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Supplementary Information 

 
This supplementary material contains the following information to support the main 
text: 
 
1. The size distributions of 20 residues (Figure S1). 
 
2. The angle parameter discretization at four levels (N=15,20,25,30): 

• Figure S2 shows the performance on the Modeller dataset evaluation 
(using NEPRE-F with cutoff=6Å). 

• Figure S3 shows the statistics of un-sampled sections.  
• The performance in recognizing native structures is summarized in Table 

S1 for the four discretization schemes. 
 
3. The structure assessment performance comparison with other methods. A 
representative decoy set (1BYIA) was used to show the correlation between 
scores(energies) and the RMSD values with respect to native structure (Figure S4). 
 
4. The performance comparison on CASP12 dataset with other methods (Figure 
S5,S6,S7). 
 
5. The comparison for intra-chain and inter-chain neighborhood preferences. 
The Jensen-Shannon divergence (DJS) was used to measure the difference between the 
two distributions (intra- or inter- chain) for the neighboring case between any two 
amino acids.  
 
Where DJS is defined as: 
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And DKL is the Kullback-Leibler divergence: 
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Here, the p(x) and q(x) are the two distribution functions in the parameter space {x}. 
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Because DJS is symmetric and bounded to [0,1] (for the base 2 logarithm), we used 
DJS to measure the differences between the two distributions. The DJS for 20x20 pairs 
of amino acids were summarized in Figure S8. 
 
6. The decoy datasets:  

• The simulation decoy datasets are available from Zhanglab at 
https://zhanglab.ccmb.med.umich.edu/decoys/ 

• The CASP12 decoy sets used in this study are uploaded to Github at: 
https://github.com/TangYuan-Liu/NEPRE_dataset_used  

 

Figure S1. Distributions of amino acid radius. The statistics are based on the dataset 

composed of 14,647 high-resolution protein structures (BLAST p<10-7). The radius (in 

Å) is defined as the largest distance between any atom and the geometry center of the 

amino acid. Each distribution is fitted using a Gaussian function, and the mean values 

are used as the characteristic radius for that amino acid. 

 

Figure S2. The NEPRE-F performance on the Modeller dataset with four 

discretization schemes for the angle parameter space (next page). The θ [0,pi) and 

φ [0,2*pi] space was divided to 15x15, 20x20, 25x25, or 30x30 sections to describe the 

orientation dependent energy functions (see equation 4 in the main text). 20 decoy sets 

in the Modeller dataset were evaluated using each discretization scheme, and calculated 

energies were plotted against the RMSD values with respect to their native structures. 

The results suggest that the discretization scheme of 20x20 is sufficient for accurate 

assessment. The RMSD was in Å, and the energy is in the unit of kT. 
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Figure S3. The statistics of un-sampled sections for four discretization schemes. 

The number of un-sampled sections for all pairs of amino acids. Finer discretization 

resulted more un-sampled sections. With N=20 (400 sections), the un-sampled 

sections are fewer than 18.8 on average (red curve) for all amino acid pairs. In terms 

of percentage, the un-sampled regions are 3.2%, 4.6%, 6.0%, 7.3% for 

N=15,20,25,30. We choose a discretization scheme with N=20 to balance the function 

accuracy and statistical significance. For un-sampled sections, the probability is 0, 

corresponding to infinite high energy according to Boltzmann relation. To avoid such 

singularities, bi-linear interpolation in the potential energy space was carried out for 

those regions. 
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Figure S4. The correlation between energy function and the structure difference 

compared to native state (measured using RMSD) for decoy set 1BYIA in I-

TASSER(b). The energies calculated using these 6 methods have strong positive 

correlations to the structure qualities (RMSD values). 
 

 
Figure S5. The performance of NEPRE-F compared to RWplus on the CASP12 
dataset. The dots are the distributions of RMSD of decoy structures with respect to 
their native structure. The lines indicate the identified structures with the lowest 
energies. 
 

RMSD (Å) 

En
er

gy
/S

co
re

 



 6 

 
Figure S6. The performance comparison using CASP12 dataset for six methods. 
The colored lines show the selected model with the lowest energies. The RMSD was 
calculated with respect to the native structure solved using crystallography method. 
 

 
 
Figure S7. The performance comparison of six methods. The plot scheme is the 
same as Figure S6, except that the RMSD is replaced with the GDT_TS scores, which 
evaluate the similarity to the native structure.. 
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Figure S8. The comparison of neighborhood preferences derived from single 
chain protein structures and that from protein complex interfaces. The Jensen-
Shannon Divergence was used to measure the difference between the two 
distributions for each pair of amino acids (in the unit of bit, since the base 2 logarithm 
was used in the calculation). Each row summaries the neighborhoods centered at a 
particular amino acid type; and each entry in a row corresponds to a neighboring 
amino acid distributed around the centered amino acid. The columns for alanine, 
cysteine, glycine and valine reveal large differences in the neighborhood preferences; 
the divergences are small in other cases, indicating similar preferences. 
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Figure S9. The performance of multilayer NEPRE in identifying native structures. 
The layer information (the numbers indicate the cutoff distances, in Å) is shown in 
legends. Each column shows the number of identified native structures. 
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Table S1. The numbers of identified native structures using four discretization 
schemes for angle parameter space. 

 
 
 
 
 
 

The results presented in the main text was obtained with N=20.  
 
Table S2. The performance of NEPRE with multilayer potential energies. 
 

Layer (6,7)# 
 3DRobot I-TASSER(a) I-TASSER(b) Rosetta Modeller 

top1 153 49 23 30 14 
top5 177 49 32 50 16 
top10 183 49 36 52 16 

      
Layer (6, 7, 8) 

 3DRobot I-TASSER(a) I-TASSER(b) Rosetta Modeller 
top1 146 49 23 26 13 
top5 174 49 34 50 15 
top10 183 49 38 52 15 

      
Layer (6, 7, 8, 9) 

 3DRobot I-TASSER(a) I-TASSER(b) Rosetta Modeller 
top1 136 49 21 22 14 
top5 164 49 30 49 16 
top10 175 49 36 53 16 

      
Layer(6, 7, 8, 9, 10) 

 3DRobot I-TASSER(a) I-TASSER(b) Rosetta Modeller 
top1 133 50 21 19 14 
top5 158 50 30 47 17 
top10 169 50 37 50 17 

# The decoy models were ranked using the total energy:  𝐸9:9 = ∑ 𝐸<<∈{?@ABC}  where 
Ei is the potential energy function derived from the layer i. The other fields are the 
same as Table 4 in the main text. 
 

Number of Grids(N)  15 20 25 30 

Modeller Top1 13 13 13 15 

(20 decoy sets) Top5 14 16 15 16 

 Top10 15 18 17 19 


