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Supplementary Material for A Systematic Review of the Applications of Artificial Intelligence and Machine Learning to Autoimmune Diseases. 

Supplementary Table 1 Detailed information for each study included in the systematic review, grouped by autoimmune disease.  
AA=Alopecia Areata, ACPA = Anti-Citrullinated Peptide Antibodies, AI = Renal Pathology Acute Index, AID = Autoimmune Disease, AUC = Area under the ROC Curve, axSpA = Axial Spondyloarthritis, CeD = Coeliac 
Disease, CFS = Chronic Fatigue Syndrome, CGM = Continuous Glucose Monitoring, CI = Renal Pathology Chronic Index, CIS = Clinically Isolated Syndrome, COPD = Chronic Obstructive Pulmonary Disease, CrD = 
Crohn’s Disease, D-IBS = Diarrhoea-Predominant Irritable Bowel Syndrome, EDSS = Expanded Disability Status Scale, EHR = Electronic Health Record, EMR = Electronic Medical Record, FP = False Positive, GWAS = 
Genome Wide Association Study, HC = Healthy Controls, IBD = Inflammatory Bowel Disease, LASSO = Least Absolute Shrinkage and Selection Operator, LDA = Linear Discriminant Analysis, LH-PCR = Length 
Heterogeneity Profile or Fingerprint, ME = Myalgic Encephalomyelitis, MF = Mycosis Fungoides, MFI = Motor Function Impaired, MFP = Motor Function Preserved, MLP = Multilayer Perceptron, MRI = Magnetic 
Resonance Imaging, MS = Multiple Sclerosis, OA = Osteoarthritis, OND = Other neurological diseases, P = Psoriasis, PAFS =  Psoriasis and Psoriatic Arthritis Follow-up Study, PAPS = Primary Antiphospholipid 
Syndrome, PPMS = Primary Progressive Multiple Sclerosis, PRMS = Progressive Relapsing Multiple Sclerosis, PsA = Psoriatic Arthritis, PsC = Cutaneous-only Psoriasis, PSC = Primary Sclerosing Cholangitis, PsV = 
Psoriasis Vulgaris, RA = Rheumatoid Arthritis, RBC = Red Blood Cell, RF = Random Forest, RSME = Root Mean Square Error, RRMS = Relapsing Remitting Multiple Sclerosis, SLE = Systemic Lupus Erythematosus, SNP 
= Single Nucleotide Polymorphism, SpA = Spondyloarthropathy, SPMS = Secondary Progressive Multiple Sclerosis, SSc = Systemic Sclerosis, SVM = Support Vector Machine, T1D = Type 1 Diabetes, T2D = Type 2 
Diabetes, UC = Ulcerative Colitis, VOC = Volatile Organic Compound. 

Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Multiple Sclerosis 

Briggs et al. 
2019 [1] 

No Disease 
Progression 

Supervised Multivariable Regression N=1515  Clinical, Survey 
and  Genetic Data 
 

. 10-fold cross-
validation 

Ahmadi et al. 
2019 [2] 

No Diagnosis Supervised Neural Network N=12 (n(MS)=5, n(HC)=7) Clinical Data Colour task: Accuracy=91%, Sensitivity=83%, 
Specificity=96%.  
Direction Task: Accuracy=90%, Sensitivity=82%, 
Specificity=96%. 
 

Leave-one-out 
cross-validation 

Zhang et al. 
2019 [3] 

No Disease 
Progression 

Supervised Random Forest  N=84 MRI Data Shape Based: AUC=0·85, Sensitivity=0·94, 
Specificity=0·5.  
Shape based with lesion segmentation tool: 
AUC=0·82, Sensitivity=0·95, Specificity=0·33 
 

3-fold cross-
validation 

Zurita et al. 
2018 [4] 

No Diagnosis Supervised Support Vector Machine  N=150 (n(RRMS)=104, n(HC)=46) MRI Data RRMS vs HC: Accuracy=87·8%, Precision=89·7%, 
Sensitivity=88%, Specificity=87·6%.  
RRMS (EDSS > 1·5) vs HC: Accuracy=88·6%, 
Precision=91·6%, Sensitivity=87·5%, 
Specificity=89·8%.  
 

10-fold cross-
validation 

Wang et al. 
2018 [5] 

No Diagnosis  Supervised Neural Network  N=1357 (n(MS)=676, n(HC)=681) 
images.  
N=64 (n(MS)=38, n(HC)=26) 
patients 
 

MRI Data Accuracy=98·77, Precision=98·75, 
Sensitivity=98·77%, Specificity=98·76% 

Hold-out validation 

Neeb et al. 
2018 [6] 

No Diagnosis Supervised k Nearest Neighbours N=97 (n(MS)=52, n(HC)=45) MRI Data Data not affected by motion: False prediction 
rate=16·3%.  
All data: False prediction rate=25·5% 
 

Leave-one-out 
cross-validation 
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AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Lotsch et al. 
2018 [7] 

No Diagnosis Supervised 
and 
Unsupervised 

Emergent self-organising 
maps, Random Forest  

N=403 (n(MS)=102, n(HC)=301) Lipid Marker Data  ESOM balanced accuracy=98%.  
Random forest: AUC=100%, Area under the 
precision recall curve=98·87%, Balanced 
accuracy=100%, Sensitivity=100%, 
Specificity=100% 
 

Nested cross-
validation 

Tacchella et 
al. 2017 [8] 

No Disease 
Progression 

Supervised Random Forest/Human 
Rating Hybrid  
 

N=84 Clinical Data AUC=0·725 (180 days), 0·694 (360 days), 0·696 
(720 days) 

Leave-one-out 
cross-validation 

Lopez et al. 
2018 [9] 

No Disease Subtype  Unsupervised Agglomerative hierarchical 
clustering algorithm 
 

N=191 SNP Data Rand Index=0·96 10-fold cross-
validation 

Supratak et 
al. 2018 [10]  

No  Risk of Disease Supervised Support Vector Regression  N=32 Gait Speed Data R-value=0·98 . (Individual models) 

Sacca  et al. 
2018 [11] 

No Early Diagnosis  Supervised Random Forest or Support 
Vector Machine  

N=37 (n(RRMS)=18, n(HC)=19) MRI Data  Accuracy=85·7%, Sensitivity=100%, 
Specificity=66·7% (SVM and RF) 

5-fold cross-
validation 

Mowry et al. 
2018 [12]  

No Risk of Disease Supervised Logistic Regression N=6552 (n(MS)=3276, 
n(HC)=3276) 

Clinical/Survey 
and Genetic (HLA) 
Data 

. 10-fold cross-
validation (tuning 
parameter only) 

Yoo et al. 
2018 [13] 

No Early Diagnosis  Supervised 
and 
Unsupervised 

Deep Learning, LASSO and 
Random Forest  

N=99 (n(RRMS)=55, n(HC)=44) MRI Data  AUC=88·0% Accuracy=87·9% Sensitivity=87·3%, 
Specificity=88·6% 

11-fold cross-
validation 

Kiiski et al. 
2018 [14] 

No Disease 
Progression 

Supervised Machine Learning 
approach with Penalised 
Linear Regression 

N=78 (n(MS)=35 (22 RRMS, 13 
SPMS), n(HC)=43) 

Clinical Data Cognitive functioning: r-value 0·35 (baseline), 
0·44 (13 months).  
Processing Speed and Working Memory: r-value 
0·27 (baseline), 0·39 (13 months) 

10-fold cross 
validation, nested 
cross validation 

Fiorini et al. 
2015 [15] 

No  Disease Subtype Supervised Ordinary Least Squares 
Regression or Regularised 
Least Squares Regression  

N=457 (n(RRMS)=170, 
n(SPMS)=205, n(PPMS)=68, 
n(PRMS)=8, n(Benign)=6) 

Clinical Scales, 
Patient Reported 
Outcomes 
(anthropometric 
and 
questionnaires) 
Data. 
 

Accuracy=78·32 (Ordinary least squares), 78·24 
(regularised least squares), F1 score=0·701 
(Ordinary least squares), 0·702 (regularised least 
squares) 

Hold-out validation, 
testing set 

Zhong et al. 
2017 [16] 

No Disease 
Progression 

Supervised Support Vector Machine N=72 (n(MFP)=26, n(MFI)=25, 
n(HC)=21) 

MRI Data HC vs MFI: AUC=0·9448, Accuracy=88·34%, 
Sensitivity=96·00%, Specificity=85·71%.  
HC vs MFP: AUC=0·8416, Accuracy=84·16%, 
Sensitivity=88·46%, Specificity=85·71%.  
MFP vs MFI: AUC=0·8338, Accuracy=85·61%, 
Sensitivity=92%, Specificity=84·62%. 
 

Leave-one-out 
cross-validation 
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AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Lotsch et al. 
2017 [17]  

No Diagnosis Unsupervised Emergent self-organising 
feature maps  

N=403 (n(MS)=102, n(HC)=301) Clinical (Lipid 
Serum) Data 
 

Balanced Accuracy=94·6%, Sensitivity=89·2%, 
Specificity=100% 

. 

Karaca et al. 
2017 [18] 

No Disease Subtype  Supervised Convex Infinite Kernel 
Approach (CIKA) 

N=139 (n(MS)=120, n(HC)19) MRI and EDSS 
Data 
 

Accuracy=0·8889 10-fold cross-
validation 

Ostmeyer et 
al. 2017 [19] 

No Diagnosis Supervised Logistic Regression Model N=125 (n(train)=71 RRMS + 12 
OND; n(val)=60 RRMS + 42 OND) 

Clinical (Immune 
Repertoire) Data 

Cross-validation: Accuracy=87% 
Independent Test Data: AUC=0·75, 
Accuracy=72%  

Leave-one-out 
cross-validation, 
independent test 
data 

McGinnis et 
al. 2017 [20]  

No Disease 
Progression 

Supervised Support Vector Regression  N=47  Gait 
Measurement 
Data 
 

RMSE 0·14m/s Leave-one-subject-
out cross-validation 

Zhao et al. 
2017 [21]  

No Disease 
Progression 

Supervised Support Vector Machine  N=1693 Clinical and MRI 
Data 

G0: Accuracy=0·67, Sensitivity=0·81, 
Specificity=0·59. 
G1: Accuracy=0·68, Sensitivity=0·82, 
Specificity=0·58. 
G2: Accuracy=0·65, Sensitivity=0·80, 
Specificity=0·57. 
G3: Accuracy=0·54, Sensitivity=0·52, 
Specificity=0·55. 
 

10-fold cross-
validation 

Ion-
Margineanu 
et al. 2017 
[22] 

No Disease Subtype Supervised Linear Discriminant 
Analysis, Random Forest or 
Support Vector Machine  

N=105 (n(MS)=87, n(HC)=18) Clinical and MRI 
Data  

CIS vs RR: Balanced accuracy=85%, 
Sensitivity=87%, Specificity=83% (SVM). 
CIS vs RR+SP: Balanced accuracy=92%, 
Sensitivity=93%, Specificity=90% (SVM).  
RR vs PP: Balanced accuracy=81% (SVM and 
LDA), Sensitivity=76%, Specificity=86% (SVM), 
Sensitivity=84%, Specificity=78% (LDA).  
RR vs SP: Balanced accuracy=87%, 
Sensitivity=85%, Specificity=88% (SVM)  
 

Leave-one-patient-
out cross-validation 

Kocevar et al. 
2016 [23] 

No Disease Subtype Supervised Support Vector Machine N=90 (n(MS)=64, n(HC)=26) MRI Data HC vs CIS: F-Measure=91·8%, Precision=92%, 
Recall=91·7%.  
CIS vs RR: F-Measure=91·8%, Precision=92%, 
Recall=91·7%.  
RR vs PP: F-Measure=75·6%, Precision=75·6%, 
Recall=75·6%.  
RR vs SP: F-Measure=85·4%, Precision=85·5%, 
Recall=85·4%.  
SP vs PP: F-Measure=66·7%, Precision=67·5, 
Recall=65·9.  
CIS vs RR vs SP: F-Measure=70·6%, 
Precision=71·3%, Recall=70·0% 
 

10-fold cross-
validation 
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AIDs 
Studied 

Prediction or 
Classification 
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ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Kosa et al. 
2016 [24]  

No Disease 
Progression 
 

Supervised CombiWISE (algorithm 
combines disability scoring 
systems) 

N=408 Clinical and MRI 
data 

. Hold-out validation 

Baranzini et 
al. 2015 [25] 

No Disease 
progression  

Supervised Random Forest  N=155 RNA biomarkers, 
Clinical, MRI Data  
 

Accuracy=0·68, Sensitivity=0·22, Specificity=0·88 Hold-out validation 

Wottschel et 
al. 2015 [26] 

No Disease 
Progression 

Supervised Support Vector Machine N=74 Clinical and MRI 
Data 

1 year follow-up: Accuracy=71·4%, 
Sensitivity=77%, Specificity=66%.  
3 year follow up: Accuracy=68% Sensitivity=60%, 
Specificity=76% 
 

Leave-one-out 
cross-validation 

Crimi et al 
2014 [27]  

No Disease 
Progression 

Supervised 
and 
Unsupervised 

Spectral clustering and 
Least squares linear 
regression 

N=25 MRI Data R2=0·9 Leave-one-patient 
out cross-validation 

Sweeney et 
al. 2014 [28] 

No Image 
Segmentation 

Supervised Methods Analysed: 
Logistic Regression, Neural 
Network, Support Vector 
Machine, Quadratic 
Discriminant Analysis, 
Linear Discriminant 
Analysis, Gaussian Mixture 
Model, k Nearest 
Neighbour, Random 
Forest, Super Learner 
 

N=98  MRI Data  . Hold-out validation 

Taschler et al. 
2014 [29] 

No Disease Subtype  Supervised Bayesian Spatial 
Generalized Linear Mixed 
Model or Log Guassian Cox 
Process 

N=250 MRI Data Bayesian Spatial Generalized Linear Mixed 
Model: Accuracy=0·895 (overall), 0·851 (average 
over all subtypes).  
Log Guassian Cox Process: Accuracy=0·748 
(overall), 0·823 (average over all subtypes) 
 

Leave-one-out 
cross-validation 

Alaqtash et 
al. 2011 [30]  

No Diagnosis and 
Disease Severity 

Supervised Nearest Neighbour 
Classifier (k Nearest 
Neighbours) or Artificial 
Neural Network 

N=20 (n(HC)=12, n(spastic 
diplegic cerebral palsy)=4, 
n(RRMS)=4) 

Clinical (Ground 
Reaction Forces; 
Gait Assessment) 
Data 
 

Accuracy=95%, Sensitivity=96%, Specificity=95% Leave-one-out 
cross-validation 

Goldstein et 
al. 2010 [31] 

No  Risk of Disease  Supervised Random Forest N=3362 (n(MS)=931, 
n(HC)=2431) 

GWAS Data . Out-of-bag Error  

Corvol et al. 
2008 [32] 

No Risk of Disease  Supervised 
and 
Unsupervised 

Hierarchical Clustering and 
Support Vector Machine  

N=62 (n(CIS)=34, n(HC)=28) Clinical, 
Microarray Data 

Hierarchical Clustering of high-risk group: 
Sensitivity=92%, Specificity=86%. 
Support vector machine on high-risk group: 
Accuracy=86%, Precision=78%, Negative 
Predictive Value=90% 

10-fold cross-
validation 
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AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Briggs et al. 
2010 [33] 

No Risk of Disease Supervised Random Forest  N=12566 (n(test)=1343 MS + 
1379 HC, n(val)=2624 MS + 7220 
HC ) 

SNP Data . Independent 
validation dataset 

Commowick 
et al. 2018 
[34] 

No Image 
Segmentation 

Supervised Consensus Model  N=53 MRI Data Dice Score~0·63, F1-score~0·5 Hold-out validation 

Ohanian et al. 
2016 [35]  

No Disease 
Classification 

Supervised Decision Tree N=460 Questionnaire 
Data 

Accuracy=81·2% (MS & ME or CFS), 84·0% (ME 
or CFS), 79·2% (MS correctly categorised) 

. 

Salem et al. 
2018 [36] 

No Diagnosis and 
Disease 
Monitoring 

Supervised Logistic Regression  N=60 MRI Data Dice similarity coefficient=0·56 (segmentation), 
0·77 (detection), F-score=0·806, 
Sensitivity=74·3%, Specificity=88·14% 

Leave-one-out 
cross-validation 

Cabezas et al. 
2014 [37] 

No Disease 
Progression 

Supervised BOOST (ensemble 
classifier) 

N=45 (three hospitals)  MRI Data Median Dice Score=0·17 (hospital 1), 0·56 
(hospital 2), 0·52 (hospital 3) 

Leave-one-out 
cross-validation 

Zhang et al. 
2016 [38] 

No Diagnosis Supervised k Nearest Neighbours N=38 and enrolled unspecified 
number of HCs age and gender 
matched 
 

MRI Data Accuracy=97·94%, Precision=99·09%, 
Sensitivity=96·15%, Specificity=99·32% 

10-fold cross-
validation 

Birenbaum et 
al. 2017 [39]  

No Diagnosis and 
Disease 
Monitoring 

Supervised Convolution Neural 
Network  

N=19 (training n=5, test n=14) Clinical (MRI, 
longitudinal) Data 

Cross-validation: Dice Score=0·727 
Test Set: Dice Score=0·627 

Leave-one-out 
cross-validation, 
independent test 
set  

Morrison et 
al. 2016 [40]. 

No Disease 
Monitoring  

Supervised Customized randomized 
forests and novel 
ensembles of randomized 
support vector machines 

N=1041 videos Movement Tests 
Data 

Dice Score > 80% . 

Liu et al. 2015 
[41]  

No Disease 
Progression 

Unsupervised Constraint-based 
clustering  

N=266 Clinical Data . . 

Rheumatoid Arthritis 

Chin et al. 
2018 [42]  

No Risk of Disease  Supervised 
and 
Unsupervised 

Non-negative Matrix 
Factorisation, Support 
Vector Machine 

N=922,199 (n(RA)=1007, 
n(HC)=921,192) 

Medical 
Diagnostic 
Database 

Accuracy ~72%, Sensitivity~74%, Specificity~70% 10-fold cross-
validation 

Chocholova 
et al. 2018 
[43] 

No Diagnosis and 
Disease Subtype  

Supervised Artificial Neural Network  N=100 (n(Seropositive RA)=31, 
n(Seronegative RA)=16, n(HC)=53 

Immunoassay 
(Serum Samples) 
Data 

Seropositive RA vs non-RA: AUC=0.96 
Seronegative RA vs non-RA: AUC=0.86 

Hold-out validation, 
testing set 

Wu et al. 
2018 [44] 

No Diagnosis Supervised Logistic Regression  N=806 (n(HC)=383, n(T2D)=170, 
n(RA)=130, n(Liver 
Cirrhosis)=123) 

Microbiome and 
Clinical Data 

AUC=0·96, F1-score=0·92 5-fold cross-
validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Joo et al. 
2017 [45] 

No Disease 
Progression 

Supervised Support Vector Machine N=773 (n(train and 
validate)=374, n(test)=399) 

GWAS & Clinical 
Data 

Cross-validation: AUC=0·7822, Accuracy=0·7481, 
Sensitivity=0·7644, Specificity=0·7318.  
Independent Test Data: Accuracy=0·6143 

10-fold cross-
validation, 
Independent Test 
Datat 

Andreu-Perez 
et al. 2017 
[46] 

No Disease 
Monitoring  

Supervised Dichotomous Mapped 
Forest 

N=30 (n(RA)=10, n(HC)=20) Movement Data Accuracy 95%, F-score 81% Leave-one-subject-
out cross-validation 

Orange et al. 
2018 [47]  

No Disease Subtype Both Consensus Clustering and 
Support Vector Machine  

N=129 (n(RA)=123, n(OA)=6) RNA sequence 
and Histology 
Data 

AUC=0·88 (high inflammatory vs other), 0·71 
(low inflammatory vs other), 0·59 (mixed 
subtype vs other) 

Leave-one-out 
cross-validation 

Ahmed et al. 
2016 [48] 

No Diagnosis Supervised Random Forest N=172 (n(early OA)=46, n(early 
RA)=45, n(non-RA)=42, 
n(advanced OA)=17, n(advanced 
RA)=22) 

Plasma amino 
acid analyte Data 

Disease vs HC. Training set Cross-validation: 
AUC=0·99 Sensitivity=0·92, Specificity=0·91. Test 
set Cross-validation: AUC=0·96, Sensitivity=0·89, 
Specificity=0·9. 
 Validation test set: AUC=0·77, Sensitivity=0·73, 
Specificity=0·72. 
 
Early RA classification. Training set Cross-
validation: AUC=0·91, Sensitivity=0·8, 
Specificity=0·78.  
Test set Cross-validation: AUC=0·87, 
Sensitivity=0·77, Specificity=0·76. 
Validation test set: AUC=0·62, Sensitivity=0·6, 
Specificity=0·61. 
 

5-fold cross-
validation on 
training set and test 
set. 
Independent 
validation test set.  

Miyoshi et al. 
2016 [49] 

No Response to 
treatment 

Supervised Multilayer Perceptron  N=180 Clinical Data AUC=0·75, Accuracy=92%, Sensitivity=96·7%, 
Specificity=75% 

Hold-out validation 

Yeo et al. 
2016 [50] 

No Early Diagnosis Supervised Multivariate Analysis N=48 (n(Uninflamed 
Controls)=10, n(Resolving 
Arthritis)=9, n(early RA)=17, 
n(established RA)=12) 

Synovial mRNA 
Data 

Established RA vs Uninflamed: AUC=0·996 Early 
RA vs Resolving RA: AUC=0·764 

. 

Zhou et al. 
2016 [51]  

No Identification of 
Patients 

Supervised Random Forest and C5.0 
Decision Tree 

N=480788 EHR Data Test dataset 1: Accuracy=92·29% 
Sensitivity=86·2%, Specificity=94·6% 
Test dataset 2: Best-case scenario: 
Sensitivity=94%, Specificity=99·9%. Worst-case 
scenario: Sensitivity=83%, Specificity=99% 

Two independent 
testing datasets  

Lin et al. 2015 
[52] 

No Identification of 
Patients 

Supervised Natural Language 
Processing and 
Classification Rules  

N=600 (n(RA with liver 
toxicity)=170, n(RA)=430) 

EMR Data Cross-validation: F1-score=0·847, Precision=0·8, 
Recall=0·899 
Test Set: F1-score=0·829, Precision=0·756, 
Recall=0·919 

10-fold cross 
validation, 
independent test 
set 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Chen et al. 
2013 [53] 

No Identification of 
Patients 

Supervised Active Learning and 
Support Vector Machine 

N=376 (n(RA)=185, 
n(Controls)=191) 

EHR Data AUC > 0·95 5-fold cross-
validation 

Lin et al. 2013 
[54]  

No Disease Severity  Supervised Natural Language 
Processing and Support 
Vector Machine 

N=2017 (n(train)=852, n(test set 
1)=821, n(test set 2)=344) 

EMR Data Test set 1 AUC=0·831, F1-score=0·789.  
Test set 2 AUC=0·785, F1 score=0·761 
 

10-fold cross 
validation on two 
test sets  

Negi et al. 
2013 [55]  

No Risk of Disease Supervised Support Vector Machine  N=3542 (n(train)=706 RA + 761 
Controls, n(test)=927 RA + 1148 
Controls) 
 

SNP Data AUC=0·93, Accuracy=88·7% Cross validation 
used 

Pratt et al. 
2012 [56]  

No Early Diagnosis Supervised Support Vector Machine N=173 (n(RA)= 47, n(non-RA)=64, 
n(undifferentiated arthritis)=62) 

CD4 T Cell 
Transcriptome 
Data 

Sensitivity=0·68, Specificity=0·7. 
Removing ACPA-positive subset: 
Sensitivity=0·85, Specificity=0·75 

Hold out validation 

Singh et al. 
2012 [57]  

No Diagnosis Supervised Fuzzy Inference System  N=150 Clinical Data . . 

Kruppa et al. 
2012 [58]  

No Risk of Disease  Supervised  Random Forest in 
regression mode (Random 
Jungle) 
 

N=1445 (n(RA)=707 and 
n(HC)=738) 

GWAS Data AUC=0·8925 Hold-out validation 

Liu et al. 2011 
[59] 

No Risk of Disease Supervised Random Forest N=4880 (n(cohort 1)=908 RA + 
1260 controls, n(cohort 2)= 952 
RA + 1760 controls) 

SNP Data Accuracy=70%, Sensitivity=74%, Specificity=66% Out of bag error, 
Independent 
validation cohort  

Nair et al. 
2010 [60] 

No Response to 
treatment 

Supervised Least Squares Kernel-
Conjugate gradient 
algorithm 

N=25 (n(RA)=8, n(OA)=10, 
n(HC)=7) 

Electro-
myographic Gait 
Data 

Accuracy=91·07%, Sensitivity=81%, 
Specificity=82% 

8-fold cross-
validation 

Briggs et al. 
2010 [61] 

No Risk of Disease Supervised Random Forest and 
Logistic Regression  

N= 4130 SNP Data . Hold-out validation 

Niu et al. 
2010 [62]  

No Diagnosis Supervised Boosted Decision Tree  N=143 (n(RA)=43, n(AID 
Controls)=50, n(HC)=50) 
 

Mass 
Spectrometry 
(from serum) 

Accuracy=85·7% (RA), 87·5% (autoimmune 
controls), 88·0% (HC). Sensitivity=85·71%, 
Specificity=87·76% (RA vs controls) 

Hold-out validation 

Geurts et al. 
2005 [63] 

Yes Diagnosis Supervised Decision Trees (RA 
Boosting, IBD Extra-Trees) 

N(RA)=206 (68 RA, 138 controls), 
N(IBD)=480 (240 IBD, 240 
controls) 
 

Mass 
Spectrometry 
(from serum) 

RA: Sensitivity=83·82%, Specificity=94·93%  
IBD: Sensitivity=88·33%, Specificity= 91·63%  

Leave-one-out 
cross-validation 

de Seny et al. 
2005 [64]  

Yes Early Diagnosis Supervised  Decision Tree Boosting N=103 (n(RA)=34, 
n(inflammatory controls)=20 PsA 
+ 9 Asthma + 10 CrD, 
n(controls)=14 OA + 16 HC) 
 

Mass 
Spectrometry 
(from serum) 

RA vs controls: Sensitivity=85%, Specificity=91% 
(2 independent spectra), Sensitivity=94%, 
Specificity=90% (2 combined spectra).  
RA vs PsA: Sensitivity=94%, Specificity=86% (2 
independent spectra), Sensitivity=97%, 
Specificity=76% (2 combined spectra). 
 

Leave-one-out cross 
validation 

Scheel et al. 
2003 [65] 

No Early Diagnosis  Supervised Neural Network, Method 
in [66]  

N=22 patients, N=72 joints 
examined 

Laser Imaging 
Data 

Accuracy=86%, Sensitivity=80%, Specificity=89% 
 

. 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Gronsbell et 
al. 2018 [67] 

No Identification of 
Patients  

Supervised 
and 
Unsupervised 

Unsupervised (clustering 
based) Feature Selection 
and Sparse Regression 

N=435 EMR Data AUC=0·928 Independent 
validation dataset 
 

Gossec et al. 
2018 [68] 

Yes Disease 
Monitoring  

Supervised Multiclass Selective Naïve 
Bayes Classifier  

N=155 (82 RA, 73 axSpA) Physical Activity 
Data  

Sensitivity=95·7%, Specificity=96·7% Hold-out validation 
 

Lezcano-
Valverde et 
al. 2017 [69] 

No Mortality Supervised Random Survival Forests N=1741  
 

Demographic & 
Clinical Data 

1 year follow-up: Sensitivity=0·79, 
Specificity=0·8. 
7 year follow up: Sensitivity=0·43, 
Specificity=0·48. 

Hold-out validation 

Gonzalez-
Recio et al. 
2009 [70] 

No Risk of Disease  Supervised Information gain/entropy 
reduction criteria and 
Bayesian threshold LASSO  
 

N=2062 (n(cases)=868, 
n(controls)=1194) 

SNPs  . 5-fold cross-
validation 

Heard et al. 
2014 [71]  

No Early Diagnosis  Supervised Artificial Neural Network 
and Decision Tree 

ANN: N=300 (n(HC)=98 
n(OA)=101, n(RA)=101) 
DT: N=298 (n(HC)= 100, 
n(OA)=100, n(RA)=98)  

Clinical 
(Inflammatory 
cytokine 
expression, serum 
samples) Data 
 

ANN: Sensitivity=100% (HC), 100% (OA), 100% 
(RA), Specificity=100% (HC), 100% (OA), 100% 
(RA) for all cytokines and significant cytokines.  
DT: Sensitivity=100% (HC), 100% (OA), 95% (RA), 
Specificity=96% (HC), 97% (OA), 100% (RA) for all 
cytokines. 

Hold-out validation, 
independent testing 
set 

Gronsbell et 
al. 2018 [72]  

Yes Identification of 
Patients  

Semi-
Supervised 

Semi-supervised approach N(RA)=44014 (500 labelled, 
43514 unlabelled), N(MS)=12198 
(455 labelled, 11743 unlabelled) 

EMR Data AUC=94·93 (RA), 93·94 (MS) 10-fold cross-
validation 

Van Looy et 
al. 2006 [73] 

No Response to 
treatment 

Supervised Multilayer Perceptron or 
Support Vector Machine  

N=511 Clinical Data All Cases: AUC=0·772, Sensitivity=0·95, 
Specificity=0.402 or Sensitivity=0·265, 
Specificity=0·95 (MLP).  
Complete Cases, MLP: AUC=0·854, 
Sensitivity=0.95, Specificity=0·548 or 
Sensitivity=0·462, Specificity=0·95. 
Complete Cases, SVM: AUC=0·863, 
Sensitivity=0·95, Specificity=0·507 or 
Sensitivity=0·308, Specificity=0·95.  
Expectation Maximisation, MLP: AUC=0·813, 
Sensitivity=0·95, Specificity=0·411, or 
Sensitivity=0·412, Specificity=0·95. 
Expectation Maximisation, SVM: AUC=0·804, 
Sensitivity=0·95, Specificity=0·402, or 
Sensitivity=0·412, Specificity=0·95. 
 

. 

Wyns et al. 
2004 [74]  

No Early Diagnosis  Supervised 
and 
Unsupervised 

Kohonen Neural Network 
(includes Self Organising 
Maps)  

N=160 (n(RA)=51 RA, n(SpA)=43, 
n(other)=26, n=40 with no 
definite diagnosis) 

Clinical Data Accuracy=62·3%, 65·3% (without undetermined 
samples) 

Hold-out validation 

Inflammatory Bowel Disease 
 
Waljee et al. 
2018 [75] 

No  Disease 
Progression 

Supervised Random Forest  N =20368  Clinical Data Predict Hospitalisation and Corticosteroid 
Prescriptions. IBD: AUC=0·87, Sensitivity=74-

Hold-out validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

80%, Specificity=80-82%. UC: AUC=0·84. 
CrD=0·85. IC=0·82. 
Predict Corticosteroid Prescription Only, IBD: 
AUC=0·9 
Predict Hospitalisation and Corticosteroid 
Prescriptions (12 month outcome): AUC=0·9 

Mossotto et 
al. 2017 [76] 

No Disease Subtype  Supervised 
and 
Unsupervised 

Support Vector Machine, 
Hierarchical Clustering 

N=287 Training and testing: 
N=210 (n(CrD)=178, n(UC)=80, 
n(IBDU)=29 (only reclassified)) 

Clinical Data Cross-validation: AUC=0·87, Accuracy=82·7%, 
Precision=0·91, Recall=0·83, F1-score=0·87.  
Independent test set: Accuracy=83·3%, 
Precision=0·86, Recall=0·83, F1-score=0·84 

5-fold cross 
validation, 
independent test 
set 

Maeda et al. 
2018 [77]  

No Disease Severity  Supervised Support Vector Machine N=187  Endocytoscopic 
Image Data 

Accuracy=91%, Kappa=1, Sensitivity=74%, 
Specificity=97% 
 

Hold-out validation 

Douglas et al. 
2018 [78] 

No Diagnosis and 
Response to 
Treatment  

Supervised Random Forest N=771 (n (test)=40 (n(CrD)=20, 
n(HC)=20). n(validation, diagnosis 
only) = 731 (444 CrD, 287 
control)) 

Metagenomic 
Data 

Diagnosis: Accuracy=84·2%.  
Independent Validation (diagnosis): Accuracy 
73·2%. 
Treatment Response: Accuracy 77·8%.  

Out of bag error, 
Leave-one-out 
cross-validation, 
Independent test 
data (diagnosis only) 
 

Jain et al. 
2017 [79] 

No Disease 
Progression 

Supervised Decision Tree N=179  Clinical Data Colectomy Prediction: Accuracy=77%, 
Sensitivity=75%, Specificity=80%.  
Steroid Dependence: Accuracy=75%, 
Sensitivity=69%, Specificity=80%. 
 

Hold-out Validation 

Waljee et al. 
2017 [80] 

No Response to 
Treatment 

Supervised Random Forest N=1080 Clinical Data Objective Remission: AUC=0·79, 
Sensitivity=70·6%, Specificity=73·8%.  
Non-adherence: AUC=0·84, Sensitivity=70·6%, 
Specificity=85·0%.  
Shunting: AUC=0·78, Sensitivity=65·2%, 
Specificity=79·0%. 
 

Out of bag error, 
Hold-out validation 

Isakov et al. 
2017 [81] 

No Risk of Disease Supervised Combined Model (elastic 
net regularised generalised 
linear model, extreme 
gradient boosting, support 
vector machine, random 
forest) 

N = 513 (n(CrD)=180, n(UC)=149, 
n(colorectal neoplasms)=94, 
n(normal tissue)=90) 

Gene Expression 
Data  

AUC=0·829, Accuracy=0·808, Sensitivity=0·577, 
Specificity=0·880 

5-fold cross-
validation 

Kang et al. 
2017 [82] 

No Response to 
Treatment 

Supervised Gene Regulatory Network-
based Regularized Artificial 
Neural Network (GRRANN) 

N=46  Gene Expression 
Data 

Balanced Accuracy≈0·8 5-fold cross 
validation, Hold-out 
validation 

Waljee et al. 
2018 [83] 

No Response to 
Treatment 

Supervised Random Forest N=491 Clinical Data AUC=0·73, Sensitivity=0·72, Specificity=0·68 Hold-out validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Pal et al. 
2017 [84] 

No Risk of Disease Supervised Consensus Method (Naïve 
Bayes, Logistic Regression, 
Random Forest) 

N=111 (n(CrD)=64, n(HC)=47) GWAS Data, 
Exome Data to 
impute 
genotypes. 

AUC=0·72 Hold-out validation  

Eck et al. 
2017 [85] 

No Diagnosis Supervised Support Vector Machine or 
Random Forest  

N=112 (n(IBD)=56, n(HC)=56) Microbiota Data 
 

Accuracy=81%  10-fold cross 
validation 

Menti et al. 
2016 [86] 

No Disease 
Progression 

Supervised Bayesian Networks N=152 Clinical Data and 
Selected Genetic 
Data 
 

AUC=0·95, Accuracy=0·89, Sensitivity=0·78, 
Specificity=0·94 

10-fold cross 
validation 

Hubenthal et 
al. 2015 [87] 

No  Diagnosis Supervised Support Vector Machine N=273 (n(CrD)=37, n(UC)=32, 
n(HC)=92, n(COPD)=23, 
n(MS)=23, n(pancreatitis)=35, 
n(sarcoidosis)=32) 

MicroRNA 
Expression Data 

AUC=0·95, Balanced Accuracy=0·95, 
Sensitivity=1, Specificity=0·9 

5-fold cross-
validation 

Niehaus et al. 
2015 [88] 

No Disease Severity  Supervised 
and 
Unsupervised 

Support Vector Machine, 
Hierarchical Clustering 

N=501 Health Records, 
EMR Databases 
 

Accuracy=68·7%, Sensitivity=59·1%, 
Specificity=78·4% 

5-fold cross 
validation, testing 
dataset 

Wei et al. 
2013 [89] 

No Risk of Disease Supervised Logistic Regression N=53,279 (n(CrD)=17,379, 
n(UC)=13,458, n(HC)= 22,442  

GWAS Data Cross Validation: AUC=0·864 (CrD) 0·83 (UC). 
Independent Test Set: AUC=0·864 (CrD), 0·826 
(UC) 

10-fold cross 
validation, 
independent testing 
dataset 

Cui et al. 
2013 [90] 

No Diagnosis Supervised Support Vector Machine N=124 (n(IBD)=25, n(HC)=99) Metagenomic 
Data 
 

Accuracy=88%, Sensitivity=92%, Specificity=84% Leave-one-out 
cross-validation 

Waljee et al. 
2010 [91]  

No Response to 
Treatment 

Supervised Random Forest  N=346 Clinical Data AUC=0·856 (response), 0·813 (non-adherence), 
0·797 (shunting) 

10-fold cross 
validation, 
validation data set 
 

Firouzi et al 
2007 [92]  

No Disease 
Progression 

Supervised  Decision Tree  N=160 (121 UC, 39 CrD) Clinical Data  Accuracy=88·2% (UC), 89·8% (CrD), 86·5% (IBD), 
Sensitivity=67·6% (UC), 82·8% (CrD), 65·7% (IBD), 
Specificity=96·3% (UC), 95·2% (CrD), 96·3% (IBD), 
Matthew's Correlation Coefficients=0·69 (UC), 
0·79 (CrD), 0·68 (IBD) 
 

10-fold cross-
validation 

Ozawa et al. 
2018 [93] 

No Disease Severity Supervised Neural Network N= 30,285 images, N=558 
patients 

Colonoscopy 
White-light Image 
Data 

Mayo 0 vs Mayo 1-3: AUC=0·86. 
Mayo 0-1 vs Mayo 2-3: AUC=0·98 

Hold-out validation 

Reddy et al. 
2018 [94]  

No Disease Severity Supervised Gradient Boosting 
Machines 

N=82 EHR Data AUC=92·82% 10-fold cross-
validation 
 

Forbes et al. 
2018 [95] 

Yes Diagnosis Supervised Random Forest N=102 (n(CrD)=20, n(UC)=19, 
n(MS)=19, n(RA)=21, n(HC)=23) 

Microbiota Data Diseased vs HC: AUC=0·93, Balanced 
Accuracy=0·84.  
Breakdown per inflammatory disease found in 
paper  

Out of bag error 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Doherty et al. 
2018 [96] 

No Response to 
treatment 

Supervised Random Forest N=306 (n(CrD treated)=232, 
n(CrD untreated)=74) 

Microbial 
Genome Data and 
Clinical Data 

Remission: AUC=0·844, Sensitivity=0·774, 
Specificity=0·831.  
Response: AUC=0·733 Sensitivity=0·684, 
Specificity=0·724  

. 

Han et al. 
2018 [97] 

No Disease subtype Supervised Random Forest N=163 (n(train)=24 CrD, 59 UC, 
n(Validation set 1)=5 CrD , 7 UC, 
n(Validation set 2)=14 CrD, 10 
UC, n(Validation set 3)=11 CrD, 5 
UC, n(Validation set 4)=13 CrD, 
15 UC ) Biopsy Samples 

Gene Expression 
Data  

Validation set 1: AUC=0·829 
Validation set 2: AUC=0·764 
Validation set 3: AUC=0·836 
Validation set 4: AUC=0·849 

Hold-out validation 

Daneshjou et 
al. 2017 [98] 

No Risk of Disease Supervised Metaclassifier N=111 (n(CrD)=64, n(HC)=47) Exome-
sequencing data  

AUC=0·78 Cross-validation 
performed 

Giollo et al. 
2017 [99] 

No Risk of Disease Supervised Support Vector Machine or 
Ensemble Classifier 

N=111 (n(cases)=64, 
n(controls)=47)   

Genetic Data AUC=0·6 (SVM), 0·66 (Ensemble Classifier) Cross validation 
performed 

Yu et al. 2017 
[100] 

Yes Identification of 
Patients  

Supervised Natural Language 
Processing 

N= 2393 (435 RA, 758 CAD, 600 
UC, 600 CrD) 

Electronic Medical 
Records Data 

AUC~0·94 (RA), ~0·95 (CrD), ~0·95 (UC) F-score 
~0·71 (RA), ~0·83 (CrD), ~0·89 (UC) 

. 

Wisittipanit 
et al. 2015 
[101] 

No Diagnosis Supervised Support Vector Machine N=425 (n(CrD)=101, n(UC)=89, 
n(HC)=235 HC) 

LH-PCR 
(Microbiome) 
Data  
 

AUC=0·73 (CrD), 0·78 (UC), 0·77 (HC), 
Accuracy=78·18% (CrD), 79·71% (UC), 75·62% 
(HC) 

5-fold cross 
validation 

Ahmed et al. 
2017 [102]  

No Diagnosis Supervised Neuro-Fuzzy Automated 
Classifier 

N=387 (n(CrD)=144, n(HC)=243) Genetic Data Accuracy=97·67%, Sensitivity=96·07%, 
Specificity=100% 

Hold-out validation, 
testing set  

Mahapatra et 
al. 2016 [103]  

No Image 
Segmentation 

Semi-
Supervised 

Random Forest-based 
Classifier 

N=70 (CrD) MRI Data Dice metric=92·4%, Hausdorff=7mm 5-fold cross 
validation 

Mahapatra et 
al. 2016 [104] 

No Image 
Segmentation 

Supervised Random Forest N=50 (CrD) MRI Data Dice metric=91·7%, Hausdorff=7.4mm 5-fold cross 
validation 

Type 1 Diabetes   

Stawiski et al. 
2018 [105] 

No Diagnosis Supervised Artificial Neural Network  N=315 Clinical Data R2=0·6455 Hold-out validation 

Ben Ali et al. 
2018 [106] 

No Disease 
Management 

Supervised Artificial Neural Network  N=12 patients, N=1344 samples CGM Data Average RMSE=6·43 (mg/dL) Hold-out validation 

Perez-Gandia 
et al. 2018 
[107] 

No Disease 
Management 

Supervised  Decision Support System 
with Artificial Neural 
Network  

N= 21 patients, longitudinal 
analysis 

Clinical Data . Hold-out validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Maulucci et 
al. 2017 [108] 

No Diagnosis and 
Disease 
Monitoring 

Supervised Decision Support System  N=26 RBC Image Data Control): Accuracy=1, Precision=1, Recall=1, F1-
score=1.  
T1D: Accuracy=1, Precision=1, Recall=1, F1-
score=1.  
T1D with complications: Accuracy=1, 
Precision=1, Recall=1, F1-score=1.   

Leave-one-person-
out cross-validation 

Siegel et al. 
2017 [109] 

No Disease 
Management 

Supervised Linear Discriminant 
Analysis 

N=52 patients, N=128 samples. VOCs AUC=0·895, Sensitivity=91%, Specificity=84% Leave-one-out 
cross-validation 

Zhao et al. 
2016 [110] 

No Risk of Disease Supervised LASSO (regression)/OOR 
(developed method) 

N=1418 ( n(T1D)=962 T1D, 
n(controls)= 448  
 

Genetic Data AUC=0·89 Hold-out validation 

Georga et al. 
2015 [111] 

No  Disease 
Management 

Supervised KOS-ELM (online 
sequential extreme 
learning machine kernels) 

N=15, longitudinal analysis Clinical  Data Case 1: RMSE=16·6 (mg/dl) 
Case 2: RMSE=10·9 (mg/dl) 
Case 3: RMSE=8·5 (mg/dl) 

10-fold cross 
validation 

Georga et al. 
2013 [112] 

No Disease 
Management 

Supervised Support Vector Regression  N=15 patients, longitudinal 
analysis 

Clinical Data Nocturnal: Sensitivity=0·94, Precision=0·98 (30 
minutes and 60 minutes).  
Diurnal: Sensitivity=0·92, Precision=0·93 (30 
minutes), Sensitivity=0·96, Precision=0·97 (60 
minutes) 
 

10-fold cross 
validation 

Marling et al. 
2013 [113] 

No  Disease 
Management 

Supervised Support Vector Machine 
Regression 

N=19 patients, N=262 CGM plots CGM Data Accuracy=90·1%, Sensitivity=97%, 
Specificity=74·1% 

10-fold cross-
validation 

Nguyen et al. 
2013 [114]  

No Risk of Disease Supervised RIPPER (decision rules) and 
Logistic Regression 
Method (Predict DQ types 
without DR type 
information) 

N=10579 (n(train)=7405, 
n(test)=3174) 

SNP Data Independent Test Dataset. Predict HLA Types: 
AUC=0·997 Accuracy=99·3%.  
Predict High Risk HLA types AUC=0·995 
Accuracy=99·8%.  
Predict high risk subtype (DRB1*03:01-
DQA1*05:01-DQB1*02:01): AUC=0·998, 
Accuracy=99·8%.  
Predict DQ Types without DR type information: 
AUC=0·98. 

10-fold cross 
validation, 
independent test 
dataset 

Wei et al. 
2009 [115]  

No Risk of Disease Supervised Support Vector Machine N=8438 (n(WTCCC-T1D)=1963 
cases + 1480 
controls ,n(CHOP/Montreal-
T1D)= 1008 cases + 1000 
controls, n(GoKinD-T1D)=1529 
cases + 1458 controls) 

GWAS Data WTCCC-T1D dataset: AUC=0·89, Sensitivity=0·87, 
Specificity=0·75. CHOP/Montreal-T1D dataset: 
AUC=0·83, GoKinD-T1D dataset: AUC=0·84 

5-fold cross-
validation 

Jensen et al. 
2014 [116] 

No Disease 
Management 

Unsupervised Pattern Classification 
Algorithm  

N=10 patients, longitudinal 
measurements (20 x sessions 
with Professional CGM) 

CGM Data Sensitivity=78%, Specificity=96%, (All 
hypoglycaemic events detected, 1 false positive) 

. 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Schwartz et 
al. 2008 [117] 

No Disease 
Management 

Supervised Case-based reasoning N=12 patients, longitudinal 
measurements 

Clinical Data . . 

Cordelli et al. 
2018 [118] 

No  Diagnosis and 
Diseases 
Monitoring 

Supervised Support Vector Machine N=27 (n(HC)=8, n(T1D)=10, n(T1D 
with complications)=9 

RBC Images F1 score=1, Precision=1, Recall=1 (for HC, T1D, 
and T1D with complications) 

Leave-one-person-
out cross-validation 

Sampath et 
al. 2016 [119] 

No Disease 
Management 

Supervised Aggregating ranking 
algorithms in machine 
learning  

N=213 (n(DIAdvisor)=34, 
n(ChildrenData)=179) 

Clinical Data Sensitivity=77·03%, Specificity=83·46% Independent 
validation dataset 

Georga et al. 
2015 [120] 

No Disease 
Management 

Supervised Random Forest (feature 
selection), Support Vector 
Regression or Gaussian 
processes 

N=15 patients, longitudinal 
measurements 

Clinical Data 30min prediction horizon: SVR RMSE=5·7, GP 
RMSE=5·6; 60min prediction horizon: SVR 
RMSE=6·4, GP RMSE=6·3 

10-fold cross-
validation 

Ling et al. 
2016 [121] 

No  Disease 
Management 

Supervised Extreme learning machine-
based neural network 

N=16 patients, N=589 samples Clinical Data Gamma value=70·8%, Sensitivity=78%, 
Specificity=60% 

Noted by 
researchers that 
cross-validation is 
not required. 

Systemic Lupus Erythematosus 
Ceccarelli et 
al. 2018 [122] 

No Disease 
Progression 

Supervised Logistic Regression N=120 Clinical Data AUC=0·806 Leave-one-out 
cross-validation 

Turner et al. 
2017 [123]  

No Identification of 
Patients 

Supervised Natural Language 
Processing and Neural 
Network or Random Forest 

N=662 (n(SLE)=332, n(HC)=340) EHR Data AUC=0·974 (Neural Network), 0·988 (RF), 
Accuracy=92·1% (Neural Network), 95% 
(Random Forest) 

5-fold cross-
validation 

Ceccarelli et 
al. 2017 [124] 

No Disease 
Progression 

Supervised Recurrent Neural 
Networks  

N=132 (n(develop chronic 
damage)=38, n(no chronic 
damage)=94) 

Clinical Data AUC=0·77, Sensitivity=0·74, Specificity=0·76 8-fold cross-
validation 

Kan et al. 
2016 [125] 

No Disease 
Progression 

Unsupervised Cluster Analysis  N=1611 Demographic & 
Drug Treatment 

. Cross-validation not 
recommended for 
cluster analysis 
 

Wolf et al. 
2016 [126] 

No Treatment 
Response 

Supervised Random Forest  N=140 (n(non-responders)=103, 
n(responders)=37) 

Urine Biomarkers  AUC=0·79, Sensitivity=0·76, Specificity=0·73 Cross-validation not 
required for 
Random Forest 

Guy et al. 
2012 [127] 

No Risk of Disease Supervised Bagged Alternating 
Decision Trees  

N=6728 (1846 SLE + 1825 
Controls) 

SNPs . . 

Tang et al. 
2011 [128] 

No Mortality Supervised Logistic Regression N= 3313 Clinical Record 
Data 

AUC=0·74 10-fold cross-
validation 

Armananzas  
et al. 2009 
[129] 

Yes Diagnosis Supervised 
and 
Unsupervised 

Consensus Method  N=14 (n(HC)=6, n(SLE)=3, 
n(PAPS)=5) 

Microarray 
Expression Data 

. 10-fold cross-
validation  

Huang et al. 
2009 [130]  

No Diagnosis Supervised Decision Tree N=232 (n(SLE)=64, n(AID 
controls)=85, n(HC)=83) 
 

Serum Proteome 
Data 

SLE: Accuracy=78·1%, Sensitivity=78·1%, 
Specificity=96·3% 
AID Controls: Accuracy=85·8%, 
Sensitivity=85·7%, Specificity=86·7%  

Hold-out validation 
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ML Type Machine Learning 
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Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

HC: Accuracy=90%, Sensitivity=90%, 
Specificity=96%. 
 

Murray et al. 
2018 [131] 

No Identification of 
Patients 

Supervised Logistic Regression N=17057 (n(SLE)=583, 
n(control)=16174, n(potential 
SLE)=150, n(random)=150) 

EHR Data AUC=0·97, Accuracy=0·92, Precision=0·85, 
Recall=0·97 

Hold-out validation 

Reddy et al. 
2018 [132] 

No Disease 
Progression 

Supervised Recurrent Neural Network N=9457 EHR Data AUC=0·7, Accuracy=70·54%, Sensitivity=74·49%, 
Specificity=56·61% 
 

Hold-out validation 

Tang et al. 
2018 [133]  

No Disease 
Progression 

Supervised Random Forest and 
Multilinear Regression 

N=173 Clinical Data Random Forest, multi-classifier: Accuracy=53·7% 
(Class II), 56·2% (Class III&IV):56·2%, 40·1% 
(Class V).  
Random Forest, binary classifier: 
Accuracy=56·2% (Class II), 63·7% (Class III&IV), 
61% (Class V). Multilinear regression: CI 
prediction: Q2=0·746, R2=0·771. AI prediction: 
Q2=0·516, R2=0·576. 
 

5-fold cross 
validation 
(Predicting AI and 
CI) 

Scully et al. 
2010 [134] 

No Diagnosis Supervised Naïve Bayesian Classifier 
and Support Vector 
Machine  

N=27  MRI Data Leave-one-out training data: Sensitivity=94·3%, 
Specificity= 93·1% 
Test data: Sensitivity=94·3%, Specificity=93.9% 

Leave one out cross 
validation, Test 
dataset 

Davis et al. 
2013 [135] 

No Risk of Disease Supervised Random Jungle, ReliefF or 
evaporative cooling  

N=404 (n(SLE)=209, n(HC)=195) 
 

Exome Data . . 

Psoriasis and Psoriatic Arthritis 

Wang et al. 
2016 [136]  

No Diagnosis Supervised Random Bits Forest 
(Neural Network, Boosting, 
Random Forest) 

N=2723 (n(train)=915 cases + 675 
controls; n(test)=431 cases + 702 
controls) 

GWAS Data Cross-validation: AUC=0·6739, Accuracy=0·639, 
Sensitivity=0·6317, Specificity=0·649. 
Test Dataset: AUC=0·7239, Accuracy=0·692, 
Sensitivity=0·6543, Specificity=0·7151. 
 

10-fold cross 
validation, 
independent testing 
dataset 

George et al. 
2018 [137] 

No Disease Severity  Supervised 
and 
Unsupervised 
 

Unsupervised Feature 
Learning, Random Forest  

N=676 images, N=44 patients Digital Image Data F1-score=0·71 10-fold cross 
validation 

Shrivastava et 
al. 2017 [138]  

No Disease Severity  Supervised Support Vector Machine N=670 images, N=110 patients Digital Image Data 
 

AUC=0·998, Accuracy=99·84%, 
Sensitivity=99·76%, Specificity=99·99% 

10-fold cross 
validation 

Shrivastava et 
al. 2016 [139] 

No Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=1, Accuracy=100%, Sensitivity=100%, 
Specificity=100% 
 

10-fold cross 
validation 

Shrivastava et 
al. 2016 [140] 

No Disease Severity Supervised Support Vector Machine N=848 images, N=65 patients Digital Image Data 
 

Accuracy=99·92% 10-fold cross 
validation 

Shrivastava et 
al. 2015 [141] 

No  Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=0·999, Accuracy=99·94%, Sensitivity=99·93, 
Specificity=99·96% 
 

10-fold cross 
validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Cowen et al. 
2007 [142] 

No Diagnosis Supervised Partial Least Squares 
Regression, Support 
Vector Machine and C5.0 
Decision Tree 

N=148 (n(tumour-stage MF)=45, 
n(psoriasis)=56, n(HC)=47) 

Proteomic Data 
from Serum 

Tumour-Stage MF vs Psoriasis: 
Sensitivity=78·57%, Specificity=93·75% 
(Ciphergen), Sensitivity=78·57, 
Specificity=86·67% (PrOTOF). 
Psoriasis vs HC: Sensitivity=93·75%, 
Specificity=75% (Ciphergen), Sensitivity=86·67%, 
Specificity=76·92%. (PrOTOF). 
 

10-fold cross 
validation, 
independent testing 
dataset 
 

Raina et al. 
2016 [143]  

No Disease Severity  Supervised Linear Discriminant 
Analysis  

N=20 patients, N=80 images Digital Image Data Accuracy=48·75%, Kappa=0·4203 Leave-one-out 
cross-validation 

Shrivastava et 
al. 2015 [144]  

No Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=1, Accuracy=99·81%, Sensitivity=99·26%, 
Specificity=97·04% 

Jack Knife (N fold) 
cross-validation 

Shrivastava et 
al. 2016 [145] 

No Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=0·99, Accuracy=99·39%, 
Sensitivity=99·43%, Specificity=99·35% 

10-fold cross-
validation 

Patrick et al. 
2018 [146] 

Yes Risk of Disease 
and Disease 
Progression 

Supervised Conditional Inference 
Forest or Shrinkage 
Discriminant Analysis 

N=22181 (n(PsV)=7855, 
n(PsA)=2703, n(PsC)=2681, 
n(HC)=8942)  

GWAS Data AUC=0·82 (cross validation and holdout test set) Cross-validation 
performed, test set 

Coeliac Disease  
 
Hujoel et al. 
2018 [147] 

No Diagnosis Supervised Random Forest or Bagged 
Classification Trees  
 

N = 408 EMR Data AUC≈0·55 10-fold cross-
validation 

Arasaradnam 
et al. 2014 
[148] 

No Diagnosis Supervised Logistic Regression N=47 (n(D-IBS)=20, n(CeD)=27) VOCs Data AUC=0·91, Sensitivity=85%, Specificity=85% Leave-one-out 
cross-validation 
 

Tenorio et al. 
2011 [149]  

No Diagnosis Supervised Bayesian Classifier 
(Average One-Dependence 
Estimator) 
 

N=216 (CeD 46% of records in 
training data, 37% in test data) 

Clinical Data AUC=0·84, Accuracy=80%, Sensitivity=0·78, 
Specificity=0·80 

10-fold cross-
validation 

Choung et al. 
2018 [150] 

No Diagnosis and 
Disease 
Monitoring 

Supervised Random Forest (peptide 
selection), Support Vector 
Machine 

Diagnosis: N= 468 (n(CeD)= 172, 
n(HC)=296).  
Monitoring: N= 465 (n(CeD 
treated, healed)=85, n(CeD 
treated, unhealed)=81, n(CeD, 
untreated)=82, n(HC)=217, 
n(disease controls)=27). 
 

Peptide Data Diagnosis: Accuracy=99%, Sensitivity=99%, 
Specificity=100%.  
Monitoring: Accuracy=90%, Sensitivity=84%, 
Specificity=95% 

Hold-out validation 
(diagnosis only) 

Chen et al. 
2016 [151] 

No Diagnosis  Supervised Logistic Model N=1498 (n(CeD)=363, 
n(FP)=1135) 

EHR Data AUC=0·94, F1-score=0·92, Kappa=0·78, 
Precision=0·93, Recall=0·92 
 

10-fold cross-
validation 

Ludvigsson et 
al. 2013 [152]  

No Diagnosis  Supervised Natural Language 
Processing 

N=496 (n(train)=327, 
n(test)=169) 

EMR Data F-measure 84·5%, Sensitivity=72·9%, 
Specificity=89·9% 

Hold-out validation  
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

 
Amirkhani et 
al. 2018 [153] 

No Disease Severity Supervised Combined fuzzy cognitive 
map and possibilistic fuzzy 
c-means clustering 
algorithm 
 

N=89 Clinical Data Accuracy=91% (A), 90% (B1), 88% (B2) Leave-one-out 
cross-validation 

Thyroid Disease  

Ahmad et al. 
2018 [154] 

No Diagnosis Supervised Hybrid model (linear 
discriminant analysis, k-
nearest neighbour 
weighed preprocessing, 
adaptive neurofuzzy 
inference system) 
 

N=3163 (n(hypo)=152, 
n(negative)=3011) 

Clinical Data Accuracy=98·5, Sensitivity=94·7%, 
Specificity=99·7% 

10-fold cross 
validation 

Baccour L. et 
al 2018 [155] 

No Diagnosis Supervised ATOVIC (hybrid multi-
criteria decision making 
method) 
 

N=7200 Clinical Data Accuracy=92·7%, F-measure=95·3% (Hyper- vs 
Hypo- vs Control). Accuracy=99·81% (Hypo- vs 
Control)  

Hold-out validation 

Morejon et 
al. 2017 [156]  

No Diagnosis Supervised  Java Agent Framework for 
Health Data Mining  
 

. Clinical Data . Hold-out validation 

Temurtas et 
al. 2009 [157]  

No Diagnosis Supervised Probabilistic Neural 
Network 
 

N=215 (n(normal)=150, 
n(hypo)=30, n(hyper)=35) 

Clinical Data Accuracy=94·81% 10-fold cross 
validation 

Polat et al. 
2007 [158] 

No Diagnosis Supervised Artificial Immune 
Recognition System with 
fuzzy weighted pre-
processing 
 

N=215 (n(normal)=150, 
n(hypo)=30, n(hyper)=35) 

Clinical Data Accuracy=85% 10-fold cross 
validation 

Keles et al. 
2008 [159] 

No Diagnosis Supervised Expert system for thyroid 
disease diagnosis with 
fuzzy rules  
 

N=215 (n(normal)=150, 
n(hypo)=30, n(hyper)=35) 

Clinical Data Accuracy=95·33% 10-fold cross 
validation 

Autoimmune Liver Disease 
  
Weiss J et al. 
2015 [160] 

No Response to 
Treatment 

Supervised Boosted Forest  N=288  Clinical Trial Data 
 

. Hold-out validation 

Singh et al. 
2017 [161] 

No Disease 
Progression 

Supervised Kullback-Leibler 
Divergence-Least Squares 
Support Vector Machine 
 

N=276 Clinical Data Accuracy=90·94% Hold-out validation 

Eaton et al. 
2018 [162] 

No Disease 
Progression 

Supervised Gradient Boosting N=787  Clinical Data Cross-validation: C-statistic=0·96 
Independent test data: C-statistic=0·9 

5-fold cross 
validation, 
independent test 
dataset 



17 
 

Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Iwasawa et 
al. 2018 [163] 

Yes Diagnosis Supervised Random Forest  N= 64 (n(PSC)=24, n(UC)=16, 
n(HC)=24) 

Microbiome Data Genera: AUC=0·7423 (PSC vs HC), 0·8756 (PSC vs 
UC). 
Species: AUC=0·8756 (PSC vs HC), 0·7626 (PSC vs 
UC) 
 

10-fold cross-
validation 

Tsujitani et al. 
2009 [164] 

No Survival 
Prediction 

Supervised Neural Network  N=312 Clinical Data . Delete-one cross-
validation" 
 

Systemic Sclerosis 

Zhu et al 
2018 [165] 

No Diagnosis Supervised 
and 
Unsupervised 

Hierarchical Clustering and 
Support Vector Machine  

N=37 (n(controls)=19, n(SSc)=18) DNA and RNA of 
PBMC 

Accuracy=100%, Sensitivity=100%, 
Specificity=100% 

Hold-on-one-out 
cross-validation  

Taroni et al. 
2017 [166] 

No Response to 
treatment 

Supervised Support Vector Machine  . Gene expression 
Data 

. . 

Huang et al. 
2015 [167]  

No Disease 
Progression 

Supervised Random Forest N=119  Clinical and 
peripheral blood 
flow cytometry 
Data 

Accuracy=95% Hold-out cross-
validation 

Berks et al. 
2014 [168] 

No Diagnosis Supervised Random Forest N= 991 (n(train)=80 ; 
n(validate)=104 HC + 83 PR + 269 
SSc; n(test)=104 HC + 83 PR + 268 
SSc) images 

Nailfold 
Capillaroscopy 
Data 

Accuracy=93·6%, F-measure=71·5%, 
Precision=64·1%, Recall=80·9% 

Hold-out validation, 
testing set 

Alopecia 
 
Huang et al. 
2013 [169] 

Yes Comorbidity 
analysis 

Supervised Natural Language 
Processing  
 

N=3568 (n(AA)=2115) and N=416 
(PAFS cohort) 

Patient Data 
Repository 

Validity=93·9% Hold-out validation 

Vitiligo 
Sheth et al. 
2013 [170] 

Yes Comorbidity 
analysis 

Supervised Natural Language 
Processing 

N=3280 Research Patient 
Data Repository 
  

. . 
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