low 16 17 adhesion plate with 1000 cells/ml. Cultured with serum free DMEM-F12 containing B27,20ng/ml EGF, 0.4% bovine serum albumin, and 4 mg/ml insulin. After culturing 18 for ten days, the spheres were counted. The data shown are representative of three 19 20 independent experiments and represent the mean \pm S.E.M. (indicated by errors bars). *P < 0.05. 21

Figure S2. (a) RPMI 8226 TRCs and HepG2 TRCs were treated with 1000 U/mL 22 23 human recombinant IFN- α for 24 h. Total RNA was extracted and reverse transcribed, and gene expression was analysed by RT-PCR with specific primers for PML, TRAIL 24 25 and OAS1. Flask-cultured tumor cells were used as control. (b) A375 TRCs and B16 26 TRCs were isolated, stained with anti-IFNAR1 and analysed by flow cytometry. Flaskcultured tumor cells were used as control. Columns indicate three independent replicate 27 experiments. (c) A375 TRCs and B16 TRCs were treated with 1000 U/mL human 28 29 recombinant IFN-α or 200 ng/mL murine recombinant IFN-a for 6 h, and cell lysates

1

Supplementary material

1 were collected and analysed by immunoblotting. The data shown are representative of 2 three independent experiments and represent the mean \pm S.E.M. (indicated by error 3 bars). ns: not significant, *P < 0.05.

Figure S3. (a) The lysates of flask-cultured control cells and TRCs of A375 or B16 4 5 cells were analysed by immunoblotting using the indicated antibodies. (b) A375 TRCs 6 and B16 TRCs were treated with 1000 U/mL human recombinant IFN-a or 200 ng/mL 7 murine recombinant IFN-α for 6 h. Cell lysates were collected for immunoprecipitation with anti-STAT1 antibody, and protein interactions were analysed by immunoblotting 8 9 with the indicated antibodies. Flask-cultured tumor cells were used as control. (c) Total RNA from TRCs of A375 or B16 and flask-cultured control tumor cells was extracted, 10 reverse transcribed and analysed with specific primers for PARK7. (d) RIG-I 11 overexpression in A375 cells was verified via immunoblotting with anti-RIG-I antibody. 12 (e) RIG-I knockout in A375 and B16 cells by CRISPR/Cas9 was verified via 13 14 immunoblotting with anti-RIG-I antibody. (f) Flask-cultured RIG-I knockout A375 and 15 B16 cells generated by CRISPR targeting were treated with 1000 U/mL human 16 recombinant IFN- α or 200 ng/mL murine recombinant IFN- α for 48 h. Cells were 17 isolated and stained with annexin V and 7-AAD and analysed by flow cytometry. Columns indicate three independent replicate experiments. (g) TRCs of A375 RIG-I-18 overexpressing cells and control cells were treated with human recombinant IFN-A for 19 20 24 h. The total RNA was extracted and gene expression was analysed by RT-qPCR. (h) Two melanoma datasets obtained from Gene Expression Omnibus (GEO) profiles 21 22 (PROGgeneV2) and clinical data were analysed via Kaplan-Meier survival analysis 23 The data shown are representative of three independent experiments and represent the mean± S.E.M. (indicated by errors bars). ns: not significant. 24

Figure S4. (a) Cell lysates from A375 TRCs and B16 TRCs were extracted and analysed via immunoblotting with the indicated antibodies. Flask-cultured tumor cells were used as control. (b) A375 TRCs and B16 TRCs were pretreated with stattic (1 μ M) for 12 h and then treated with human recombinant IFN- α (1000 U/mL) and murine recombinant IFN- α (200 ng/mL) for 6 h. Cell lysates were extracted and analysed via

2

Li Y, et al. J Immunother Cancer 2020; 8:e000111. doi: 10.1136/jitc-2019-000111

immunoblotting with the indicated antibodies. (c) A375 TRCs and B16 TRCs were pretreated with stattic (1 μ M) for 12 h and then treated with human recombinant IFNa (1000 U/mL) and murine recombinant IFN-a (200 ng/mL) for 16 h. Total RNA from TRCs was extracted, reverse transcribed and analysed by RT-PCR with specific primers for PML, TRAIL and OAS1. The data shown are representative of three independent experiments and represent the mean± S.E.M. (indicated by error bars). ns: not significant, **P* < 0.05.

Figure S5. (a) The expression of IL6 in A375 TRCs and B16 TRCs was analyzed by 8 9 RT-qPCR. (b) A375 TRCs and B16 TRCs were treated with dasatinib $(1 \mu M)$ for 12h. The expression of RIG-I was analyzed by RT-qPCR. (c) A375 TRCs and B16 TRCs 10 were pretreated with dasatinib $(1 \,\mu M)$ for 12h and then treated with 1000 U/mL human 11 recombinant IFN-α or 200 ng/mL murine recombinant IFN-a for 24 h. The expression 12 of PML, TRAIL and OAS1 was analyzed by RT-qPCR. (d-e) A375 and B16 cells were 13 14 seeded in fibrin, and after two days, the cells were treated with dasatinib (1 µM), IFNa (1000 U/mL for A375 cells, 200 ng/mL for B16 cells) or both for 4 days (d). The 15 colonies size was determined at day 2. Scale bar: 25 µm (e) The numbers of colonies 16 17 were counted at day 4. (f) A375 TRCs and B16 TRCs were treated with cilengitide (1 μM) for 12 h. The expression of RIG-I was analyzed by RT-qPCR. (g) A375 TRCs and 18 B16 TRCs were pretreated with cilengitide (1 μ M) for 12 h and then treated with 1000 19 20 U/mL human recombinant IFN-a or 200 ng/mL murine recombinant IFN-a for 24 h. The expression of PML, TRAIL and OAS1 were analyzed by RT-qPCR. (h-i) A375 and 21 22 B16 cells were seeded in fibrin, and after two days, the cells were treated with 23 cilengitide (1 μ M), IFN- α (1000 U/mL for A375 cells, 200 ng/mL for B16 cells) or both for 4 days (h). The colonies size was determined at day 2. Scale bar: 25 µm (i) The 24 25 numbers of colonies were counted at day4. (j) Representative images of sorting strategy. (k-m) The sorted cells were seeded in 6-well plate after 12h, the cells were treated with 26 cilengitide (1uM), IFN-a (human recombinant IFN-a (1000 U/mL) and murine 27 28 recombinant IFN-a (200 ng/mL)) or cilengitide/IFN-a for 2 days. (k) Cells were collected and analysed apoptosis via flow cytometry. (1-m) Cell lysates were collected 29

Li Y, et al. J Immunother Cancer 2020; 8:e000111. doi: 10.1136/jitc-2019-000111

- 1 and analysed via immunoblotting with the indicated antibodies. The data shown are
- 2 representative of three independent experiments and represent the mean± S.E.M.
- 3 (indicated by error bars). ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001.