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Supplementary Figures

Supplementary Fig. 1: Diffuse scattering depends on how atomic displacements are correlated. To illustrate,
scattering patterns were simulated for a crystal of an idealized alpha helix (panel A) with various types of motion.
The simulated X-ray beam had a wavelength of 1Å and was perpendicular to the helical axis (into the page). (A) If
there is no atomic motion (left), then there is no diffuse scattering (right). (B) Uncorrelated atomic displacements
with a B-factor of 20Å2. On the left, a representative ensemble is illustrated for Cα positions with the mean shaded
in gray and three random samples outlined in different colors. The diffuse scattering is relatively featureless and
isotropic (right). (C) Translational rigid body motion that is uncorrelated between unit cells. B-factors are the same
as in panel B. The diffuse scattering (right) has oscillations related to the molecular transform [1]. (D) Helices
move as in panel C except that motions are correlated between unit cells. The correlations were calculated from
a vibrational lattice dynamics model, similar to the one developed for this study (see Methods), consisting of a
periodic supercell (left) with a network of springs (red lines, inset). The potential energy function (Equation 5 in
the Main Text) was chosen so that thermally excited vibrations at room temperature produced the same B-factors
as in panels B-C. The simulated diffuse pattern (right) contains intense halo features that coincide with the Bragg
peaks (not shown). Although the models in panels B-D have identical B-factors and cannot be distinguished by
Bragg diffraction, they predict very different diffuse scattering.
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Supplementary Fig. 2: X-ray data collection strategy. (A) Diagram of the experimental setup. To prevent de-
hydration at ambient temperature, each crystal was enclosed in a plastic capillary with crystallization solution in
the tip. X-ray diffraction images were recorded by a photon-counting detector using shutterless data collection
with fine phi-slicing (0.1◦ per frame). (B) The total dose was distributed over 11 diffraction volumes from four
large crystals (Supplementary Table 1). (C) At each spindle angle (phi), diffraction images were collected with
the crystal in the beam (left) and with the crystal translated out of the beam (middle). As the background includes
scattering from the instrument and narrow rings due to the plastic capillary, the pattern due to the sample only is
estimated by subtraction (right). For clear illustration, the images shown are the sums of 10 sequential frames (1◦

oscillation and 1 s exposure in total).

3



Supplementary Fig. 3: Rocking curve for the (2,-8,-1) reflection. In our diffraction data from triclinic lysozyme,
the apparent crystal mosaicity of 0.02 to 0.03◦ is smaller than the oscillation width of 0.1◦ per frame, so most
Bragg reflections appear only in one or two consecutive images and their rocking curves cannot be resolved. We
thus identified an intense (2,-8,-1) Bragg reflection that is close to the spindle axis and passes through the Ewald
sphere along c∗ at a rate approximately 3 times slower than the fastest route. The peak profile above the background
was well-fit by a three-dimensional Gaussian model [2] with apparent mosaicity and beam divergence of 0.020◦ and
0.024◦, respectively. (A) The total photon counts in a 25-pixel region around the Bragg peak is plotted vs. spindle
angle from the diffraction maximum (black symbols). The sharp Bragg peak (Gaussian fit shown in blue) is easily
distinguished from the more slowly-varying background. The vertical dashed lines show the voxel subdivisions
along c∗ used in the construction of the fine diffuse map. The peak is confined to the central subdivision. (B) On
the left is a zoom-in of the (2,-8,-1) Bragg reflection in the diffraction image (0.1◦ oscillation) at its peak intensity.
The x and y axes are distances from the beam center, and the spindle is parallel to the x-axis. On the right is the
same oscillation simulated using the Gaussian model. In both images, the intersection of voxel edges in the a∗-b∗

plane with the Ewald sphere are projected onto the detector plane, showing that the Bragg intensity is confined to
the central voxel.
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Supplementary Fig. 4: Minimal radiation damage is observed in the triclinic lysozyme dataset. (A) In general,
global radiation-induced damage manifests as a decay in the Wilson B-factor with increasing dose, which is cor-
rected by a relative B-factor when scaling Bragg data with aimless [3]. The relative B-factor (blue curves) and a
linear fit (red lines) are shown for all 11 diffraction volumes from four crystals (Supplementary Fig. 2B) with labels
corresponding to crystal number / wedge number (Supplementary Table 1). For each wedge, the Wilson B-factor
decays by less than 1Å2 over the course of the measurement. (B) Disulfide bonds were also inspected for evidence
of photo-reduction in the structure determined from the combined data. The four disulfide bonds in the lysozyme
are shown along with the 2Fo-Fc map (blue mesh at 2.5σ ) and the Fo-Fc map (red and green mesh at ±2.5σ ). The
bonds appear largely intact. The difference density near the sulfur atom of C30 (top right panel) may indicate that
a minor population of C30-C115 has been reduced.
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Supplementary Fig. 5: Importance of background subtraction. Singular value decomposition of the set of back-
ground images (360◦, 1 s exposures, 1◦ oscillation) shows several scattering features that vary independently as
the spindle rotates. The first four singular vectors are shown (n = 1 to 4); the left singular vectors correspond to
diffraction images, and the right singular vectors show the contribution as a function of spindle angle. The n = 1
component contains the overall background scattering. The n = 2 component, which has ring-like features and
a period of 180◦, can be attributed to anisotropic scattering of the capillary. The n = 3 component, with strong
equatorial features and a period of 360◦, is due to the shadow cast by the sample pin as it precesses. The remaining
components (n > 3) have features due to both the pin shadow and the capillary, as well as experimental noise.
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Supplementary Fig. 6: Refinement of a scaling model to correct for experimental artifacts in X-ray images. The
scaling model (Equation 1 in the Main Text) used in processing diffuse scattering data relates the merged intensity
to the observed intensity as a function of spindle angle, resolution (d), and detector position. From left to right,
the model parameters included: (1) offset correction vs. spindle angle and resolution, (2) overall scale factor vs.
spindle angle, (3) scale factor for absorption correction vs. spindle angle and detector position, and (4) scale factor
for detector efficiency correction vs. detector chip index. The parameters in the model were refined in order to
minimize the least-squares error between observation and prediction (Equation 2 in the Main Text). The best-
fit-parameters are illustrated for each partial dataset (top to bottom) labeled according to crystal number / wedge
number (refer to Supplementary Fig. 2B, Supplementary Table 1).
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Supplementary Fig. 7: Impact of scaling parameters on diffuse data quality. Four parameters were refined sequen-
tially to the coarse continuous scattering map (one point per integer h,k,l): scale, offset, absorption, and detector
(labeled in Supplementary Fig. 6 and described in the Methods section of the Main Text). Data quality was assessed
by comparing Pearson correlation coefficients (CC) between half-datasets within shells of constant resolution. (A)
CC between random half-datasets (CC1/2). (B) CC between half-datasets related by Friedel symmetry (l > 0 and
l < 0, CCsymm.). Both metrics show improvements in data quality as each parameter is added.

Supplementary Fig. 8: Robustness of absolute intensity calibrations performed with the Krogh-Moe (K-M)
method (red squares) and the modified K-M method, which accounts for an interference term that depends on
bond geometries (blue circles). (A) A test dataset of X-ray intensities (Bragg, diffuse, and Compton) was calcu-
lated from the 1-unit cell MD simulation of triclinic lysozyme, and the ratio between predicted and actual total
intensity was plotted vs. resolution cutoff using each method. Both converge to the expected value of 1 (dashed
line), but the modified method converges much more quickly. (B) The same methods applied to the experimental
maps of continuous scattering and Bragg diffraction on an arbitrary intensity scale. The modified K-M method
converged by ∼ 2Å resolution, yielding a scale factor of 680 (dashed line).
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Supplementary Fig. 9: Isotropic component of diffuse scattering in experiment and the 1-unit cell MD simulation.
(A) The diffuse scattering was resampled at half-integer values of h, k, and l, where halo scattering is minimal. To
improve the signal-to-noise ratio, the interpolation was performed by least-squares fitting a 2nd order polynomial
to the 5x5x5 voxel region around each point in the target grid. The resulting “half-integer map” (gray points)
was analyzed as a function of the resolution d. Within each resolution bin, the isotropic background (red curve)
was defined as 1σ below the mean (dashed black curve). (B) The isotropic background was subtracted from the
total intensity to aid in visualizing the cloudy variational pattern. Slices from left to right are perpendicular to
a∗, b∗, and c∗. (C-D) The 1-unit cell MD simulation was analyzed in the same way as the half-integer map. The
isotropic scattering and variational scattering components are similar between the 1-unit cell MD simulation and
the half-integer map.
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Supplementary Fig. 10: Diffuse streaks attributed to intense features in the molecular transform. In the experi-
mental maps of variational scattering (left panel), certain pairs of halos are connected by streaks of diffuse intensity,
such as (0,-5,12) and (0,-6,12), while others are not, such as (0,-4,12) and (0,-5,12). Similar features are seen in the
one-phonon scattering simulation of the lattice dynamics model (center panel). These anisotropic features occur
because the halo intensities are modulated by the molecular transform, the continuous diffraction intensity of an
isolated unit cell (right); the molecular transform is intense between (0,-5,12) and (0,-6,12) but is close to zero
between (0,-4,12) and (0,-5,12), explaining the presence of a diffuse streak in the former case and its absence in the
latter.

Supplementary Fig. 11: Contribution of halos to the total variational scattering. The mean variational intensity
in each resolution shell was calculated for the full map, which includes the halo features, and for the half-integer
interpolated map (described in Supplementary Fig. 9A), which does not. The halo contribution was estimated as
the difference between the two (shaded region). In most resolution shells, the halos account for about half of the
total variational intensity (solid curve).
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Supplementary Fig. 12: Correlations between Bragg and diffuse intensities. The total variational intensity, which
includes halos and cloudy scattering, was averaged in neighborhoods (h,k,l) around each Bragg peak (h0,k0, l0),
where |h− h0| < 1/2, |k− k0| < 1/2, and |l− l0| < 1/2. The contribution of cloudy scattering was estimated by
linear interpolation of the half-integer map (Supplementary Fig. 9A). Halo scattering was estimated by subtract-
ing the cloudy scattering from the total variational intensity. (A) The Pearson correlation coefficients (CC) were
calculated between the Bragg intensities and different components of diffuse scattering: total variational scattering
(blue curve), cloudy scattering (green curve), and halo scattering (purple curve). The correlations are positive in
all resolution shells, with halo intensities showing the strongest correlation. (B) The diffuse scattering and Bragg
intensities calculated from the 343-unit cell MD simulation were analyzed as in panel A. The Bragg intensities and
halo intensities are also strongly correlated. (C) CC of Bragg intensities between experiment and four MD simula-
tions with 1-343 unit cells (colored curves, see legend). The CC is strong at low resolution, but decays significantly
at high resolution. In contrast, the CC between the experiment and the refined crystal structure model (black curve)
remains excellent at high resolution.
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Supplementary Fig. 13: Refinement of lattice dynamics model against a small subset of diffuse halos. (A) The
spring constants in the lattice dynamics model were refined iteratively to minimize the least-squares difference
(reduced χ2, blue symbols) between the calculated one-phonon intensity and the measured variational intensity
around 400 intense halos. To avoid over-fitting, the refinement was carried out in four stages (i-iv) as restraints
were removed (see Methods in the Main Text). The first stage (i) is a Gaussian model with equal springs, while
in the final stage (iv) all springs are refined individually. (B) The ability of the model to explain halo anisotropy
(see Fig. 3C in the Main Text) was assessed using the Pearson correlation coefficient for the 400 halos (CCaniso).
Initially, the anisotropy parameters for model and experiment show little correlation (CCaniso = 0.45, scatter plot in
lower left). After refinement, the correlation improves (CCaniso = 0.92, scatter plot in lower right).
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Supplementary Fig. 14: Correlation of experiment and simulated one-phonon scattering from the refined lattice
dynamics model calculated with intensities from the full 13x11x11 grid. The data-model correlation (solid blue
curve) is excellent (CC ∼ 0.9) between 2 and 5Å resolution (solid), but decays rapidly beyond ∼ 2Å resolution.
At high resolution, the correlation is limited by noise in the experimental map, as estimated using the CC* statistic
(dashed curve). Interpolating the maps on a 7x7x7 grid improves the signal-to-noise (see Fig. 2D in the Main Text).

Supplementary Fig. 15: Dispersion relations for lattice modes of triclinic lysozyme. The vibrational frequencies
(ν = 2πω) were calculated from the refined lattice dynamics model along a path through k-space (x-axis on the
left plot) that passes through the origin (Γ) as well as special points at the edge of the Brillouin zone (defined in the
table on the right, where b1, b2, and b3 are the fractional coordinates along a*, b*, and c*). The vibrational density
of states (right plot) was calculated for 11,025 evenly spaced points in the Brillouin zone (a 25x21x21 supercell). In
the model, each protein chain has 6 degrees of freedom (3 coordinates each for translations and rotations), resulting
in 6 vibrational modes: 3 optical and 3 acoustic. The acoustic modes are those that pass through the origin.
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Supplementary Fig. 16: Elastic network models of internal motion refined to the atomic displacement parameters
(ADPs). For visual clarity, the average equivalent isotropic B-factors were computed for non-H atoms in the
backbone and side-chains for the refined crystal structure (black curve and gray shaded area), the lattice dynamics
model (blue curve), and the lattice + internal dynamics models (dark red symbols). (A) A model with equal spring
constants reproduces many of the backbone features (left), except at the C-terminus (residues 95-129). Many of the
side-chain B-factors are not reproduced (right). (B) The B-factors are reproduced by refining the spring constants
in a model parameterized with one coupling constant per residue (see Fig. 4C in the Main Text). Agreement for the
backbone and side-chain B-factors is improved. (C) Repeating the refinement in panel B with a modified potential
energy function, which suppresses collective motion of the α and β domains (see Fig. 4D and Methods in the Main
Text), lead to a similarly reasonable fit to the B-factors.
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Supplementary Fig. 17: Comparison of models for internal motion by diffuse Patterson analysis. The central
sections of the diffuse Patterson maps in the in a-b plane (dashed circle corresponds to 10Å) are shown for the
two elastic network models that fit equivalently well to the experimental ADPs (Supplementary Fig. 16B-C). (A)
Fluctuations are observed to ∼ 10Å when full internal motions are allowed (figure panel repeated from Fig. 5C in
the Main Text). (B) Suppressing collective motion of the α and β domains in lysozyme leads to a diffuse Patterson
map that is significantly altered. (C) The amplitudes of the fluctuations in the diffuse Patterson for the no-domain-
motion model (blue curve) decay more rapidly with pair distance than those of the unconstrained model (green
curve, repeated from Fig. 5F in the Main Text).
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Supplementary Tables

Crystal Wedge Frames Spindle Range (deg.) 〈I/σ I〉

7 1 1-500 5-55 16.0

8 1 1-500 300-350 14.0
2 1-500 255-305 15.6
3 1-500 130-180 14.6

9 1 1-500 0-50 18.7
2 1-500 45-95 18.1

10 1 1-500 250-300 16.2
2 1-500 295-345 23.1
3 1-500 340-390 18.7
6 1-500 70-120 20.3
7 1-500 115-165 14.9

Supplementary Table 1: The X-ray datasets that were combined and used for both structure determination and
diffuse scattering analysis in this study.
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PDB ID 6o2h

Data collection
Space group P1

a, b, c (Å) 27.42, 32.13, 34.51
α , β , γ (◦) 88.66, 108.46, 111.88

Mosaicity (◦) 0.030
Resolution range (Å) 32.55–1.21 (1.23-1.21)a

Rpim 0.025 (0.038)
〈I/σ(I)〉 27.4 (12.5)
CC1/2 0.995 (0.994)
Completeness (%) 96.1 (52.9)
Multiplicity 4.7 (1.4)

Refinement
Resolution (Å) 32.55–1.21
Unique reflections: all / free 30108 / 1495
Rwork/ Rfree 0.096 / 0.117
Number of non-H atoms

Protein 1122
Ligand/Ion 29
Water 92

Mean isotropic B-factors
Protein 12.45
Ligand/Ion 31.44
Water 26.25

Model validationb

Ramachandran outliers (%) 0
Ramachandran favored (%) 99.21
Rotamer outliers (%) 0.81
C-β deviations 0
R.m.s. bond lengths (Å) 0.0272
R.m.s. angles (◦) 2.31
Clashscore 0.00
Overall score 0.50

aValues in parentheses are for highest-resolution shell.
bCalculated using MolProbity[4]

Supplementary Table 2: Data collection and refinement statistics.
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Wavevector direction Longitudinal fraction (%) vs (m/s)

Γ-L 7.2 601.2
12.1 819.6
99.1 1270.3

Γ-M 1.0 744.4
18.1 606.1
98.3 1033.4

Γ-N 20.6 675.7
28.0 876.5
93.6 1170.9

Γ-R 18.4 852.6
22.8 769.1
95.7 1202.6

Γ-X 1.7 694.0
22.7 775.9
97.2 1294.0

Γ-Y 26.9 708.5
51.3 598.1
81.8 1059.2

Γ-Z 0.9 693.5
9.4 793.0
99.6 1047.4

Supplementary Table 3: Acoustic phonon properties. Wavevector directions are defined in Supplementary Fig.
15. Longitudinal fraction and speed of sound (vs) were calculated for each of the three acoustic phonons at a
fractional wavevector magnitude of 0.1. The longitudinal fraction [5] was defined as (û · k̂)×100%, where k is the
wavevector and u is the principal axis of vibration of the protein center of mass.

Protein center of mass (x,y,z) (Å) (-0.943, 14.007, 24.322)
Center of reaction (x,y,z) (Å) (-1.844, 13.061, 25.358)

T (T1,1, T2,2, T3,3, T1,2, T1,3, T2,3) (Å2) (0.0385, 0.0443, 0.0377, 0.0009, 0.0037, 0.0024)
L (L1,1, L2,2, L3,3, L1,2, L1,3, L2,3) (deg.2) (0.5675, 0.7941, 0.6688, -0.0789, -0.0383, -0.1438)
S (S1,1, S2,2, S3,3, S1,2, S1,3, S2,3) (deg.Å) (0.0109, -0.0075, 0.0034, -0.0103, -0.0012, -0.0079)

r.m.s. displacement = (tr(T)/3)1/2 (Å) 0.200
r.m.s. rotation = (tr(L)/3)1/2 (deg.) 0.823

Supplementary Table 4: Translation libration screw (TLS) parameters [6] calculated from the refined lattice
dynamics model (Equation 58 in the Supplementary Methods). The center of reaction was chosen as the origin for
the rigid group, which makes S symmetric and minimizes the trace of T.
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Supplementary Notes
Supplementary Note 1. Number of free parameters in the elastic network model

Two elastic network models for internal protein motion were fit to the residual ADPs. The number of normal modes
for the elastic network is 129× 6− 6 = 771, since there are 129 rigid groups (one per residue) with 6 degrees of
freedom each, and the restraint that there is no rigid-body motion of the entire protein reduces the number of modes
by 6. In the model with domain motion suppressed, similar restraints applied to the 3 rigid groups (α , β , and hinge)
result in 129× 6− 3× 6 = 756 normal modes. Thus, by restraining 3 groups instead of 1, the number of normal
modes is very moderately reduced, which in principle might make it more difficult to fit the ADPs. However, we did
not adjust the normal mode amplitudes to fit the ADPs as was done in prior studies [7, 8]. Instead, we refined the
physical model (spring constants) through a conservative parameterization with one coupling constant per residue
(or 129 free parameters, see Equation 12 in the Main Text). Thus, the ability of each model to fit the ADPs is not
limited by the number of normal modes, but is instead limited primarily by the parameterization, which is the same
in both cases.
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Supplementary Methods
1 General Theory

The kinematical theory of X-ray diffraction applicable to diffuse scattering from proteins has been described pre-
viously [9, 10]. Here we provide an overview of the main results as relevant to this study.

1.1 Total scattering cross-section

The macroscopic differential scattering cross-section, dΣ/dΩ, describes the probability of observing a scattering
event in the solid angle dΩ when the sample is illuminated by X-rays. The cross-section depends on the respective
wavevectors of the incident and scattered X-rays, s0 and s′. The wavevectors have magnitudes of inverse wave-
length: s0 = |s0|= 1/λ and s′ = |s′|= 1/λ ′, where λ and λ ′ are the wavelengths of the incident and scattered X-ray
photons. Given an incident flux, J0, the total scattered flux into a solid angle ∆Ω in the direction ŝ′ is as follows:

J(ŝ′) = J0∆Ω
dΣ

dΩ
(s0,s′). (1)

In the X-ray experiments described here, both coherent and incoherent processes contribute to X-ray scattering:

dΣ

dΩ
=

(
dΣ

dΩ

)
coherent

+

(
dΣ

dΩ

)
incoherent

. (2)

The coherent X-ray scattering has a cross-section(
dΣ

dΩ

)
coherent

= Ie(ŝ0, ŝ′)Isample (s) , (3)

where s = RT (s′− s0) is the scattering vector in the sample frame which is rotated with respect to the lab frame
by a rotation matrix R, Isample is the coherent intensity of the sample in per-electron units, and Ie is the Thomson
scattering cross-section of a free electron,

Ie = r2
e P(ŝ0, ŝ′), (4)

where re is the classical electron radius and P(ŝ0, ŝ′) is the polarization factor.
Incoherent, or Compton, X-ray scattering has a cross-section [11]:(

dΣ

dΩ

)
incoherent

= Ie(ŝ0, ŝ′)Ssample (s) , (5)

where Ssample is the sum of atomic incoherent scattering functions over all illuminated atoms[12]. The Compton
scattering process is inelastic: the scattered photon has less energy than the incident photon by an amount that
increases with scattering angle. However, the wavelength shift, which is at most twice the Compton wavelength of
the electron λC = hm−1

e c−1 ≈ 0.02426Å, is small compared with the λ ∼ 1Å wavelengths generally employed in
X-ray crystallography. Therefore, in the following, we assume λ = λ ′.

The sample in this case is a crystal composed of unit cells. The crystal is assumed to be homogeneous, meaning
that the unit cells are equivalent to each other on average, and therefore one can write:

Isample(s) = (V0/vc)I(s) (6)

and
Ssample(s) = (V0/vc)S(s), (7)

where V0 is the volume of the sample illuminated by the X-ray beam, vc is the unit cell volume (V0/vc is the number
of unit cells illuminated), and I(s) and S(s) are the coherent and incoherent intensities per unit cell. Finally, we can
write the scattered flux in terms of the intensities per unit cell by combining Equations 1-7, as follows:

J(ŝ′) = J0∆Ωr2
e P(ŝ0, ŝ′)(V0/vc) [I(s)+S(s)] . (8)
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1.2 Coherent scattering from crystals

Coherent scattering of X-rays depends on the spatial distribution of electrons in the sample. If ρ(r) is the instanta-
neous number density of electrons at a position r, the scattering is described by the Fourier transform of the electron
density, a quantity known as the structure factor, F(s):

F(s) =
∫

ρ(r)e2πis·rd3r. (9)

The intensity per unit cell is proportional to the mean square structure factor, as follows:

I(s) = N−1 〈F(s)2〉 , (10)

where N is the number of unit cells under consideration and brackets denote the ensemble (or time) average. In
general, the electron density is time-dependent, but the system is in equilibrium so that we can define an average
electron density 〈ρ(r)〉 with corresponding structure factor 〈F(s)〉. If the structure factor is separated into the
average and fluctuating terms, F = 〈F〉+ F̃ , the total intensity (Equation 10) becomes

I(s) = N−1 〈F(s)〉2 +N−1 〈F̃(s)2〉 . (11)

We can further define an average unit-cell electron density, in which the densities of all unit cells are superim-
posed, 〈ρcell(r)〉, and corresponding structure factor 〈Fcell(s)〉. If the unit cells under consideration are equivalent,
ensemble averaging is equivalent to spatial averaging, and the two average structure factors are related as follows:

〈F(s)〉= 〈Fcell(s)〉∑
n

e2πis·rn , (12)

where the sum runs over all unit cells, N, and rn is the origin of each unit cell. If s happens to coincide with a node
of the reciprocal lattice gh (h is the vector of Miller indices, h, k, and l), the phase factor in the sum is equal to 1
for all n, and the sum evaluates to N. When N is large, the amplitude of the lattice term falls off very quickly with
|s−gh| , and as N→ ∞, it can be written as a sum of delta functions as follows:

lim
N→∞

∣∣∣∣∑
n

e2πis·rn

∣∣∣∣2 = Nv∗c ∑
h

δ (s−gh), (13)

where v∗c is the volume of a unit cell of the reciprocal lattice. Thus, for the large crystal, we can combine Equations
11-13 to write the intensity per unit cell as follows:

I(s) = 〈Fcell(s)〉2 ∑
h

v∗cδ (s−gh)+N−1 〈F̃(s)2〉 . (14)

The second term of Equation 14 is the diffuse scattering per unit cell,

ID(s) = N−1 〈F̃(s)2〉
= N−1

(〈
F(s)2〉−〈F(s)〉2

)
. (15)

The first term of Equation 14 contains the Bragg peaks. We can define the Bragg intensity as follows:

IB(s) = 〈Fcell(s)〉2 , (16)

which is obtained for s = gh upon integration of the Bragg peaks in reciprocal space. With these definitions
(Equations 15-16), the coherent intensity from a macroscopic crystal (Equation 14) is as follows:

I(s) = ID(s)+ IB(s)∑
h

v∗cδ (s−gh). (17)
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1.3 Diffuse Patterson function

The diffuse Patterson function, or three-dimensional difference pair distance distribution function (3D-∆PDF), is
defined as the mean autocorrelation of the electron density fluctuations per unit cell, as follows:

∆PDF(r) = N−1 〈∆ρ ?∆ρ〉(r)

= N−1
∫
〈∆ρ(u)∆ρ(r+u)〉 d3u , (18)

where ∆ρ = ρ −〈ρ〉 is the difference between the instantaneous electron density and the ensemble average. The
diffuse intensity per unit cell (Equation 15) can be rearranged as:

ID(s) = N−1
〈
|F(s)−〈F(s)〉|2

〉
. (19)

Plugging in the definition of the structure factor (Equation 9), we see that ID is the Fourier transform of the ∆PDF,
as follows:

ID(s) = N−1

〈∣∣∣∣∫ ∆ρ(r)e2πis·rd3r
∣∣∣∣2
〉

= N−1
∫
〈∆ρ ?∆ρ〉(r)e2πis·rd3r

=
∫

∆PDF(r)e2πis·rd3r. (20)

Thus, ID and ∆PDF are a Fourier transform pair, and the inverse transform is:

∆PDF(r) =
∫

ID(s)e−2πis·rd3s . (21)

1.4 Scattering simulation

In order to simulate total scattering without having to model the entire crystal, it is useful to simulate a small
number of unit cells and to impose periodic boundary conditions by what is known as the supercell method [13–
15]. Given a supercell consisting of a three-dimensional array of Nscell = N1×N2×N3 unit cells, a “supercell
reciprocal lattice” can be defined, which subdivides the regular reciprocal lattice by N1 along a∗, N2 along b∗, and
N3 along c∗. The total intensity per unit cell (Equation 10) is calculated in the same manner as usual (Equation 11),
except that the structure factor Fscell is now a periodic function whose Fourier transform is defined only at nodes of
the reciprocal lattice of the supercell. The mean of Fscell, evaluated at the Bragg peak locations (the nodes of the
unit cell reciprocal lattice, gh) is proportional to the regular unit cell structure factor Fcell:

|〈Fscell(s = gh)〉|= Nscell |〈Fcell(s)〉| . (22)

Thus, we can calculate the Bragg intensity per unit cell (Equation 16) from a supercell simulation as follows:

IB(s) = N−2
scell 〈Fscell(s)〉2 , (23)

where Fscell is evaluated only at nodes of the regular, unit-cell reciprocal lattice. The diffuse intensity per unit cell
is defined in the same way as the macroscopic crystal case (Equation 15), except that it is no longer a continuous
function of s and is evaluated only at the nodes of the supercell reciprocal lattice.

2 Experimental Corrections

Here we consider geometric and experimental corrections that relate the photon counts observed by a detector to
the coherent intensity per unit cell, I(s) (see Section 1 and Equation 10). The first section describes the factors
depending on the scattering geometry. The second section describes corrections to the Bragg intensity for a crystal
that rotates continuously during the exposure. The final section describes a method for placing the total intensity
on an absolute scale and subtracting the incoherent contribution.
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2.1 Geometric factors

We consider corrections applicable to the geometry normally used in macromolecular crystallography, which con-
sists of a planar X-ray detector with square pixels and a sample that is rotated about a fixed spindle axis. Corrections
are derived assuming that detection occurs in the far field from a small sample, so that the illuminated portion of
the sample acts as a point-like source.

In Section 1, Equation 8 relates the scattered flux J(ŝ′) in the direction ŝ′ to the coherent and incoherent inten-
sities. Two prefactors in that equation, the polarization P and solid angle ∆Ω, depend on the scattering geometry.
The solid angle of the pixel can be calculated as follows:

∆Ω = (∆x∆y/d2)cosω, (24)

where d is the distance between the sample and detector pixel, ∆x and ∆y are the pixel width and height, and ω is
the angle between the detector surface normal and the path of the incident photon. The polarization factor depends
on the scattering geometry as well as X-ray source properties: the fraction of polarization, p, and the vector normal
to the plane of polarization, n̂. In terms of these parameters, the polarization factor can be written as follows [16]:

P = p
(

1+
(
ŝ′ · ŝ0

)2
)
+(1−2p)

(
1−
(
ŝ′ · n̂

)2
)
. (25)

In addition to solid angle and polarization, we must also correct for the efficiency of detection. In an ideal
situation, the expected number of photons recorded by a detector pixel, n, would be equal to the scattered flux
(Equation 8) times the exposure time: n = J∆t. However, two non-ideal effects may be important. First is the
possibility that the detector pixel does not absorb all of the photons it intercepts. For a pixel of thickness δ and
absorption coefficient of the sensor κ , the fraction of photons absorbed, E, is as follows:

E = 1− exp(−κ δ/cosω). (26)

Second is the possibility that the material between the sample and detector absorbs or scatters some of the X-rays
before they can be detected. For example, if a uniform material (such as air) with attenuation coefficient µ occupies
the space between the sample and the detector (the path length is d), the probability that a photon is transmitted, A,
is as follows:

A = exp(−µ d). (27)

The sample rotates during the exposure, so that each pixel samples a range of scattering vectors in the reference
frame of the sample. Let m̂ be the spindle axis, φ the spindle angle, ∆t the exposure time, and ∆φ/∆t the rate of
rotation. Then, for small ∆φ and ∆Ω, the volume element swept by the pixel in reciprocal space is as follows [10]:

∆v∗ = ∆φ∆Ωλ
−3 ∣∣m̂ · (ŝ× ŝ′

)∣∣ . (28)

The measured intensity thus depends on the average flux (Equation 8) for this volume,

〈J〉
∆v∗ = J0∆Ωr2

e P(V0/vc)〈I +S〉
∆v∗ , (29)

where the brackets signify averaging over the volume element ∆v∗, as follows:

〈I +S〉
∆v∗ ≡

1
|∆v∗|

∫
∆v∗

d3s(I(s)+S(s)) . (30)

Finally, there may be other photons detected during the exposure that come from background sources, such as
air scatter. The background scattering rate for each pixel, rb, will be sample and instrument-dependent, but it can
be estimated experimentally, for example by performing a measurement with the sample removed.

With all corrections put together, the expected number of photons detected is related to the intensity per unit
cell as follows:

n = ∆t
(
rb +∆ΩEAPJ0r2

e (V0/vc)〈I +S〉
∆v∗
)
. (31)
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2.2 Corrections to experimental data

Equation 31 relates the measured photon counts to the signal of interest: the coherent intensity per unit cell, I,
which consists of the Bragg and diffuse components. Here we describe the data processing steps that are necessary
to convert photon counts into estimates of IB and ID on an absolute scale.

In a standard macromolecular crystallography experiment, intensity is determined on an arbitrary scale (this is
because the incident flux, the illuminated volume, or both, are typically unknown), and the background scattering
is not measured. This is adequate for Bragg intensity determination because the intensity is integrated relative to a
local background, and the overall scale factor is fit during model refinement. For diffuse scattering, it is necessary
to measure and subtract the background. As a first step in data analysis, the background and geometric corrections
are applied to the measured photon counts, so that one obtains an intensity on an arbitrary scale, which we call
Imeas, as follows:

Imeas ≡
nmeas/∆t− rb

∆ΩEAP
, (32)

where the factors in the denominator are defined in Equations 24-27. This intensity is proportional to true intensity
per unit cell, with the expected theoretical relationship (Equations 31and 32):

Imeas ∝ 〈I +S〉
∆v∗ . (33)

For a given exposure, the prefactor
(
J0r2

eV0/vc
)

is a constant that is the same for all pixels.
The next step is to separate Imeas into Bragg and continuous scattering components. This is simplest in the

case where the coherent intensity I has a diffuse component that varies gradually on the scale of ∆v∗ and Bragg
peaks that are delta function-like on this scale (Equation 17). Then, Imeas can be treated differently depending on
whether the integration volume ∆v∗ contains a Bragg peak. If it does not, the intensity can be factored out of the
integral (Equation 30), and we have 〈I +S〉

∆v∗ ≈ ID +S. If the volume contains a Bragg peak (at s = gh), we have
〈I +S〉

∆v∗ ≈ ID + S+(v∗c/∆v∗)IB. Thus, the Bragg intensity can be estimated from Imeas by first subtracting the
continuous scattering beneath the Bragg peak and then scaling by ∆v∗/v∗c (the Lorentz correction), as follows:

IB ∝ (∆v∗/v∗c)(Imeas− Ibkg), (34)

where Ibkg is an estimate for the continuous scattering contribution at h.

2.3 Incoherent scattering and absolute intensity

A convenient method for determining the absolute scale factor based on the integral of the total intensity was first
described by Krogh-Moe [17] and further elucidated by Norman [18]. The total intensity includes the coherent
scattering (Bragg and diffuse) as well as incoherent Compton scattering. The total integrated intensity (per unit
cell) is defined as follows:

Itotal =
∫

d3s (I(s)+S(s)) , (35)

where I and S are the coherent and incoherent scattering per unit cell. Compton scattering is insensitive to molecular
structure and can be calculated given the atomic inventory of the unit cell as follows:

S = ∑
n

Sn(s), (36)

where the sum runs over all atoms in the unit cell and Sn(s) are the atomic incoherent scattering functions [11, 12].
Application of Parseval’s theorem from harmonic analysis allows us to write the integral of the elastic scattering in
terms of independent contributions from each atom, as follows:∫

d3s I(s) =
∫

∞

0
4πs2ds∑

n
f 2
n (s), (37)
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where fn are the coherent atomic scattering factors [19]. Thus, both the coherent and incoherent contributions to
the total intensity can be calculated from the atomic scattering functions, as follows:

Itotal =
∫

∞

0
4πs2ds∑

n

(
f 2
n (s)+Sn(s)

)
. (38)

Alternatively, the total intensity can be found by directly integrating the measured three-dimensional reciprocal
space map. Care must be taken however to place Bragg and diffuse intensities on the same (arbitrary) scale. If
Bragg peaks are modeled as delta functions (Equation 17), the intensity integral is as follows:

Itotal =
∫

d3s [ID(s)+ IB(s)v∗cδ (s−gh)+S(s)]

= v∗c ∑
h

IB(gh)+
∫

d3s [ID(s)+S(s)] . (39)

As discussed in the previous section, the Bragg intensity and the continuous scattering (proportional to ID +S) are
measured on an arbitrary scale. To determine the unknown scale factor, the total measured intensity (Equation 39)
can be compared with the calculated theoretical intensity (Equation 38). There are two complications, however.
The first is that the Bragg peak at h=0 is unmeasurable. The second is that the limits of integration in Equations
38 and 39 go to infinity, while the measurement ends at some finite maximum scattering vector, smax. To overcome
these complications in the theoretical scattering, the h=0 Bragg intensity is subtracted and the integral truncated at
smax, as follows:

Itotal, predicted =−Z2 +
∫ smax

0
4πs2ds∑

n

(
f 2
n (s)+Sn(s)

)
, (40)

where Z = ∑n fn(0) is the number of electrons in the unit cell. This is compared with the integral of the measured
data, over the same region of reciprocal space:

Itotal, measured = v∗c ∑
h 6=0

IB(gh)+
∫
|s|<smax

d3s IC(s), (41)

where IB and IC are the measured Bragg and continuous intensities on an arbitrary scale. The scale factor is
calculated from the ratio of predicted and measured total scattering (Equations 40 and 41).

3 Lattice Dynamics Simulation

Lattice dynamics techniques are used to calculate the vibrational frequencies and normal modes (dispersion rela-
tions) of atomic or molecular crystals [20, 21], often in the context of diffuse scattering [22, 23]. Here we consider
a class of lattice models where the forces between atoms are modeled as a network of springs, and the atoms are
assigned to groups that move collectively as rigid bodies.

3.1 Equations of motion in a rigid-body coordinate system

The equations of motion for the network can be expressed using a generalized coordinate system for rigid-body
displacement. The instantaneous displacement of a rigid group from its resting position is described by a six-
coordinate vector, w = (t1, t2, t3,λ1,λ2,λ3) , where t and λ are the vectors of translation and libration [6]. For small
rotations, the displacement u of an atom in the group is related to w by a linear operator: u = A(r)w, where A
depends on the coordinates of the atom at rest, r = (r1,r2,r3), as follows:

A(r) =

1 0 0 0 r3 −r2
0 1 0 −r3 0 r1
0 0 1 r2 −r1 0

 . (42)
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In the derivation below, we introduce a compact notation where the cartesian displacements of all n atoms in a
unit cell l are represented by a 3n-dimensional column vector u(l), and similarly the generalized coordinates of
all m groups in the unit cell are represented by a 6m-dimensional column vector w(l). A 3n-by-6m matrix A is
constructed so that

u(l) = Aw(l). (43)

Using this notation, the harmonic part of the total potential energy is

V (2) =
1
2 ∑

l,l′
wT
(l)V(l,l′)w(l′), (44)

where V(l,l′) is the portion of the Hessian matrix (or the force constants matrix) pertaining to the interaction between
a unit cell l and l′, defined as follows:

V(l,l′) = AT ∂ 2V
∂u(l) ∂uT

(l′)

∣∣∣∣∣
u=0

A, (45)

where V is the total potential energy. The total kinetic energy is

T =
1
2 ∑

l
ẇT
(l)Mẇ(l), (46)

where M is the matrix of generalized masses (which includes the moments of inertia), defined as follows:

M = AT (diag(m)⊗ I3)A, (47)

where diag(m) is a square matrix with the atomic masses along the diagonal, I3 is the 3×3 identity matrix, and ⊗
is the Kronecker product.

The equations of motion can be derived from the kinetic and potential energies (Equations 44 and 46) using
Lagrangian mechanics, with the following result:

Mẅ(l) =−∑
l′

V(l,l′)w(l′). (48)

The generalized mass matrix is positive definite and can be decomposed as M = LLT, where L is a lower triangular
matrix (found by Cholesky decomposition).

3.2 Normal modes

The Born / von-Karman approach [20–22] can be used to solve the equations of motion (Equation 48) by transform-
ing from real space to reciprocal space (k-space, where k is the wavevector). First, displacement-wave solutions
are proposed with the following form:

w±(l) = L−Teexp [i(k · rl±ωt)] , (49)

where e is a (complex) polarization vector, rl is the origin of unit cell l, ω is the angular frequency, and t is time.
Substituting these solutions into the equations of motion,

ω
2e =

{
L−1

∑
l′

V(l,l′) exp [ik · (rl′− rl)]L−T

}
e. (50)

This can be cast in the form of an eigenvalue equation, ω2e = D(k)e, where D(k) is known as the dynamical matrix.
Let ω2

(k, j) and e(k, j) be the jth eigenvalue and eigenvector of D(k). These satisfy

ω
2
(k, j)e(k, j) = D(k)e(k, j). (51)
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Here we consider finite supercells consisting of N primitive unit cells and periodic boundary conditions so that
k is restricted to a discrete set. It can be shown [21] that the general solution is a sum of all allowed waves, or
normal modes, as follows:

w(l) = ∑
k

∑
j

σ(k, j)L−Te(k, j) exp(ik · rl) , (52)

where σ(k, j) are complex, time-dependent amplitudes of the normal modes.

3.3 Displacement covariances for thermally-excited vibrations

In thermodynamic equilibrium, the mean-squared amplitudes of the normal coordinates can be found by applying
the equipartition theorem (high-temperature limit):〈∣∣σ(k, j)

∣∣2〉= N−1kBT ω
−2
(k, j). (53)

Using this result, the covariance matrix can be derived for the generalized coordinates. It can be expressed in the
following compact form: 〈

w(l)wT
(l′)

〉
= N−1kBT ∑

k
exp(ik · (rl− rl′))K+

(k), (54)

where K(k) is the Fourier transform of the force constants matrix (K(k) = LD(k)LT ) and K+
(k) is its generalized

inverse (in the generalized inverse, normal modes corresponding to rotation and translations of the entire crystal
have ω = 0 and are excluded). The covariance of individual atomic displacements can be calculated by projection
(Equation 42), as follows: 〈

u( jl)uT
( j′l′)

〉
= A(r j)

〈
w(κl)wT

(κ ′l′)

〉
A(r j)

T, (55)

where the index κ refers to the rigid group to which atom j belongs (w(κl) is a 6-element vector). The self-terms
of the covariance matrix are the familiar atomic displacement parameters (ADPs) in protein crystallography:

U j =
〈

u( j)uT
( j)

〉
. (56)

The equivalent isotropic B-factor is defined as

Beq =
(
8π

2/3
)

tr(U) . (57)

Because the generalized coordinates of the lattice model w are the same as those used in TLS refinement [6],
the T, L, and S matrices are 3×3 blocks within the larger covariance matrix for w. For a particular rigid group κ ,
the matrices are related as follows: 〈

w(κ)wT
(κ)

〉
=

[
T ST

S L

]
. (58)

3.4 Diffuse scattering and the one-phonon approximation

It is customary in phonon scattering theory to represent the reciprocal space coordinate by the momentum transfer
vector q rather than the scattering vector s, with the relationship q = 2πs. We follow this convention below. Since
the lattice vibrations are harmonic, the diffuse scattering intensity per unit cell can be calculated in the harmonic
approximation:

ID = N−1
∑
l,l′

eiq·(rl−rl′ )∑
j, j′

f j f j′eiq·(r j−r j′)TjTj′
[
Tl j,l′ j′−1

]
. (59)

The first summation is over all pairs of unit cells indexed by l and l′, and rl is the origin of unit cell l. The second
summation is over all atom pairs in unit cell l (indexed by j) and l′ (indexed by j′). Here, f j is the atomic scattering
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factor and r j is the average position of the atom relative to the unit cell origin. The factors Tj (the Debye-Waller
factor) and Tl j,l′ j′ depend on the self- and cross-terms of the displacement covariance matrix, as follows:

Tj = exp
[
−1

2
qTU jq

]
(60)

and

Tl j,l′ j′ = exp
[

1
2

qT (〈u j′l′uT
jl
〉
+
〈
u jluT

j′l′
〉)

q
]
, (61)

where u jl is the instantaneous displacement of atom j in unit cell l and U j is defined in Equation 56.
When the cross-terms of the covariance matrix are small, Equation 61 can be expanded as a Taylor series,

and the intensity separated into terms of increasing order (I = I(1) + I(2) + . . . .) where I(1) is the “one-phonon”
diffuse scattering, I(2) is the “two-phonon” diffuse scattering, and so on. In the “one-phonon” term, a phonon with
wavevector k contributes only to points in reciprocal space that are displaced by k from the Bragg peak locations
gh, as follows:

I(1)(q = gh−k) = ∑
n

kBT
ω2
(k,n)

∣∣∣∣∣∑j
f jTj exp [iq · r j]qTA(r j)L−T

(κ)e(κ,k,n)

∣∣∣∣∣
2

. (62)

This can be written in a more compact form that is computationally convenient by defining the vector-valued “one-
phonon structure factor”,

G(κ,q) = qT
∑

j
f jTj exp [iq · r j]A(r j). (63)

Then, the one-phonon intensity can be written as follows:

I(1)(q = gh−k) = kBT G(q)K+
(k)G

†(q), (64)

where K+
(k) is the generalized inverse of the force constants matrix (see Equation 54).
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