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Supplementary Text 8 

Deriving the hyperbolic 𝝀 − [𝒈] correlation 9 

From the Michaelis-Menten kinetics for carbon transport, the following correlation between 𝑤𝑐  and the 10 

environmental substrate level has previously been proposed 1 11 

𝑤𝑐 = 𝑤𝑐,0(1 +
𝐾𝑚,𝑔

[𝑔]
)                                                                         (S1) 12 

where 𝑤𝑐,0 is a constant that reflects the lowest proteome cost per unit carbon transport flux. [𝑔] is the 13 

extracellular glucose concentration, where glucose is taken as a representative substrate. 𝐾𝑚,𝑔 is the Michaelis 14 

constant for glucose transport. We assumed a linear correlation between growth rate and glucose uptake rate 15 

according to ref. 2 16 

𝑣𝑐 = {
𝑘1𝜆 + 𝑏1 (𝜆 < 𝜆𝑎𝑐)
𝑘2𝜆 + 𝑏2 (𝜆 ≥ 𝜆𝑎𝑐)

                                                                 (S2) 17 

where 𝑘1, 𝑏1, 𝑘2, 𝑏2 are linear coefficients. Further based on the observed linear dependence of a proteome 18 

sector on growth rate 3, we obtained the following for the E sector and the BM sector: 19 

𝜙𝐸+𝜙𝐵𝑀

𝜙𝑚𝑎𝑥
𝑜 = 𝑤𝑓

∗𝑣𝑓 + 𝑤𝑟
∗𝑣𝑟 + 𝑏∗𝜆 = {

𝑘3𝜆 + 𝑏3 < 1 (𝜆 < 𝜆𝑎𝑐)
1                        (𝜆 ≥ 𝜆𝑎𝑐)

                         (S3) 20 

where 𝑘3 and 𝑏3 are linear coefficients. Substituting equations (S2-S3) into equation (16) of the main text (i.e. 21 

𝑤𝑐
∗𝑣𝑐 + 𝑤𝑓

∗𝑣𝑓 + 𝑤𝑟
∗𝑣𝑟 + 𝑏∗𝜆 =

𝜙𝑚𝑎𝑥
𝑔

𝜙𝑚𝑎𝑥
𝑜 ), for non-overflow growth (𝜆 < 𝜆𝑎𝑐): 22 

𝑤𝑐
∗ =

𝜙𝑚𝑎𝑥
𝑔

𝜙𝑚𝑎𝑥
𝑜 −(𝑘3𝜆+𝑏3)

(𝑘1𝜆+𝑏1)
                                                                (S4) 23 

Comparing equation (S4) with equation (S1) (noted that 𝑤𝑐 = 𝑤𝑐
∗𝜙𝑚𝑎𝑥

𝑜  ) gives 24 

(

𝜙𝑚𝑎𝑥
𝑔

𝜙𝑚𝑎𝑥
𝑜 −(𝑘3𝜆+𝑏3)

𝑘1𝜆+𝑏1
) 𝜙𝑚𝑎𝑥

𝑜 = 𝑤𝑐,0 (1 +
𝐾𝑚,𝑔

[𝑔]
)                                       (S5) 25 

Rearranging equation (S5) to represent 𝜆 as a function of [𝑔]: 26 

𝜆 =
(𝜙𝑚𝑎𝑥

𝑔
−𝑏3𝜙𝑚𝑎𝑥

𝑜 −𝑤𝑐,0𝑏1)[𝑔]−𝑤𝑐,0𝑏1𝐾𝑚,𝑔

(𝑤𝑐,0𝑘1+𝑘3𝜙𝑚𝑎𝑥
𝑜 )[𝑔]+𝑤𝑐,0𝑘1𝐾𝑚,𝑔

                                            (S6) 27 

Equation (S6) can be re-arranged to a hyperbolic form (equation (S30)). For example, this can be done by first 28 

dividing the numerator and the denominator of equation (S6) by 𝑤𝑐,0𝑘1 29 
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𝜆 =
(

𝜙𝑚𝑎𝑥
𝑔

𝑤𝑐,0𝑘1
−

𝜙𝑚𝑎𝑥
𝑜 𝑏3

𝑤𝑐,0𝑘1
−

𝑏1
𝑘1

)[𝑔]−
𝑏1
𝑘1

𝐾𝑚,𝑔

(
𝜙𝑚𝑎𝑥

𝑜 𝑘3
𝑤𝑐,0𝑘1

+1)[𝑔]+𝐾𝑚,𝑔

                                                           (S7) 1 

Introducing a facilitating term (+
𝑏1

𝑘1

𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝑤𝑐,0𝑘1
[𝑔] −

𝑏1

𝑘1

𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝑤𝑐,0𝑘1
[𝑔]) to the numerator of equation (S7) 2 

𝜆 =
(

𝜙𝑚𝑎𝑥
𝑔

−𝜙𝑚𝑎𝑥
𝑜 𝑏3

𝑤𝑐,0𝑘1
)[𝑔]−

𝑏1
𝑘1

[𝑔]−
𝑏1
𝑘1

𝐾𝑚,𝑔+
𝑏1
𝑘1

𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝑤𝑐,0𝑘1
[𝑔]−

𝑏1
𝑘1

𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝑤𝑐,0𝑘1
[𝑔]

(
𝜙𝑚𝑎𝑥

𝑜 𝑘3
𝑤𝑐,0𝑘1

+1)[𝑔]+𝐾𝑚,𝑔

                              (S8) 3 

Lumping the 
𝑏1

𝑘1
 related terms together 4 

𝜆 =
(

𝜙𝑚𝑎𝑥
𝑔

−𝜙𝑚𝑎𝑥
𝑜 𝑏3

𝑤𝑐,0𝑘1
+

𝑏1
𝑘1

𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝑤𝑐,0𝑘1
)[𝑔]−

𝑏1
𝑘1

((
𝜙𝑚𝑎𝑥

𝑜 𝑘3
𝑤𝑐,0𝑘1

+1)[𝑔]+𝐾𝑚,𝑔)

(
𝜙𝑚𝑎𝑥

𝑜 𝑘3
𝑤𝑐,0𝑘1

+1)[𝑔]+𝐾𝑚,𝑔

                                (S9) 5 

Finally, rearranging equation (S9) to obtain a hyperbolic 𝜆 − [𝑔] correlation 6 

 7 

𝜆 =
𝜙𝑚𝑎𝑥

𝑔
−𝜙𝑚𝑎𝑥

𝑜 (𝑏3−
𝑏1
𝑘1

𝑘3)

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

[𝑔]

[𝑔]+
𝑤𝑐,0𝑘1

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝐾𝑚,𝑔

−
𝑏1

𝑘1
                                    (S10) 8 

Similarly for overflow growth (𝜆 ≥ 𝜆𝑎𝑐), substituting equations (S2-S3) into equation (16) of the main text 9 

𝑤𝑐
∗ =

𝜙𝑚𝑎𝑥
𝑔

𝜙𝑚𝑎𝑥
𝑜 −1

𝑘2𝜆+𝑏2
                                                                         (S11) 10 

Comparing equation (S11) with equation (S1) 11 

(

𝜙𝑚𝑎𝑥
𝑔

𝜙𝑚𝑎𝑥
𝑜 −1

𝑘2𝜆+𝑏2
) 𝜙𝑚𝑎𝑥

𝑜 = 𝑤𝑐,0 (1 +
𝐾𝑚,𝑔

[𝑔]
)                                             (S12) 12 

Rearrange equation (S12) to represent 𝜆 as a function of [𝑔] 13 

𝜆 =
𝜙𝑚𝑎𝑥

𝑔
−𝜙𝑚𝑎𝑥

𝑜

𝑤𝑐,0𝑘2

[𝑔]

[𝑔]+𝐾𝑚,𝑔
−

𝑏2

𝑘2
                                                  (S13) 14 

Comparing equations (S10) and (S13) with the Monod equation, i.e. 𝜆 = 𝜆𝑚𝑎𝑥
[𝑔]

[𝑔]+𝐾𝑠
, we obtain the following 15 

matches (also see equation (S30)): 16 

𝜆𝑚𝑎𝑥 = {

𝜙𝑚𝑎𝑥
𝑔

−(𝜙𝑚𝑎𝑥
𝑜 𝑏3+𝑤𝑐,0𝑏1)

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

  (𝜆 < 𝜆𝑎𝑐)

𝜙𝑐,𝑚𝑖𝑛−𝑤𝑐,0𝑏2

𝑤𝑐,0𝑘2
                  (𝜆 ≥ 𝜆𝑎𝑐)

                                         (S14) 17 

and  18 

𝐾𝑠 = {

𝑤𝑐,0𝑘1

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝐾𝑚,𝑔 (𝜆 < 𝜆𝑎𝑐) 

𝐾𝑚,𝑔                          (𝜆 ≥ 𝜆𝑎𝑐)
                                              (S15) 19 

Below we show how to resolve the physical links between the Monod kinetic parameters (𝜆𝑚𝑎𝑥  and 𝐾𝑠) and 20 

cell’s physiological state through analyzing the biological meaning of the denominator and the numerator of 21 

equations (S14-S15).  22 

 23 
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Resolving 𝝀𝒎𝒂𝒙 1 

Starting with the non-overflow scenario (𝜆 < 𝜆𝑎𝑐), we first focus on the numerator of the derived expression 2 

of 𝜆𝑚𝑎𝑥  (equation (S14)). 𝑏3 is the proteome fraction accounting for non-growth maintenance in E and BM 3 

sectors (normalised by 𝜙𝑚𝑎𝑥
𝑜 ; cf. equation (S3)), therefore 4 

𝜙𝑚𝑎𝑥
𝑜 𝑏3 = (𝜙𝐸 + 𝜙𝐵𝑀)𝑎𝑡𝑝𝑚                                                            (S16) 5 

where the subscript 𝑎𝑡𝑝𝑚 denotes the proteome fraction occupied by non-growth-associated maintenance. 6 

Furthermore, 𝑏1 is the rate of carbon intake for maintenance purposes, therefore the product of 𝑏1 and 𝑤𝑐,0 7 

(lowest enzyme cost per unit carbon influx, equation (S1)) quantifies the (lowest) portion of the C sector 8 

proteome that is occupied for maintenance. 9 

𝑤𝑐,0𝑏1 = 𝜙𝐶,𝑎𝑡𝑝𝑚                                                                        (S17) 10 

Combining equations (S16) and (S17), the numerator of equation (S14) (the branch for 𝜆 < 𝜆𝑎𝑐) can be 11 

expressed as  12 

𝜙𝑚𝑎𝑥
𝑔

− (𝜙𝐸,𝑎𝑡𝑝𝑚 + 𝜙𝐵𝑀,𝑎𝑡𝑝𝑚 + 𝜙𝐶,𝑎𝑡𝑝𝑚) = 𝜙𝑚𝑎𝑥
𝑔

− ∑ 𝜙𝑖,𝑎𝑡𝑝𝑚𝑖                         (S18) 13 

where 𝑖 represents a proteome sector (C, E, or BM). Moving on to the denominator, 𝑤𝑐,0𝑘1 can be coupled to 14 

the carbon influx (via equation (S2)), thus representing the (lowest) demand of C sector proteome per unit 15 

increase of growth rate, denoted by 𝑝𝑐  16 

𝑤𝑐,0𝑘1 = 𝑤𝑐,0
𝑑𝑣𝑐

𝑑𝜆
= (

𝑑𝜙𝐶

𝑑𝜆
)

𝑤𝑐=𝑤𝑐,0

= 𝑝𝑐                                              (S19) 17 

Similarly 𝜙𝑚𝑎𝑥
𝑜 𝑘3 is the summation of the proteome cost (per unit increase of growth rate) for E and BM 18 

sectors (cf. equation (S3)) 19 

𝜙𝑚𝑎𝑥
𝑜 𝑘3 =

𝑑𝜙𝐸

𝑑𝜆
+

𝑑𝜙𝐵𝑀

𝑑𝜆
= 𝑝𝐸 + 𝑝𝐵𝑀                                                    (S20) 20 

Combining equations (S19) and (S20), the denominator (𝑤𝑐,0𝑘1 + 𝜙𝑚𝑎𝑥
𝑜 𝑘3) can be expressed as 𝑝𝑐 + 𝑝𝐸 +21 

𝑝𝐵𝑀 ≡ ∑ 𝑝𝑖𝑖 , where 𝑖 represents a proteome sector (C, E, or BM). Summarising, the maximum specific growth 22 

rate for non-overflow growth can be quantified as 23 

 𝜆𝑚𝑎𝑥 =
𝜙𝑚𝑎𝑥

𝑔
−∑ 𝜙𝑖,𝑎𝑡𝑝𝑚𝑖

∑ 𝑝𝑖𝑖
  (𝜆 < 𝜆𝑎𝑐)                                                     (S21) 24 

During acetate overflow (𝜆 ≥ 𝜆𝑎𝑐), the numerator of the derived expression of 𝜆𝑚𝑎𝑥  in equation (S14) can be 25 

viewed as the (adjusted) proteome abundance of C sector, denoted as 𝜙𝑐
′  below, which is made proportional 26 

to 𝜆 by applying an offset term 𝑤𝑐,0𝑏2 (Fig. S2). 27 

𝜙𝑐,𝑚𝑖𝑛 − 𝑤𝑐,0𝑏2 = 𝜙𝑐
′                                                                 (S22) 28 

On the other hand, the denominator 𝑤𝑐,0𝑘2 is comparable with equation (S19), which represents the (lowest) 29 

demand of C sector proteome per unit increase of growth rate (𝑝𝑐) under overflow conditions, i.e. 30 

𝑤𝑐,0𝑘2 = 𝑝𝑐                                                                         (S23) 31 

Thus, during acetate overflow 𝜆𝑚𝑎𝑥  can be interpreted as 32 

𝜆𝑚𝑎𝑥 =
𝜙𝑐

′

𝑝𝑐
  (𝜆 ≥ 𝜆𝑎𝑐)                                                               (S24) 33 

which suggests that under such condition 𝜆𝑚𝑎𝑥  could be dictated only by the characteristics of the carbon-34 

scavenging sector. Equations (S21) and (S24) can be generalised as 35 

𝜆𝑚𝑎𝑥 =
𝜙𝑔𝑟𝑜𝑤𝑡ℎ

𝑝𝑔𝑟𝑜𝑤𝑡ℎ
                                                                    (S25) 36 
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where 𝜙𝑔𝑟𝑜𝑤𝑡ℎ  represents the fraction of the growth-controlling proteome, and 𝑝𝑔𝑟𝑜𝑤𝑡ℎ  denotes the 1 

proteome cost per unit increase of growth rate.  2 

Resolving 𝑲𝒔 3 

Re-writing equation (S15) to 4 

𝐾𝑠 = 𝛿𝐾𝑚,𝑔                                                                       (S26) 5 

𝛿 = {

𝑤𝑐,0𝑘1

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

< 1 (𝜆 < 𝜆𝑎𝑐)

                              1  (𝜆 ≥ 𝜆𝑎𝑐)
                                                    (S27) 6 

We showed that the Monod constant 𝐾𝑠 is linked to the Michaelis constant for carbon transport 𝐾𝑚,𝑔 through 7 

a proportional factor 𝛿 that possesses discrete values. Given the above analysis for 𝜆𝑚𝑎𝑥 , the biological 8 

meaning of the expression of 𝛿 (for 𝜆 < 𝜆𝑎𝑐) could be shown through 9 

𝛿 =
𝑤𝑐,0𝑘1

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

=
𝑝𝑐

𝑝𝑐+𝑝𝐸+𝑝𝐵𝑀
< 1                                            (S28) 10 

For the overflow scenario (𝜆 ≥ 𝜆𝑎𝑐), 𝛿 = 1 actually derives from 11 

𝛿 =
𝑤𝑐,0𝑘2

𝑤𝑐,0𝑘2
=

𝑝𝑐

𝑝𝑐
= 1                                                               (S29) 12 

Overall, the discrete feature of the proportional factor 𝛿 reflects the switch in a cell’s metabolic state (due to 13 

global proteome allocation). 14 

Parameterization of 𝒘𝒄 − [𝒈] correlation (determining 𝝓𝒎𝒂𝒙
𝒈

 and 𝒘𝒄,𝟎) 15 

Equations (S10) and (S13) can be written in a generic form 16 

𝜆 = 𝐴
[𝑔]

[𝑔]+𝐵
− 𝐶                                                                     (S30) 17 

In 1965, Pirt explicitly pointed out that in bacteria some substrate is consumed for functions other than the 18 

synthesis of new cells 4. As mentioned in the main text, the original Monod equation does not recognize such 19 

non-growth maintenance. Throughout the years researchers have modified the classic Monod equation by 20 

expressing the maintenance as the maintenance rate 4–6, maintenance coefficient 4,7,8 or the threshold 21 

substrate concertation (𝑆𝑚𝑖𝑛) 9–12. In this work, term 𝐶 denotes the cellular maintenance. Consequently 𝜆𝑚𝑎𝑥  22 

could be computed by 𝐴 − 𝐶 and 𝐾𝑠 is equivalent to 𝐵. If maintenance is negligible, 𝐶 = 0 (thus 𝑏1 = 𝑏3 = 0); 23 

equation (S30) reduces to the original Monod equation.  24 

For E. coli, the experimentally measured 𝜆 − [𝑔] profile has been extensively reported in literature. With a 25 

proper set of data, constants 𝐴, 𝐵 and 𝐶 can readily be determined by fitting the growth data to equation 26 

(S30). It is worth nothing that the shape of a 𝜆 − [𝑔] curve is generally determined by the slow-growing region 27 

where growth rate changes dramatically with the substrate concentration 13. Therefore, we chose to fit the 28 

growth data to the non-overflow 𝜆 − [𝑔] correlation (equation (S10)). 29 

𝐴 =
𝜙𝑚𝑎𝑥

𝑔
−𝜙𝑚𝑎𝑥

𝑜 (𝑏3−
𝑏1
𝑘1

𝑘3)

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

                                                            (S31) 30 

𝐵 =
𝑤𝑐,0𝑘1

𝑤𝑐,0𝑘1+𝜙𝑚𝑎𝑥
𝑜 𝑘3

𝐾𝑚,𝑔                                                              (S32) 31 

𝐶 =
𝑏1

𝑘1
                                                                                             (S33) 32 

𝑘1 − 𝑘3 and 𝑏1 − 𝑏3 (Table S3) are the known parameters that are dictated by the stoichiometry of the 33 

metabolic model. 𝜙𝑚𝑎𝑥
𝑜  was previously reported to be 0.19 for E. coli NCM3722 14. We did not find similar data 34 

for E. coli ML308; therefore we set 𝜙𝑚𝑎𝑥
𝑜 = 0.19 for both strains. The values of 𝐴 and 𝐵 were fitted to the 35 

experimental data (𝜆 − [𝑔] profile) through fixing 𝐶 =
𝑏1

𝑘1
. The unknown parameters are: 𝜙𝑚𝑎𝑥

𝑔
, 𝑤𝑐,0 and 𝐾𝑚,𝑔, 36 
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which are located in equations (S31) and (S32). As we were not able to determine three unknowns with two 1 

equations, the value of one unknown needed to be specified to determine the rest. We chose 𝐾𝑚,𝑔 to be 2 

specified as its value has been extensively reported in literature (in a range of 4 – 20 𝜇𝑀 15–22). Given a known 3 

𝐾𝑚,𝑔 we could proceed to determine the other parameters. It is worth noting that proteome fraction 𝜙𝑚𝑎𝑥
𝑔

 has 4 

to be less than one, which further constrains the feasible range of 𝐾𝑚,𝑔 (via equation (S35)).  5 

𝑤𝑐,0 =
𝜙𝑚𝑎𝑥

𝑜 𝐵
𝑘1
𝑘3

(𝐾𝑚,𝑔−𝐵)
                                                                         (S34) 6 

𝜙𝑚𝑎𝑥
𝑔

= 𝜙𝑚𝑎𝑥
𝑜 (𝑘3

𝐴𝐾𝑚,𝑔

𝐾𝑚,𝑔−𝐵
− 𝑘3𝐶 + 𝑏3) < 1                                             (S35) 7 

For strain NCM3722, we fixed 𝐶 = 0 (due to negligible maintenance) and fitted the experimentally determined 8 

𝜆 − [𝑔] profile of the same strain (SI figure 1 of ref.23) to equation (S30), which gives 𝐴 = 1 h-1 and 𝐵 = 5 𝜇𝑀. 9 

𝐾𝑚,𝑔 needs to be higher than 6.6 𝜇𝑀 to allow 𝜙𝑚𝑎𝑥
𝑔

< 1. We set 𝐾𝑚,𝑔 = 15 𝜇𝑀 according to refs. 20,21, which 10 

satisfactorily describes the measured 𝜆 − [𝑔] data (Fig. S3a). Similarly for strain ML308, we fixed 𝐶 =
𝑏1

𝑘1
=11 

0.0036. The experimental growth data (figure 1 of ref.24) leads to 𝐴 = 1.2 h-1 and 𝐵 = 12.4 𝜇𝑀. In this case 12 

𝐾𝑚,𝑔 has to be higher than 17.6 𝜇𝑀 to ensure 𝜙𝑚𝑎𝑥
𝑔

< 1. We set 𝐾𝑚,𝑔 to 20 𝜇𝑀 as it gives the best fit to the 13 

experimental data (Figs. S3b and S3c). Substituting 𝐴, 𝐵, 𝐶 and 𝐾𝑚,𝑔 values into equations (S34-S35), 𝜙𝑚𝑎𝑥
𝑔

 and 14 

𝑤𝑐,0 could be computed (Table S1). Inserting the calculated value of 𝑤𝑐,0 and the associated 𝐾𝑚,𝑔 specified 15 

above into equation (S1), we were able to compute 𝑤𝑐  given glucose concentration: 16 

 𝑤𝑐,𝑁𝐶𝑀3722 = 0.0097(1 + 15 [𝑔]⁄ )                                                  (S36) 17 

𝑤𝑐,𝑚𝑙308 = 0.0381(1 + 20 [𝑔]⁄ )                                                    (S37)  18 

where [g] is in 𝜇𝑀. The calculated values of 𝜙𝑚𝑎𝑥
𝑔

 were adopted in the proteome allocation constraints to 19 

simulate the cell growth (equation (19) of the main text). 20 

Determining the proteome cost parameters 21 

The model comprises four proteome cost parameters denoting the proteome cost per unit flux (see equation 22 

(16) of the main text): 𝑤𝑐
∗, 𝑤𝑓

∗, 𝑤𝑟
∗ and 𝑏∗. The variable 𝑤𝑐

∗ could be calculated via dividing equations (S36-S37) 23 

by 𝜙𝑚𝑎𝑥
𝑜 . The rest of the proteome cost parameters (i.e. 𝑤𝑓

∗, 𝑤𝑟
∗ and 𝑏∗) could be determined via the 24 

experimentally determined acetate production rate against growth rate profile (referred to as the acetate line) 25 

and the respiration flux against growth rate profile (referred to as the respiration line). As no directly 26 

measured respiration line were reported along with the acetate line, we fixed the growth rate and acetate 27 

excretion flux according to the acetate line and performed FBA simulation with minimizing glucose uptake rate 28 

as the objective function to obtain an estimated respiration line. The slope and intercept of the acetate line 29 

and the respiration line were used to determine 𝑤𝑓
∗, 𝑤𝑟

∗ and 𝑏∗ (Table S1) following the approach detailed in 30 

ref. 25. 31 

Comments on the approach for determining model parameters 32 

The model proposed in this work comprises five critical parameters: 𝑤𝑐, 𝑤𝑓, 𝑤𝑟, 𝑏, 𝜙𝑚𝑎𝑥
𝑜  and 𝜙𝑚𝑎𝑥

𝑔
 (or 33 

equivalently, 𝑤𝑐
∗, 𝑤𝑓

∗, 𝑤𝑟
∗, 𝑏∗ and 𝜙𝑚𝑎𝑥

𝑔
𝜙𝑚𝑎𝑥

𝑜⁄ ), among which 𝑤𝑐  is a variable (depending on extracellular 34 

glucose concentration) while the rest are constants. The determination of 𝑤𝑐  relies on two parameters (𝑤𝑐,0 35 

and 𝐾𝑚,𝑔) involved in the 𝑤𝑐 − [𝑔] correlation (equation (S1)). 𝐾𝑚,𝑔 is the Michaelis constant for carbon 36 

transport, which has been extensively reported in literatures. From Mori et al.’s original work 1, 𝑤𝑐,0 combines 37 

several physiological parameters, including cell dry weight, molecular weight of carbon transport enzymes, 38 

mass of total proteins in a cell, enzyme turnover rate and the mass fraction of carbon transport enzymes. It is 39 

unlikely to directly compute 𝑤𝑐,0 unless all these parameters (including 𝐾𝑚,𝑔) were measured in a consistent 40 

set of experiments. To circumvent this difficulty, in this work we have essentially treated 𝑤𝑐,0 as a 41 

phenomenological parameter and determined it using bioreactor-level growth data, i.e. the 𝜆 − [𝑔] profile. On 42 

the other hand, previous work has shown that a set of 𝑤𝑓, 𝑤𝑟 and 𝑏 could be determined if we know the 43 
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information of measured acetate excretion and (measured or deduced) respiration flux 25. Finally 𝜙𝑚𝑎𝑥
𝑜  and 1 

𝜙𝑚𝑎𝑥
𝑔

, by their definition, could be obtained directly from quantitative proteome analysis. If the proteome data 2 

is not available, 𝜙𝑚𝑎𝑥
𝑔

 could be estimated via the experimentally determined 𝜆 − [𝑔] profile, as done in this 3 

work. One can see that the maximum value of 𝜙𝐶  (𝜙𝐶𝑚𝑎𝑥) is directly associated to 𝜙𝑚𝑎𝑥
𝑔

 (equation (2), Figs. 2a 4 

and 2b of the main text), which in turn is affected by 𝜙𝑚𝑎𝑥
𝑜  and 𝐾𝑠 (i.e. 𝐵) in equations (S34-S35). In fact, it was 5 

primarily the much larger 𝐾𝑠 of ML308 than that of NCM3722 which led to a much larger 𝜙𝐶𝑚𝑎𝑥  (and 𝜙𝑚𝑎𝑥
𝑔

) of 6 

the former. 𝐾𝑠 is known to be sensitive to growth conditions and culture history 10,24,26, hence its estimated 7 

value can be very much attached to the particular set of cell culture data used. Therefore, the 8 

parameterization results obtained as such need to be treated with caution. 9 

Formulating the mixed integer linear programing (MILP) problem 10 

The constraint 𝑤𝑐
∗𝑣𝑐 = 𝜙𝑚𝑎𝑥

𝑔
𝜙𝑚𝑎𝑥

𝑜⁄ − 1 (𝜆 ≥ 𝜆𝑎𝑐) in equation (19) of the main text is derived from equation 11 

(17), meaning that 𝑤𝑐
∗𝑣𝑐  equals to a constant, 𝜙𝑚𝑎𝑥

𝑔
𝜙𝑚𝑎𝑥

𝑜⁄ − 1, at 𝑣𝑓 > 0. It ensures that the acetate 12 

production (i.e. the activation of the fermentation pathway) occurs simultaneously with the activation of the 13 

equal sign of the proteome constraint for overflow metabolism (equation (15) of the main text), i.e. 𝑣𝑓 > 0 at 14 

𝑤𝑓
∗𝑣𝑓 + 𝑤𝑟

∗𝑣𝑟 + 𝑏∗𝜆 = 1. To avoid introducing a conditional constraint in the FBA model, this constraint can be 15 

re-expressed as 16 

𝑧𝑣𝑓 = 0 (𝑧 = 0 𝑜𝑟 1)                                              (S38) 17 

[𝑤𝑐
∗𝑣𝑐 − 𝜃](1 − 𝑧) = 0                                                               (S39) 18 

where 𝜃 = 𝜙𝑚𝑎𝑥
𝑔

𝜙𝑚𝑎𝑥
𝑜⁄ − 1. To further avoid solving a non-linear optimisation problem, we converted the 19 

bilinear term 𝑧𝑣𝑓 in equation (S38) to: 20 

𝑦1 = 𝑧𝑣𝑓  21 

𝑦1 ≤ 𝑧𝑣𝑓,𝑚𝑎𝑥  22 

𝑦1 ≤ 𝑣𝑓 23 

𝑦1 ≥ 𝑣𝑓 − 𝑣𝑓,𝑚𝑎𝑥(1 − 𝑧) 24 

𝑦1 ≥ 0 25 

Similarly, the bilinear term 𝑧𝑣𝑐  in equation (S39) was converted to 26 

𝑦2 = 𝑧𝑣𝑐  27 
𝑦2 ≤ 𝑧𝑣𝑐,𝑚𝑎𝑥  28 

𝑦2 ≤ 𝑣𝑐  29 
𝑦2 ≥ 𝑣𝑐 − 𝑣𝑐,𝑚𝑎𝑥(1 − 𝑧) 30 

𝑦2 ≥ 0 31 

where 𝑦1, 𝑦2 are continuous variables, 𝑧 is a binary variable (𝑧 = 0 𝑜𝑟 1). 𝑣𝑓,𝑚𝑎𝑥 = 1000, 𝑣𝑐,𝑚𝑎𝑥 = 1000. 32 

Overall we have the following MILP problem, which is mathematically equivalent to the original problem 33 

(equation (19) of the main text): 34 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝜆    
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑆𝑣 = 0  𝑦1 ≤ 𝑣𝑓   

 𝑙𝑏 ≤ 𝑣𝑖 ≤ 𝑢𝑏  𝑦1 ≥ 𝑣𝑓 − 𝑣𝑓,𝑚𝑎𝑥(1 − 𝑧)  

 𝑤𝑓
∗𝑣𝑓 + 𝑤𝑟

∗𝑣𝑟 + 𝑏∗𝜆 ≤ 1  𝑦2 ≤ 𝑧𝑣𝑐,𝑚𝑎𝑥   

 𝑤𝑐
∗𝑣𝑐 + 𝑤𝑓

∗𝑣𝑓 + 𝑤𝑟
∗𝑣𝑟 + 𝑏∗𝜆 = 𝜙𝑚𝑎𝑥

𝑔
𝜙𝑚𝑎𝑥

𝑜⁄   𝑦2 ≤ 𝑣𝑐   

 𝑦1 = 0  𝑦2 ≥ 𝑣𝑐 − 𝑣𝑐,𝑚𝑎𝑥(1 − 𝑧)  

 𝑤𝑐
∗𝑣𝑐 − 𝜃 + 𝜃𝑧 − 𝑤𝑐

∗𝑦2 = 0  𝑦1 ≥ 0  
 𝑦1 ≤ 𝑧𝑣𝑓,𝑚𝑎𝑥   𝑦2 ≥ 0  

 𝑧 = 0 𝑜𝑟 1   
 35 

  36 
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Supplementary Figures and Tables 1 

 2 

 3 

Figure S1. Variation of 𝑤𝑐  against simulated specific growth rate for NCM3722 and ML308. 4 

 5 

  6 
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 1 

 2 

Figure S2. Difference between the real, proportional and linear correlation between 𝑣𝑐 − 𝜆 pair, which results 3 

in an offset term 𝑤𝑐,0𝑏2 in equation (S22). 4 

 5 

  6 
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 1 

 2 

 3 

Figure S3. Impact of varying 𝐾𝑚,𝑔 on predicted 𝜆 − [𝑔] profile. (a) Comparison between the simulated (upon 4 

varying 𝐾𝑚,𝑔) and measured 𝜆 − [𝑔] profile for NCM3722. Blue circles are the experimental data obtained 5 

from SI figure 1 of ref. 23. For 𝜆 < 𝜆𝑎𝑐  (~0.8) simulated 𝜆 − [𝑔] correlation is described by equation (S10). For 6 

 𝜆 ≥ 𝜆𝑎𝑐, the simulation result is governed by equation (S13). In the overflow region, the variation of 𝐾𝑚,𝑔 7 

results in different model predictions. Grey area: 𝐾𝑚,𝑔 varies between 5.5 − 20 𝜇𝑀. Red dashed line: 𝐾𝑚,𝑔 =8 

5.5 𝜇𝑀, orange solid line: 𝐾𝑚,𝑔 = 15 𝜇𝑀 (best fit for NCM3722), red solid curve: 𝐾𝑚,𝑔 = 20 𝜇𝑀. (b-c) 9 

Comparison between the simulated (upon varying 𝐾𝑚,𝑔) and measured 𝜆 − [𝑔] profile for ML308. Blue circles 10 

are the experimental data obtained from figure 1 of ref. 24. For 𝜆 < 𝜆𝑎𝑐  (~0.76) simulated 𝜆 − [𝑔] correlation is 11 

described by equation (S10). For  𝜆 ≥ 𝜆𝑎𝑐, the simulation result is governed by equation (S13). In the overflow 12 

region, the variation of 𝐾𝑚,𝑔 results in different model predictions. Grey area: 𝐾𝑚,𝑔 varies between 15 −13 

20 𝜇𝑀. Red dashed line: 𝐾𝑚,𝑔 = 15 𝜇𝑀, red solid curve: 𝐾𝑚,𝑔 = 20 𝜇𝑀 (best fit for ML308). 14 
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 1 

Table S1. Parameters involved in the proteome allocation constraints. 2 

Parameter 
(Units) 

Description Value Source 

ML308 NCM3722 

𝑏∗ 
(gDW h/mmol) 

Normalized proteome cost per unit biomass 
synthesis flux 

0.1 0.1 

This work 

𝑘𝑓 

(mmol/gDW) 
Slope of the acetate line 22.38 19.28 

𝑘𝑟 
(mmol/gDW) 

Slope of the respiration line -9.80 -2.84 

𝑣𝑓,0 

(mmol/gDW/h) 
y-axis intercept of the acetate line -16.17 -14.42 

𝑣𝑟,0 

(mmol/gDW/h) 
y-axis intercept of the respiration line 9.76 8.65 

𝑤𝑐,0 

(gDW h/mmol) 
Lowest enzyme cost per unit carbon transport 
flux 

0.0381 0.0097 

𝑤𝑓
∗ 

(gDW h/mmol) 

Normalized enzyme cost per unit fermentation 
flux 

0.1470 0.0157 

𝑤𝑟
∗ 

(gDW h/mmol) 
Normalized enzyme cost per unit respiration flux 0.3458 0.1417 

𝜙𝑚𝑎𝑥
𝑔

 (-) 
Maximal proteome fraction attainable for C, E 
and BM sectors 

0.7728 0.3680 

𝜙𝑚𝑎𝑥
𝑜  (-) 

Maximal proteome fraction attainable for BM 
and E sectors 

0.19 14 

 3 

Note: 4 

𝑘𝑓 and 𝑣𝑓,0 were determined from the experimentally determined acetate line. For ML308, data were obtained 5 

from table 7 of ref. 27. For NCM3722, data were obtained from figure 1 of ref. 14. 6 

𝑘𝑟 and 𝑣𝑟,0 were obtained from FBA simulated respiration line. 7 

 8 

 9 

  10 



11 
 

 1 

Table S2. Reported values of the maintenance coefficient and the molar growth yield and fitted energy 2 

parameters for different E. coli strains. 3 

Strain 𝒎  
(mmol/gDW/h) 

𝒀𝑮  
(gDW/mol glc) 

ATPM 
(mmol /gDW/h) 

GAM 
(mmol /gDW) 

Source 

ML308 0.038a 95.0a 0.65b 52.7b 7 

NCM3722 0a 78.8b 0a 91.4a 14 

a. Directly extracted from literature. 4 
b. Calculated in this work. 5 
 6 

Note: 7 

𝑚 is the maintenance coefficient, which denotes the rate of substrate consumed for non-growth maintenance. 8 

𝑌𝐺 =
∆𝑥

(∆𝑠)𝐺
=

∆𝜆

∆𝑣𝑐
 is the molar growth yield (or true growth yield), which involves the production of a certain 9 

amount of biomass ∆𝑥 and the consumption of growth-associated substrate (∆𝑠)𝐺  4. 10 

1 OD = 0.5 gDW was applied for the conversion of GAM for NCM3722 1. 11 

 12 

 13 

 14 
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 1 

Table S3. Parameters involved in determining the 𝑤𝑐 − [𝑔] correlation. 2 

Parameter 
(Units) 

Description Value Source 

ML308 NCM3722 

𝑏1 
(mmol/gDW/h) 

Rate of glucose uptake for non-
growth maintenance 

3.78E-2 0 7,14 

𝑏2 
(mmol/gDW/h) 

y-axis intercept of 𝑣𝑐 − 𝜆 line for 
overflow growth 

-5.022 -3.998 This work 

𝑏3 (-) 
E and BM sector proteome fraction 
for non-growth maintenance 

2.31E-2 0 This work 

𝑘1 
(mmol/gDW) 

Inverse of molar growth yield for 
non-overflow growth 

10.53 12.69 7,14 

𝑘2 
(mmol/gDW) 

Inverse of molar growth yield for 
overflow growth 

17.19 17.85 This work 

𝑘3 (h) Slope of 𝜙𝐸 + 𝜙𝐵𝑀  against 𝜆 line 1.287 1.291 This work 

 3 

 4 

 5 

  6 
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