SUPPLEMENTARY MATERIAL

Contents:

Supplementary Table 1. Oligonucleotides used in this study. Supplementary Table 2. Human genes regulated by miRNA-20. Supplementary Figure 1. Related to Figure 2. Supplementary Figure 2. Related to Figure 3. Supplementary Figure 3. Related to Figure 3. Supplementary Figure 4. Related to Figure 3. Supplementary References

Supplemental	Table 1:	Oligonucleotides	used in this	study.
--------------	----------	------------------	--------------	--------

Primer name	Sequence (5' to 3')
GAPDH_Fw	TGCACCACCAACTGCTTAGC
GAPDH_Rv	GGCATGGACTGTGGTCATGAG
FANCA-qPCR_Fw	TTGCTGCCTTTGGGTCTTCC
FANCA-qPCR_Rv	CAGCGCCTCAGAAGAGAGGACG
FANCC-qPCR_Fw	GCTGGCACTCTTTCAGTTGAC
FANCC-qPCR_Rv	CGTCTTCATGGAAGTAGGAGAGA
miR-20-qPCR	TAAAGTGCTTATAGTGCAGGTAGAAA
Let-7-qPCR	TGAGGTAGTAGGTTGTATAGTTAAA
SNORD44_qPCR	GCAAATGCTGACTGAACATGAA

Supplemental Table 2: Human genes regulated by miRNA-20. Column 1 indicates if the gene was experimentally validated (blue, [1]) or identified *in silico* in this study (green). Columns 2 and 3 show the maximum effect detected for each gene in K562 and HeLa cells, using data from [2].

Trompeter et al. PLOS One 2011	K562Maximum Effect (95% Credible Interval)	HeLaMaximum Effect Estimate
CCND1	1,9	1,7
CCND2	2	1,1
CDKN1A	2,3	1,5
E2F1	1	3,8
PTEN	3	4,6
RBL1	1	2
RBL2	4,2	2,2
(experimetally validated!)		
Found by 3 softwares		
CFL2	4,3	1,3
DYNC1LI2	1,7	3,5
ENPP5	0,9	3,1
EPHA4	-0,1	2,8
EZH1	3	2,7
FBXL5	4,3	1,6
GPR6	5,8	3,5
MYT1L	1,1	2,6
PKD2	2	2,6
PLEKHA3	0,5	2,9
RRAGD	4	2,1
RUFY2	1,7	6,2
VLDLR	2,7	1,8
ZNF800	2,1	3,9
ZNFX1	5,6	4

Supplemental Figure 1 (Related to Figure 2): Mir-20a binding sites in human RC-L1s. The table describe the binding sites for miR-20a identified in the consensus sequence of human active L1s, after sequence analyses using the rna22 online tool (<u>https://cm.jefferson.edu/rna22/</u>). From left to right, columns 1 and 2 indicate the name of the miRNA and gene, respectively; column 3, indicates the leftmost position of the predicted binding site, with respect to L1.3 [[3], accession number L19088.1]; column 4, indicates the folding energy (in Kcal/mol); column 5, contains the alignment of the miRNA and gene; and column 6, indicates the p value of the findings.

miR name	Transcript	Leftmost position of predicted target site	Folding energy (Kcal/mol)	Heteroduplex alignment	p value
hsa-miR-20a	L1Hs	607	-10.00	GTCCCTGT-CTGACAGCTTTG : : : : GATGGACGTGATATTCGTGAAAT	5.68E-3
hsa-miR-20a	L1Hs	5910	-10.10	ATACCTAATGCTAGATGACACATTA : GATGGA-CGTGATATTC-GTGAAAT	3.74E-1

Supplemental Figure 2 (Related to Figure 3): siRNA/L1-retrotransposition reporter assay controls. Shown are representative retrotransposition assays conducted in HeLa cells using plasmid JJ101/L1.3 in the presence of the indicated siRNA. The graph at the bottom plots the relative retrotransposition rate of the above assays, where cells co-transfected with a non-targeting control siRNA (NTC) were assigned 1 for comparison. The SD of the assay is indicated (duplicate).

JJ101/L1.3

Supplemental Figure 3 (Related to Figure 3): Kinetic of L1 retrotransposition using *mblastI*-tagged RC-L1s. The top panel shows a scheme of the assay, where circles indicate days. Below are shown representative retrotransposition results in HeLa cells using plasmid JJ101/L1.3. Indicated in the top is the day where blasticidin selection was started. NO BLAST, no antibiotic was used, as a control. The graph in the bottom shows the number of blasticidin resistant foci (triplicate) generated upon JJ101/L1.3 transfection in HeLa cells, and starting blasticidin selection in the indicated day.

Supplemental Figure 4 (Related to Figure 3): siRNA/L1-retrotransposition reporter assays in HeLa (left side) and HCT116 (right side) cells. The graphs at the top show results from mitomycin C (MMC) sensitivity assays upon siRNA treatment (for FANC-A and FANC-C). The graph plots the percentage of cell viability detected upon treatment of siRNA transfected cells with 0 (black bars, assigned 100%), 50 (dark grey) and 100 nM MMC (light grey bars). Below are shown representative retrotransposition (JJ101/L1.3) and toxicity/clonability (pCDNA6) results in HeLa (left) and HCT116 (left) cells transfected with the indicated FANC siRNA (A or C) or with a NT control (siNT), used as an internal negative control. The graphs at the bottom plot the retrotransposition rate upon siRNA treatment (FANC-A and FANC-C, dark and light grey bars, respectively) relative to siNT. The SD of the assay is indicated. Unpaired two-sided t-test, *P<0.05.

(HCT116)

siFANC.C

pCDNA6

siNT

siFANC-A

□ siFANC-C

Supplementary References

1 Trompeter, H. I., Abbad, H., Iwaniuk, K. M., Hafner, M., Renwick, N., Tuschl, T., Schira, J., Muller, H. W., Wernet, P. 2011 MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. *PloS one.* **6**, e16138. (10.1371/journal.pone.0016138)

2 Liu, N., Lee, C. H., Swigut, T., Grow, E., Gu, B., Bassik, M. C., Wysocka, J. 2018 Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. *Nature*. **553**, 228-232. (10.1038/nature25179)

3 Sassaman, D. M., Dombroski, B. A., Moran, J. V., Kimberland, M. L., Naas, T. P., DeBerardinis, R. J., Gabriel, A., Swergold, G. D., Kazazian, H. H., Jr. 1997 Many human L1 elements are capable of retrotransposition. *Nat Genet.* **16**, 37-43. (10.1038/ng0597-37)