# **Supporting Information**

# Into the wild: microbiome transplant studies need broader ecological reality

#### Authors

Christopher J. Greyson-Gaito<sup>\*1</sup><sup>†</sup>, Timothy J. Bartley<sup>1,2</sup><sup>†</sup>, Karl Cottenie<sup>1</sup><sup>†</sup>, William Jarvis<sup>3</sup><sup>†</sup>, Amy E.M. Newman<sup>1</sup><sup>†</sup>, Mason R. Stothart<sup>4</sup><sup>†</sup>

#### Affiliations

\*Corresponding author - christopher@greyson-gaito.com

- 1. University of Guelph, Department of Integrative Biology, Guelph, ON, Canada
- 2. University of Toronto Mississauga, Mississauga, ON, Canada
- 3. University of Ottawa, Department of Biology, Ottawa, ON, Canada
- 4. University of Calgary, Calgary, AB, Canada

†All authors contributed equally

#### Search terms used for methodological literature search

- Google scholar
  - (transplant\* AND microbio) (gut OR fecal OR feces OR gastrointestin OR gastrointestin\* OR faecal OR faeces OR forces OR faecal) -human -patient -"homo sapiens" -man -woman -child\*
- Web of Science
  - ((TOPIC:(transplant) AND TOPIC: (microbio))AND (TOPIC: ((((((gut OR fecal) OR feces) OR gastrointestin) OR gastro-intestin) OR faecal) OR faeces) OR foeces) OR faecal) NOT TOPIC:(((((human OR patient) OR homo sapiens) OR man) OR woman) OR child\*)))

| Experimental | Ordinal Data Scale                                                     |
|--------------|------------------------------------------------------------------------|
| Condition    |                                                                        |
| Taxon Match  | 1 = Mismatch (different species)                                       |
|              | 2 = Match (same species)                                               |
| Donor        | 1 = Lab animal host in sterile lab                                     |
| Environment  | 2 = Lab animal host in non-sterile lab                                 |
|              | 3 = Captive bred wildlife (multiple generations bred in captivity)     |
|              | 4 = Wildlife brought into captivity (no generations bred in captivity) |
|              | 5 = Free-ranging wildlife (capture and release)                        |
| Donor        | 1 = Gene knockout or disease harbouring (non-microbial)                |
| Physiology   | 2 = Wildtype non-diseased                                              |
| Transplanted | 1 = Single strain                                                      |
| Microbiome   | 2 = Consortium, mixture of select strains                              |

Table S1 Ordinal data scale (EcoReality score) for each experimental condition

|             | 3 = Whole community (no sorting or altering of community sampled for       |
|-------------|----------------------------------------------------------------------------|
|             | transplantation)                                                           |
| Transplant  | 1 = Active (microbiome sample forcefully added to recipient gut e.g., by a |
| Method      | suppository or oral gavage)                                                |
|             | 2 = Passive (microbiome sample passively given to recipient e.g., mixed    |
|             | into food)                                                                 |
| Recipient   | 1 = Germ-free                                                              |
| Microbiome  | 2 = Antibiotic perturbed/pathologic                                        |
|             | 3 = Whole community (no experimental alteration of community)              |
| Recipient   | 1 = Lab animal host in sterile lab                                         |
| Environment | 2 = Lab animal host in non-sterile lab                                     |
|             | 3 = Captive bred wildlife (multiple generations bred in captivity)         |
|             | 4 = Wildlife brought into captivity (no generations bred in captivity)     |
|             | 5 = Free-ranging wildlife (capture and release)                            |
| Recipient   | 1 = Gene knockout or disease harbouring (non-microbial)                    |
| Physiology  | 2 = Wildtype or non-diseased                                               |
| Housing     | 1 = Housed singly (after microbiome transplantation)                       |
| Conditions  | 2 = Co-housed (after microbiome transplantation with either other          |
|             | replicates in the experiment or with individuals of the same species that  |
|             | were not replicates. Co-housing could also have been used as the method of |
|             | transplantation)                                                           |



Figure S1 Cumulative sum of articles from our directed review between 2006 and 2018.

### Data accessibility

The data, the above supporting information, and the R script for this manuscript are in a repository on GitHub. This repository can be cloned or downloaded straight from Github (<u>https://github.com/cgreysongaito/Intothewild\_Microbiome</u>) or from Zenodo (<u>https://doi.org/10.5281/zenodo.2652255</u>).

## Folder and file structure of Github repository (Intothewild\_Microbiome)

- data
  - EcoRealTable\_2019-10-09\_Data.csv
- figs
  - 2019-10-09 CountAnimals.pdf Figure 2 in manuscript
  - 2019-10-09 Eco-realityComparisons.pdf Figure 3 in manuscript
  - 2019-10-09 Eco-realityAverageStandardOverTime.pdf Figure 4 in manuscript
  - 2019-10-09 CumulativeSumArticles.pdf Supporting Information Figure 1
- .gitignore File containing files or folders that git should ignore
- IntotheWild\_Microbiome\_Greyson-Gaito\_etal\_2019.R R script for analysis and figure creation
- SupportingInformation\_Intothewild\_GreysonGaitoetal.pdf Supporting information (search terms, ordinal data scales, figure)
- LICENSE Mozilla Public License 2.0
- README.md Important information
- meta\_transplant\_microbiome.Rproj R Project to increase ease of use

### **Instructions for use**

- Download the whole repository (either by forking and cloning or by downloading a ZIP folder)
- In RStudio, open the project called meta\_transplant\_microbiome.Rproj and open the file Intothewild\_Microbiome\_Greyson-Gaito\_etal\_2019.R
  - If not using RStudio, open the file Intothewild\_Microbiome\_Greyson-Gaito\_etal\_2019.R and edit the path to the data file called EcoRealTable\_2019-10-09 Data.csv to whatever path is required on your computer.
- Run the script in RStudio or however you normally run R scripts