Supplementary Information for

Nanocrystal Facet Modulation to Enhance Transferrin Binding and Cellular Delivery

By Qi et al.

Supplementary Figure 1. (a) Expression of transferrin receptors of HeLa cells transfected by negative control, siRNA-2423 and siRNA-2061, showing that both siRNA-2423 and siRNA-2061 down-regulated the expression of transferrin receptor. Expression of transferrin receptor was independently repeated three times and the results were similar. (b) Cellular content of Cd after the transfected HeLa cells exposed to 40 μ g mL⁻¹ CdSe nanoparticles for 3 h (CdSe-p-A: dark red bar; CdSe-p-B: light red bar). Data are presented as mean \pm SD of five replicate samples by one-way ANOVA (n = 5; *p* < 0.0001 for negative control, and *p* = 0.5824 and 0.1776 for siRNA-2423 and siRNA-2061, respectively). Statistical significance between groups: (**) *p* < 0.01. Source data are provided as a Source Data file.

Supplementary Figure 2. The amount of bovine serum albumin adsorbed on different-faceted CdSe nanoparticles. The initial protein concentration was 100 µg mL⁻¹ (CdSe-p-A: dark red bar; CdSe-p-B: light red bar). Data are presented as mean \pm SD of four replicate samples by one-way ANOVA (n = 4; p = 0.0208, 0.0355 and 0.0009 for 200, 400 and 800 µg/mL CdSe nanoparticles, respectively). Statistical significance between groups: (**) p < 0.01; (*) p < 0.05. Source data are provided as a Source Data file.

Supplementary Figure 3. Molecular dynamics (MD) simulations of interaction between transferrin and CdSe (100) surface. Different molecule models (a, c, e, g and i) and the corresponding contact atom number (b, d, f, h and j) of transferrin adsorbed on the CdSe (100) facet, calculated by MD simulations. Source data are provided as a Source Data file.

Supplementary Figure 4. Molecular dynamics (MD) simulation of interaction between transferrin and CdSe (002) surface. Different molecule models (a, c, e, g and i) and the corresponding contact atom number (b, d, f, h and j) of transferrin adsorbed on the CdSe (002) facet, calculated by MD simulations. Source data are provided as a Source Data file.

Materials	<i>D</i> _h in DI water (nm)	<i>D</i> _h in PBS with FBS (nm)	$\zeta potential$ in DI water (mV) ^{<i>a</i>}	ζ potential in PBS with FBS (mV) ^{<i>a</i>}	Surface area $(m^2 g^{-1})^b$
CdSe-p-A	639.2 ± 10.7 ^a	1782.6 ± 107.6 ^a	-14.8 ± 0.1	-20.4 ± 0.4	22.1
CdSe-p-B	638.4 ± 31.4 ^{<i>a</i>}	1743.0 ± 215.1 ^a	-17.2 ± 0.4	-20.3 ± 0.8	21.2
CdSe-r-A	707.2 ± 21.8 ^{<i>a</i>}	1047.0, 1132.0 ^c	-29.5 ± 0.7	-24.5 ± 0.3	8.2
CdSe-r-B	835.4, 863.0 ^c	1121, 1486 ^{<i>c</i>}	-26.3 ± 3.6	-25.1 ± 0.7	6.0
CdS-r-A	617.6, 540.6 ^c	890.8, 1078.0 ^c	-17.2 ± 0.9	-23.2 ± 0.4	45.7
CdS-r-B	669.2, 659.2 ^c	847.3, 947.9 ^c	-17.6 ± 0.2	-24.7 ± 0.4	30.1

Supplementary Table 1. Selected physicochemical properties of CdSe/CdS nanomaterials

 $\overline{}^{a}$ Data are presented as mean \pm SD of triplicate samples by one-way ANOVA (n = 3). b Surface area was quantified as Brunauer-Emmett-Teller (BET) specific surface area. c Measurements of duplicate samples are presented (n = 2).

Parameter/Component	Value
Nebulizer	MEINHARD [®] High Efficiency Nebulizer (HEN)
Spray Chamber	Asperon
Make up Gas (L min ⁻¹)	0.7
Neb Gas (L min ⁻¹)	0.54
Plasma Power (W)	1600
Sample Flow Rate (µL min ⁻¹)	10
Autosampler	Single Cell Micro DX
Agitation	Single Cell Micro DX Autosampler
Sample Loop (µL)	50

Supplementary Table 2. Parameters and components for SC-ICP-MS analysis
Parameter/Component Value

Gene name	Transferrin (mut)
Plasmid	pET30a
Length of DNA fragments (bp) ^a	2106
Bacterial strain	BL21
Upstream restriction site	EcoR I
Downstream restriction site	Xho I
Mass of protein (kD)	84
Tag	HIS
^{<i>a</i>} Gene sequence:	
GAATTCATGCGTCTGGCTGTTGGGGGCTCTGCTGGTT	GGTGCAGTTCTGGGTCTGGGTCTGGCAGTACCGGATAAAAC
CGTTCGTTGGGGGCGCAGTTTCTGAACACGAAGCAA	CCAAAGGCCAGAGTTTCCGCGATCACATGAAAAGCGTCATT
CCGTCTGATGGTCCGTCTGTTGCAGGCGTTAAAAAA	AGCAAGCTATCTGGACGGTATTCGCGCAATTGCAGCAAACGA
AGCAGACGCTGTTACCCTGGATGCAGGTCTGGTTTA	ACGACGCATATCTGGCACCGAATAACCTGAAACCGGTAGTTG
CGGAATTTTACGGCAGCAAAGAAGATCCGCAGACC	TTTTATTACGCGGTTGCGGTTGTCAAAAAGACTCCGGCTTC
CAGATGAACCAGCTGCGCGGTAAAAAATCTGGTCA	TACCGGTCTGGGTCGTTCTGCTGGCTGGAATATTCCGATTGG
TCTGCTGTACGGCGATCTGCCGGAACCGCGTAAACC	CGCTGGAAAAAGCAGTTGCGAACTTTTTCTCTGGTTCTGGC
GCACCGGGCGCAGACGGTACCGATTTTCCGCAACT	GGGTCAACTGGGTCCGGGTGGCGGCGGTAGTACCCTGAATC
AGTATTTTGGCTACAGCGGCGCATTTAAAGGTCTGA	AAGACGGCGCTGGCGACGTTGCGTTCGTCAAACACAGCAC
CATCTTCGAAAAACCTGGCGAACAAAGCAGATCGCG	ATCAGTACGAACTGCTGGGTCTGGATAACACCCGTAAACCG
GTTGACGAGTACAAAGACGGTCATCTGGCACAAGT	TCCGAGTCATACCGTTGTTGCTCGTAGTATGGGGGGGTAAAGA
GGATCTGATCTGGGAACTGCTGAATCAGGCACAGG	AACACTTCGGCAAAGACAAAAGCAAAGAGTTCCAGCTGTTT
AGTAGCCCGCACGGTAAAGATCTGCTGTTCAAAGA	TTCCGCACACGGTTTTCTGAAAGTTCCGCCGCGTATGGACGC
AAAAATGTACCTGGGCTACGAGTACGTCACCGCAA	TTCGTAATCTGCGCGAAGGTACCGGTCCGGAAGCACCGACC
GACGAAGGTAAACCGGTTAAATGGGGCGCACTGAC	GTCATCACGAACGTCTGAAAGGCGACGAGTGGTCTGTTAAC
AGCGTTGGCAAAATTGAAGGCGTTAGCGCAGAAAC	CACCGAAGACGGTATCGCCAAAATCATGAACGGCGAAGCT
GACGCAATGAGTCTGGACGGCGGCTTTGTTTATATT	GCCGGCAAAGGCGGTCTGGTTCCGGTTCTGGCAGAAAATTA
CAACAAAAGCGACAACGGCGAAGACACCCCGGAA	GCAGGTTATTTTGCGATTGCGGTTGTCAAAAAATCCGCAAG
CGATCTGACCTGGGACAACCTGAAAGGCAAAAAA	CCGGCCATACCGCAGTAGGTCGTACCGCAGGTTGGAATATT
CCGATGGGCCTGCTGTACAACAAAATCAACCACGG	CCGCTTCGACGAATTTTTCAGCGAAGGCGGCGCACCGGGTA
GTAAAAAGATAGTAGTCTGGGCAAACTGGGTATG	GGTTCTGGTCTGAATCTGGGCGAACCGAACAACAAAGAAGG
CTATTACGGCTATACCGGCGCATTTCGCGGTCTGGT	FGAAAAAGGCGACGTTGCATTCGTCAAACATCAGACCGTCC
CGCAGAATACCGGCGGTAAAAATCCGGATCCGTGG	GCAAAAAACCTGAACGAGAAAGACTACGAACTGCTGGGTC
TGGACGGTACCCGTAAACCGGTTGAAGAATACGCA	AACGGTCATCTGGCACGCGCACCGAATCACGCAGTTGTTAC
CCGTAAAGACAAAGAAGCGGGGCGTTCACAAAATCC	CTGCGTCAACAGCAGCACCTGTTTGGTAGCAACGTAACCGA
CGGTTCTGGTAACTTTGGTCTGTTCCGCAGCGAAAC	CCAAAGATCTGCTGTTCCGTGACGATACCGTTGGTCTGGCAA
AACTGCACGATCGCAACACCTACGAGAAATACCTG	GGCGAAGAATACGTCAAAGCGGTTGGTAACCTGCGTAAAGG
TTCTACCAGTTCTCTGCTGGAAGCAGGTACCTTTCG	TCGTCCGCTCGAG

Supplementary Table 3. Information for expression of non-thiol transferrin mutant