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1 Deep neural network structures and training details

The architecture of DNN-L (and DNN-H) is shown in Fig S1. It assumes an encoder-decoder
structure where the encoder consists 4 Down-Residual blocks (DRBs) to gradually reduce the
size (length and width) of the feature maps to extract compressed representations of the signal
to preserve high-level (or equivalently, low spatial frequency) features; subsequently, the decoder
component, comprises of 4 Up-Residual blocks (URBs) and two (constant-size) Residual blocks
(RBs) to expand the size of the feature maps to form the final reconstruction. Critically important
for high spatial frequency preservation, skip connections are used to bypass the feature maps from
the encoder to the corresponding layers of the same size in the decoder. This particular DNN
architecture, also referred to as the Residual U-net [1], is used in [2] and has been proven to be
versatile to many different image-related applications.

Fig S2 shows the general architecture of DNN-S. DNN-S trains to take in two preliminary
reconstructions f̂LF and f̂HF, where f̂HF is bypassed to the near final stage of DNN-S by residual
(additive) skip connections and f̂LF is mapped by an encoder-decoder architecture to a variant of
itself to compensate the high-frequency artifacts and low-frequency distortions in f̂HF to produce
the synthesized final reconstruction f̂ .

Fig S3 shows more details of Up-residual blocks (URBs), Down-residual blocks (DRBs) and
Residual blocks (RBs). All convolutional and convolutional transpose kernels are 3× 3, except for
2 × 2 kernels in the side-branch Convolutional Transpose in Residual upsampling units and the
1 × 1 (1D convolution) kernels in the side-branch of Residual units.

The simulation is conducted on a Nvidia GTX1080 GPU using the open source machine learning
Platform TensorFlow. Each of DNN-L, DNN-H and DNN-S is trained for 20 epochs on 9500
training examples. The Adam optimizer [3], with learning rate being 0.001 and exponential decay
rate for the first and second moment estimates being 0.9 and 0.999 (β1=0.9, β2=0.999). The batch
size is 5. The training of each DNN takes about 2 hours. Noting that DNN-L and DNN-H can be
trained completely in parallel, the total training time is around 4 hours.
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Figure S1: General architecture of DNN-L (and DNN-H)
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Figure S2: General structure of DNN-S
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Figure S3: Detailed Structures of DRBs, URBs, RBs. Superscripts a - d denote different kernel
size and strides, listed as follows: a) Kernel size: (3, 3), strides: (2, 2). b) Kernel size: (3, 3),

strides: (1, 1). c) Kernel size: (2, 2), strides: (2, 2). d) Kernel size: (1, 1), strides: (1, 1).
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2 More reconstruction examples

In Fig. S4, we show more examples of comparison between the approximant f̂ ∗,reconstructions
f̂LF, f̂HF, f̂ and the ground truth f , for p = 1 photon/pixel and q = 0.5. Similar to the examples
shown in the main manuscript, we see that the DNN-L output, f̂LF is reliable in low spatial
frequency band; whereas DNN-H output, f̂HF is reliable in the high spatial frequency band, and
the final reconstruction, f̂ has better overall quality than both f̂LF and f̂HF.

Figure S4: More examples of components of LS-DNN, 1 photon/pixel

3 1D cross-section of PSDs for 10 photon/pixel

Figure. S5 shows the average (normalized) 1D (diagonal) cross-section of the approximant f̂ ∗,
DNN-L output f̂LF, DNN-H output f̂HF, final output f̂ and ground truth f , for the case of 10
photons/pixel. Similar to the 1 photon/ pixel case, we see f̂LF and f̂HF are more reliable in low
and high frequency bands, respectively and the synthesized output, f̂ matches the ground truth
better than each preliminary reconstruction on the entire spectrum.

4 More quantitative performance comparisons

We show in Figs. S6, S7, S8, quantitative performances (according to PSNR, SSIM and PCC,
respectively) of the approximant f̂ ∗ (input to the LS-DNN), DNN-L output, f̂LF, and the final
reconstruction f̂ , for each of the 500 test images randomly chosen from the test set (a total of 500
images), with both p = 1 and p = 10 and under q = 0.5. The comparisons show, except for very
few anomalies, f̂ outperforms f̂LF (and f̂ ∗) for every image, and according to all three metrics,
for both 1 photon/ pixel and 10 photons/pixel. Therefore, improvements over [2] (performance of
DNN-L) have been corroborated.

5 Qualitative comparison with DNN-L-3

We demonstrate that the improvement of our reconstruction f̂ over [2] (f̂LF in this paper) should
not be attributed to increased computational capacity by comparing f̂ with the reconstruction
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Figure S5: 1D cross-section of average PSD, 10 photons/pixel

obtained with a separate DNN-L-3, which assumes the similar Residual U-Net [1] structure, but
has twice as many feature maps in each convolutional layer as its DNN-L counterpart (except for
those in Residual Blocks), which approximately equalizes the total number of trainable parameters
in the LS-DNN architecture and in DNN-L-3. Unlike LS-DNN, DNN-L-3, is trained with the un-
filtered examples and with NPCC as the loss function. Quantitative comparison of LS-DNN and
DNN-L-3 has been given in the main manuscript.

In Fig. S9, we see at both 1 photon/pixel and 10 photons/pixel, DNN-L-3, could not achieve
performances comparable to LS-DNN (reconstructions obtained under q = 0.5 is shown as the
performance of LS-DNN).

6 Resolution test for LS-DNN

In this section, we investigate the spatial resolution (according to the Rayleigh criterion) of various
reconstructions in LS-DNN and investigate the role of parameter q in the resolution.

The objects used are dot patterns with spacing of D pixels between each pair of dots. In this
paper, we test D in the range from 2 to 8 pixels. We obtain the intensity measurement of each
of these dot patterns and find the minimum D, such that the dots are resolvable (according to
the Rayleigh criterion) in the reconstruction and define such D as the resolution. For example,
in Fig. S10, we see that for q = 0.5 and spacing D = 4, the neighbouring dots are resolvable in
DNN-H and DNN-S output, but not in the DNN-L output. Simulations (not shown here) also
indicate dots with D ≤ 3 are not resolvable by DNN-H or DNN-S, so DNN-H and DNN-S both
resolve 4 pixels. This improves over DNN-L, or [4], which achieved the resolution of D = 6 pixels
(resolution characterization of [4] was conducted in [5]).

For completeness, we include in Table S1 resolutions achieved by DNN-L, DNN-H and DNN-S,
for q = 0.4, 0.5, 0.6, respectively. As expected, LS-DNN method (DNN-S) achieves better resolu-
tion than DNN-L, trained with un-filtered examples. Although in all q, DNN-S does not achieve
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(a) PSNR comparison, 1 photon/pixel

(b) PSNR comparison, 10 photons/pixel

Figure S6: PSNR comparison (q = 0.5)
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(a) SSIM comparison, 1 photon/pixel

(b) SSIM comparison, 10 photons/pixel

Figure S7: SSIM comparison (q = 0.5)
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(a) PCC comparison, 1 photon/pixel

(b) PCC comparison, 10 photons/pixel

Figure S8: PCC comparison (q = 0.5)
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Figure S9: Comparison of DNN-L-3 reconstruction with LS-DNN final reconstruction f̂
(q = 0.5)
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Figure S10: Resolution test for DNN-L, DNN-H and DNN-S outputs (q = 0.5). (a). dot pattern
with spacing D = 4cm (ground truth) (b). DNN-L reconstruction. (c) DNN-H reconstruction (d)
DNN-S reconstruction. (e).1D cross-section of the neighbourhood indicated by the red arrows in
(a)-(d).

further improvement in resolution over DNN-H, it is absolutely necessary as it helps improve the
overall fidelity [6], as is also shown by the noisy cases in Figures 2, 3, 4, 5, 6, and Table 1 in the
main manuscript. Ultimately, it is the fidelity of reconstructions, rather than the resolution, that
matters the most in the application of quantitative phase retrieval.

DNN-L: 6 pixels
q = 0.4 q = 0.5 q = 0.6 q = 0.7

DNN-H 4 pixels 4 pixels 3 pixels 3 pixels
DNN-S 4 pixels 4 pixels 3 pixels 3 pixels

Table S1: Resolution comparison for various reconstructions in LS-DNN.

7 Additional details about the Fresnel propagation oper-

ator

In this section, we provide more details about the implementation of the optical apparatus and its
numerical simulation with digital Fresnel transforms. Please refer to Fig. 7 in the main manuscript
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for the description of the optical apparatus.

The optical apparatus includes a telescope that scales down the size of the object by a factor of
2.3×. This was done to reduce the spatial extent of the image and enhance the diffraction effects
so that shorter distances would be required to achieve comparable Fresnel numbers. With this
particular reduction, the raw image (256 by 256 pixel array on the SLM) approximately fits the
size of the camera detector. The raw data from the detector is a 1004 × 1002 array that was first
extended to 1024 × 1024 by repeating the edge values into the extended area. The image is then
reduced to a 256×256 array by 4×4 pixel summation pooling. Thus, the space-bandwidth product
(SBP) of the effective measurement g matched the SBP of the object f . However, this creates
another difficulty: i.e. the fact that the pixel size in the detector plane in general does not match
the pixel size obtained from a digital Fresnel propagation from the object plane. Indeed, recall
that, when performing Fresnel propagation with the FFT operator, using the following formula:

Fz[ψ] =
eikz

iλz
e

ik
2z

(x′2+y′2)FFT
{
ψ(x, y)e

ik
2z

(x2+y2)
}

∆x∆y, (1)

the pixel size in the object plane (∆x) and detector plane (∆x′) obey the following the relationship:

λz = (SBP) ∆x∆x′. (2)

In our case, these quantities are fixed as ∆x = 15.7 µm (i.e. the SLM pixel size, 36 µm, reduced
by 2.3×), ∆x′ = 8 µm, (SBP) = 256 and z = 400 mm, and do not satisfy (2). We circumvent
this difficulty by introducing an intermediate plane, which we call a virtual plane hereafter, and
performing two Fresnel propagation operations: one from the object plane to the virtual plane (over
a distance zv1), and a second one from the virtual plane to the detector plane (over a distance
zv2). The position along the z axis of the virtual plane, which we call virtual distance zv, offers
an additional degree of freedom that we can use to satisfy equation (2). The algebraic sum of zv1
and zv2 should equal z. If we denote by ∆x′′ the pixel size in the virtual plane, we have:

λzv1 = (SBP)∆x∆x′′ (3)

λzv2 = (SBP)∆x′∆x′′. (4)

zv1 and zv2 are then given by the following equations:

zv1∆x
′ = zv2∆x (5)

zv1 + zv2 = z. (6)

This mathematical device allows us to perform Fresnel propagation and pixel size interpolation at
the same time.

8 More information on the data acquisition

The SLM is LC2012 by Holoeye. This is a transmissive device with 36 microns square pixels. The
phase and amplitude response of the SLM was measured with an interferometer and is given in
Fig. S11. The phase depth of 2.2 rad of the examples comes from the calibration of the transmissive
SLM, where a phase shift of 2.2 rad corresponds to a level of 255 in the ground truth images.
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Figure S11: The phase response (top) and the amplitude response (below) of the SLM [2].

9 More on the training of various DNNs

In Fig. S12, we show the training curves for p = 1 and q = 0.5. We see that, the validation
loss is, in all three cases, only slightly worse than that of the training loss when the training is
stabilized, an indication of no overfitting or underfitting and therefore, good generalization ability
of the LS-DNN model.

Moreover, in Table S2, we show the relationship between the validation error versus the size of
the training set. As we can see, the grow of the training set size helps the most when the training
set size is below 5000 examples. Therefore, if the access to sufficient training data is the primary
concern, instead of enabling a fair comparison with [2], we could have used approximately half
of the training data (5000 examples), to achieve performances relatively close to what we have in
this paper. Also from this table, we judge that making the training set even larger unnecessary as
further improvement in LS performance is likely incremental, and therefore insufficient to justify
the additional training time needed.
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(a) DNN-L (b) DNN-H (c) DNN-S

Figure S12: Training curves for (a) DNN-L (b) DNN-H and (c) DNN-S, of p = 1 and q = 0.5

Number of training examples DNN-L DNN-S
500 0.6927 ± 0.1375 0.6932 ± 0.1378
800 0.7181 ± 0.1198 0.7362 ± 0.1148
1000 0.7214 ± 0.1104 0.7443 ± 0.1068
2000 0.7348 ± 0.1070 0.7638 ± 0.0978
3000 0.7695 ± 0.1079 0.7926 ± 0.0924
5000 0.7911 ± 0.0884 0.8209 ± 0.0838
7500 0.8241 ± 0.0872 0.8539 ± 0.0837
9500 (in the paper) 0.8285 ± 0.0861 0.8659 ± 0.0820

Table S2: Average PCC of reconstructions of DNN-L and DNN-S, based on the validation set of
450 images. Each term takes the form of ‘average PCC ± standard deviation’.

10 More quantitative metrics for evaluating the perfor-

mance of LS-DNN

In this section, we investigate the performance of LS with another two quantitative metrics, i.e.
the root mean square error (RMS) and the peak-to-valley error (PV). Let i, j be the indices of
pixels for the estimated phase object f̂ and the corresponding ground truth f , both of size N ×N .
The RMS error can be defined as,

RMS =

√
1
N2

∑
i,j(f̂i,j − fi,j)2

2π
, (7)

and the unit is wavelength. We computed the RMS according to the 500 ImageNet test images
and the results shown in Table S3.

Moreover, PV error is also frequently used to assess the phase retrieval performance. In this
context, we think it is most applicable to region-wise uniform objects, instead of the ImageNet
images as we used in the paper. In Fig. S13, we show one example of such region-wise uniform phase
objects. We created a synthetic training set consisting 5000 region-wise constant phase objects and
conduct the experiment the same way as described in the manuscript (under p = 1 photon/pixel).
During the test stage, we predict the reconstructions based on the object in Fig. S13. For each
uniform (nonzero) region of the ground truth, let amax and amin (both in rad) be the largest and
smallest value within this region in the reconstruction. Then, in wavelength, peak-to-valley (PV)
error can be defined as amax−amin

2π
wavelength. If there are multiple regions with the same ground

truth value, we report the largest regional PV error among these regions. The results, available in
Table S4, show that the performance of LS is very good, which is well anticipated as the constrained
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Average RMSE ± std.dev
p = 1 p = 10

Approximant f̂ ∗ 0.1401 ± 0.0568 0.1398 ± 0.0568

DNN-L output f̂LF 0.0568 ± 0.0160 0.0420 ± 0.0134

DNN-S output f̂ (q = 0.1) 0.0458 ± 0.0133 0.0405 ± 0.0115

DNN-S output f̂ (q = 0.2) 0.0446 ± 0.0129 0.0404 ± 0.0120

DNN-S output f̂ (q = 0.3) 0.0441 ± 0.0142 0.0402 ± 0.0118

DNN-S output f̂ (q = 0.4) 0.0424 ± 0.0119 0.0390 ± 0.0119

DNN-S output f̂ (q = 0.5) 0.0413 ± 0.0117 0.0389 ± 0.0120

DNN-S output f̂ (q = 0.6) 0.0415 ± 0.0131 0.0390 ± 0.0117

DNN-S output f̂ (q = 0.7) 0.0442 ± 0.0116 0.0391 ± 0.0122

DNN-S output f̂ (q = 0.8) 0.0458 ± 0.0130 0.0391 ± 0.0121

DNN-S output f̂ (q = 1) 0.0482 ± 0.0121 0.0399 ± 0.0122

DNN-S output f̂ (q = 2) 0.0572 ± 0.0386 0.0407 ± 0.0122

Table S3: RMSE (unit wavelength) of reconstructions of Approximant, DNN-L and DNN-S,
based on a test set of 500 images. Each entry takes the form of ’average ± standard deviation’.

structure of the objects offers strong prior information which makes the LS algorithm testing on
the same class of objects even more efficient.

11 Results on objects with larger phase depth

To investigate whether the performance of the proposed LS method depends on the phase depth
of the objects, we selected another configuration of our transmissive SLM (LC2012 by Holoeye)
that allows greater phase depth (to around 1.5π rad). Fortunately, this configuration introduces
only minimal intensity modulation. The phase and intensity modulation of this configuration is
shown in Fig. S14.

With this configuration, we conducted the same experiment as shown in the main manuscript
on a new dataset, Face-LFW (for human faces), for p = 1 and q = 0.5. Quantitative comparison

Figure S13: Synthetic phase object (ground truth) to compute PV error.
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Ground Truth of the region (rad) Peak-to-Valley Error (wavelength)
0.0307 0.0009
0.1343 0.0025
0.3243 0.0056
0.5752 0.0082
3.0014 0.0203
4.2581 0.0315
4.5932 0.0264

Table S4: Peak-to-valley error of the LS algorithm (p = 1 photon/pixel and q = 0.5).

of reconstructions of DNN-L, DNN-S and the Approximant is shown in Table S5 below. From the
current results, the enlarged phase depth did not seem to have jeopardized the performance. We
reserve the exploration on the full 2π rad and on other classes of objects for future investigations.

Performance of LS-DNN on phase depth 1.5π rad. (p = 1, q = 0.5).
PCC ± std. dev PSNR± std.dev. SSIM ± std.dev RMSE±std.dev

Approximant 0.0122 ± 0.1305 10.9627 ±2.4597 0.4389 ± 0.0729 0.2190 ± 0.0701
DNN-L recon-
struction

0.9263 ± 0.0279 21.3002 ±2.9396 0.9612 ± 0.0213 0.0674 ± 0.0224

DNN-S recon-
struction

0.9365 ± 0.0278 21.3732 ±2.8238 0.9688 ± 0.0232 0.0672 ± 0.0219

Table S5: Quantitative results of LS on dataset with larger phase depth (1.5π rad).

12 Quantitative metrics for cross-domain generalization

In this section, we present the quantitative comparison for the cross-domain generalization dis-
cussed in Section 2 of the main manuscript (Fig.7 main manuscript). From Table S6, we clearly
see that direct cross-domain generalization would certainly incur some level of degradation in the
performance(compared to if the training was done on the same domain as the test examples), but
such degradation is much less severe if the model was trained on the set with broader prior, e.g.
ImageNet, and tested on a set with more constrained priors, e.g. MNIST, than the opposite.

Test Set

PCC Training Set
ImageNet MNIST

ImageNet 0.869± 0.112 0.437 ± 0.199
MNIST 0.817 ± 0.050 0.922 ± 0.062

Table S6: Quantitative metric (PCC) of cross-domain generalization of LS. Each entry takes the
form of mean ± std. deviation.
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Figure S14: Phase modulation (top) and intensity modulation (below) of the new configuration
of the transmissive SLM allowing larger phase depth.
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