Supplementary Information

for

Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps

Dong Si^{1*}, Spencer A. Moritz¹, Jonas Pfab¹, Jie Hou^{2,3}, Renzhi Cao⁴, Liguo Wang⁵, Tianqi Wu⁶, Jianlin Cheng⁶

¹ Division of Computing and Software Systems, University of Washington, Bothell, WA, 98011, USA *Corresponding to Dong Si, dongsi@uw.edu

² Department of Computer Science, Saint Louis University, Saint Louis, MO 63103, USA
 ³ Program in Bioinformatics & Computational Biology, Saint Louis University, Saint Louis, MO 63103, USA

⁴Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA

⁵ Department of Biological Structure, University of Washington, Seattle, WA 98185, USA

⁶Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA

PDB ID	Pred. Ca	Native Ca	RMSD (Å)	% Ca in 3Å	FP%
3i2n	353	346	0.97	99.4	0.8
3n2t	342	327	1.11	99.7	0.3
3qc7	167	172	0.83	95.3	0.0
5i68	693	662	0.92	100.0	2.5
6ahv	359	345	1.01	99.7	1.9
6eyw	404	381	1.07	98.7	0.7
6g61	115	111	1.01	100.0	0.9
Avg.			0.99	99.0	

Table S1. Extended Table 1 - Results of simulated maps on different resolutions*.

(A) at 4Å resolution.

(B) at 5Å resolution.

PDB ID	Pred. Ca	Native Ca	RMSD (Å)	% Ca in 3Å	FP%
3i2n	350	346	0.99	99.1	0.3
3n2t	347	327	1.09	99.1	1.7
3qc7	167	172	1.03	94.8	0.0
5i68	675	662	0.91	99.5	1.3
6ahv	354	345	1.03	99.4	1.1
6eyw	384	381	0.90	98.4	0.3
6g61	111	111	0.81	100.0	0.0
Avg.			0.97	98.6	

*Note: There are two types of RMSD, labeled and non-labeled RMSD. The labeled RMSD considers the pair of corresponding CA positions that were labeled by the same residue number, while non-labeled doesn't. The RMSD in this table is non-labeled RMSD.

		Original	results from 1	Paper		New Run ((1.16	using Phenix 5-3549)	Our method	
Model	Residue_Ra nge	Total_R esidue	RosettaES	Rosetta CM	MAINM AST	Phenix	Phenix_covera ge	Final RMSD	coverage
BPP1	1-111	111	2.500	48.600	3.200	0.931	0.811	1.035	0.964
BPP1	119-207	89	3.400	30.800	3.600	1.370	0.573	1.006	0.337
BPP1	207-259	53	0.900	4.200	2.100	1.636	0.038	1.378	0.226
BPP1	256-283	28	0.700	0.700	2.200	1.288	0.571	1.079	0.964
BPP1	283-327	45	2.000	30.500	6.000	1.449	0.911	1.071	0.911
FrhA	1-22	22	0.500	6.400	1.400	-	0.000	-	0.000
FrhA	136-165	30	2.100	3.200	0.900	1.339	0.900	0.933	1.000
FrhA	187-265	79	1.900	11.600	1.900	1.153	0.861	1.147	0.316
FrhA	24-29	26	0.600	0.900	0.600	-	0.000	1.301	0.833
FrhA	298-339	42	0.800	10.600	2.100	1.107	0.881	1.117	1.000
FrhA	337-358	22	0.500	0.500	1.900	1.320	0.909	0.808	1.000
FrhB	1-18	18	0.700	1.400	0.700	-	0.000	0.885	0.941
FrhB	110-143	34	0.700	3.700	1.100	1.081	0.176	1.088	0.971
FrhB	179-228	50	0.700	4.100	1.100	-	0.000	0.969	0.980
FrhB	36-66	31	1.000	1.500	1.400	0.784	0.387	1.128	0.903
FrhB	61-87	27	0.800	2.000	2.700	0.987	0.370	0.963	0.963
FrhB	87-108	22	1.000	0.800	0.700	0.661	1.000	0.908	1.000
FrhG	1-71	71	3.300	28.600	3.500	1.790	0.014	1.018	0.789
FrhG	144-172	29	0.900	1.700	1.700	2.256	0.310	0.948	0.862
FrhG	192-228	37	3.000	1.600	2.700	-	0.000	-	0.000
FrhG	73-133	61	6.600	5.900	1.600	1.824	0.311	1.097	0.967
STIV	1-163	163	16.900	45.900	17.300	1.779	0.130	1.262	0.883
STIV	161-252	92	2.300	15.900	3.200	-	0.000	1.132	0.967
STIV	252-319	68	1.800	11.200	1.300	-	0.000	1.090	0.941
T20S	13-50	38	1.600	14.600	2.100	1.529	0.132	2.144	0.474
T20S	159-220	63	1.600	37.300	4.100	1.463	0.452	2.313	0.161
T20S	43-78	36	4.300	2.100	2.200	-	0.000	2.126	0.472
T20S	88-166	79	1.100	5.900	6.000	1.242	0.430	2.173	0.266
TMV	1-11	11	0.700	0.600	0.700	0.523	0.636	0.834	0.909

Table S2. Comparison of our method with state-of-the-art methods: Phenix, RosettaES, RosettaCM, and MAINMAST on the dataset of 43 missing fragments*.

TMV	44-78	35	0.800	0.800	1.100	0.913	0.829	0.949	1.000
TMV	78-106	29	3.200	1.500	1.000	0.992	0.621	1.112	0.241
TRPV1	1-45	45	6.100	3.000	2.600	1.612	0.644	1.918	0.044
TRPV1	111-134	24	1.600	5.600	1.800	1.399	0.895	1.262	0.947
TRPV1	128-183	56	4.000	4.800	1.600	0.766	0.964	1.221	0.964
TRPV1	205-226	22	3.400	0.700	1.500	0.938	0.955	0.956	1.000
TRPV1	226-310	85	7.000	3.500	3.000	0.869	0.929	1.097	0.953
TRPV1	66-110	45	1.400	1.700	2.900	0.588	0.622	1.248	0.556
VP6	1-81	81	2.600	43.300	3.900	1.144	0.049	1.286	0.975
VP6	115-245	131	4.200	38.500	11.000	2.050	0.145	1.554	0.832
VP6	243-269	27	2.900	2.000	1.800	-	0.000	1.587	1.000
VP6	266-299	34	0.700	8.500	1.100	-	0.000	1.604	0.971
VP6	300-350	51	0.600	3.600	2.300	-	0.000	1.546	0.922
VP6	349-372	24	1.100	1.000	1.000	-	0.000	1.867	0.250
VP6	87-118	32	0.600	1.600	1.400	1.339	0.969	1.316	1.000
avg.			2.389	10.293	2.681	1.254 (exclude 0 coverage)	0.419	1.273 (exclude 0 coverage)	0.742

*Note: The results of MAINMAST and Rosetta are from MAINMAST paper (Terashi, et al. *Nature communications*, 2018). The labeled RMSD is used for MAINMAST and Rosetta. We use "-" to fill the fields that are not covered by the prediction. Non-labeled RMSD and matching percentage are calculated based on Phenix.chain_comparison.https://www.phenix-online.org/documentation/reference/chain_comparison.http].

	MAIN	MAST	Rosetta	de-novo	Pher	nix	Our method		
EMDB ID	Matching Percentage for MAINMAST	RMSD for MAINMAST	Matching Percentage for Rosetta	RMSD for Rosetta	Matching Percentage for Phenix	RMSD for Phenix	Matching Percentage for our method	RMSD for our method	
1461A	0.860	30.600	0.780	17.900	0.018	1.117	0.917	1.336	
2364A	0.670	34.700	-	-	0.021	1.816	0.586	1.941	
2513A	0.960	3.800	0.900	9.900	0.128	1.143	0.982	1.030	
2513B	0.960	4.300	0.680	30.500	0.031	1.758	0.947	1.166	
2513C	0.930	4.400	0.850	8.800	0.065	1.855	0.971	1.039	
2850A	0.790	23.500	0.840	14.700	0.042	1.795	0.733	1.410	
2867B	0.900	9.300	0.830	10.600	0.032	1.340	0.859	1.503	
3063C	0.720	34.000	-	-	0.025	1.733	0.809	1.532	
3073A	0.880	40.400	0.820	14.900	0.030	1.288	0.861	1.268	
3231K	0.890	15.800	0.830	20.800	0.081	1.774	0.231	1.644	
3246A	0.720	19.600	0.510	24.700	0.237	1.401	0.463	2.205	
3246B	0.840	17.400	0.430	49.100	0.032	1.965	0.942	1.272	
5155A	0.830	41.500	0.230	96.600	0.028	1.763	0.915	1.346	
5185A	1.000	2.700	0.990	1.200	0.000	0.000	0.917	1.281	
5376D	0.830	25.700	0.750	18.700	0.014	1.171	0.808	1.445	
5495A	0.950	9.600	0.330	67.700	0.000	0.000	0.967	1.136	
5584A	0.880	33.400	0.520	57.000	0.094	2.164	0.936	1.165	
5764A	0.890	36.100	0.660	30.700	0.026	1.263	0.948	1.168	
5778A	0.900	6.300	0.890	7.200	0.013	1.758	0.757	1.243	
5925A	0.960	3.600	0.990	1.000	0.545	1.262	0.979	1.221	
6219A	0.860	25.600	0.760	25.500	0.022	0.608	0.864	1.545	
6272A	0.960	17.600	0.780	19.700	0.043	0.861	0.992	0.801	
6374D	0.990	1.700	0.850	8.100	0.025	1.262	0.979	0.952	
6478A	0.980	2.600	0.490	42.000	0.084	1.896	0.971	1.173	
6551A	0.930	4.400	0.870	12.300	0.090	0.897	0.954	1.167	
6555A	0.970	2.400	0.480	30.400	0.102	1.964	0.958	0.971	
8011D	0.870	11.300	0.200	45.700	0.006	1.770	0.854	1.307	
8015A	0.990	2.200	0.350	64.300	0.082	1.992	0.993	0.928	
8116A	0.760	49.800	0.880	10.700	0.035	1.715	0.844	1.325	
Avg.	0.885	17.734	0.685	27.433	0.067	1.425	0.860	1.294	

Table S3. Comparison of Phenix, Rosetta do-novo, MAINMAST and our method on the dataset of 30 experimental maps*.

*Note: The data of MAINMAST and Rosetta are from MAINMAST paper (Terashi, et al. *Nature communications*, 2018). The labeled RMSD is used for MAINMAST and Rosetta. We use "-" to fill the fields that are not covered by the prediction. Non-labeled RMSD and matching percentage are calculated based on Phenix.chain_comparison.https://www.phenix-online.org/documentation/reference/chain_comparison.http].

PDB T1		TM-score			GDT-TS			RMSD			Coverage of Residues in predicted structure						
	T1	T2	Т3	T4	T5	T2	тз	T4	T5	T2	тз	T4	Т5	T2	тз	T4	T5
3i2n	357/ 345	0.345	0.26 9	0.21 7	-	0.20 5	0.251	0.12 3	-	16.603	18.66 6	20.5 95	-	80.1 1%	43.98 %	69.19 %	-
3n2t	348/ 327	0.818	0.71 3	0.91 3	0.90 0	0.57 3	0.676	0.84 8	0.76 6	3.397	2.111	2.65 3	3.23 9	100. 00%	70.69 %	93.10 %	93.10 %
3qc7	179/ 164	0.522	0.80 9	0.71 1	0.25 5	0.38 4	0.803	0.65 7	0.19 1	5.030	1.281	3.91 3	13.3 54	100. 00%	78.21 %	88.27 %	88.27 %
5i68	663/ 662	0.726	0.49 3	0.33 5	0.36 4	0.32 5	0.455	0.26 3	0.25 8	5.961	8.027	24.6 18	27.8 10	100. 00%	54.45 %	66.82 %	99.85 %
6ahv	363/ 345	0.846	0.55 8	0.79 5	0.78 0	0.62 5	0.527	0.67 0	0.59 6	3.125	2.914	5.00 3	5.49 7	100. 00%	57.30 %	96.14 %	95.04 %
6eyw	427/ 381	0.265	0.84 8	0.81 5	0.18 5	0.21 7	0.833	0.76 4	0.08 1	17.335	1.340	6.99 4	22.8 94	100. 00%	79.39 %	85.48 %	100.0 0%
6g61	133/ 111	0.234	0.93 1	0.25 1	0.55 3	0.20 1	0.941	0.24 6	0.52 7	12.657	1.968	0.22 5	7.58 7	100. 00%	81.20 %	82.71 %	100.0 0%
Aver	age	0.537	0.66 0	0.57 7	0.50 6	0.36 1	0.641	0.51 0	0.40 3	9.158	5.187	9.14 3	13.3 97	97.1 6%	66.46 %	83.10 %	96.04 %

Table S4. Comparison of our method with state-of-the-art methods: Phenix, Rosetta-denovo, and MAINMAST using 3Å resolution simulated density maps*.

*Note - T1: Residues in sequence/native; T2: Our method; T3: Rosetta de-novo; T4: Phenix; T5: MAINMAST. The labeled RMSD is used for MAINMAST and Rosetta.

Table S5. Comparison of our method with state-of-the-art methods: Phenix, Rosetta-denovo, and MAINMAST in three experimental maps*.

PDB	Method	Fragments	TM-score	GDT-TS	RMSD
	Our method	Full_length (1-397)	0.932	0.809	2.133
		Full_length (1-397)	0.581	0.534	11.432
		Fragment 1 (1-47)	0.844	0.894	1.802
	Rosetta-Denovo	Fragment 2 (67-158)	0.802	0.81	1.766
		Fragment 3 (216-310)	0.532	0.513	7.113
6272		Fragment 4 (338-397)	0.749	0.796	0.675
		Full_length (1-397)	0.6144	0.5164	16.914
	Dharrin	Fragment 1 (1-144)	0.77	0.748	14.038
	Phenix	Fragment 2 (149-266)	0.175	0.146	0.095
		Fragment 3 (273-396)	0.789	0.768	2.825
	MAINMAST	Full_length (1-397)	0.528	0.334	14.79
		Full_length (1-586)	0.452	0.286	24.342
	Our method	Fragment 1 (253-581)	0.702	0.509	6.497
		Fragment 2 (167-245)	0.402	0.459	5.51
	Posstta Danava	Full_length (1-586)	0.168	0.161	0.142
	Kosetta-Denovo	Fragment 1 (464-574)	0.848	0.842	0.964
5778		Full_length (1-586)	0.219	0.173	15.186
		Fragment 1 (87-117)	0.359	0.444	8.473
	Phenix	Fragment 2 (354-423)	0.461	0.577	15.214
		Fragment 3 (470-493)	0.587	0.875	1.622
		Fragment 4 (519-579)	0.667	0.742	2.448
	MAINMAST	Full_length (1-586)	0.354	0.129	20.636

	Our mothod	Full_length (1-890)	0.475	0.251	48.191
	Our memou	Fragment 1 (78-560)	0.786	0.46	4.455
		Full_length (1-890)	0.076	0.072	9.66
		Fragment 1 (284-300)	0.579	0.927	1.663
	Posotto Donovo	Fragment 2 (395-406)	0.377	0.708	7.097
	Kosena-Denovo	Fragment 3 (479-499)	0.468	0.976	0.637
8410		Fragment 4 (742-755)	0.573	0.946	0.91
		Fragment 5 (835-850)	0.387	0.906	1.045
		Full_length (1-890)	0.184	0.093	51.833
	Dhoniy	Fragment 1 (1-221)	0.239	0.192	33.084
	I IICHIX	Fragment 2 (366-462)	0.308	0.312	16.039
		Fragment 3 (754-823)	0.176	0.225	12.38
	MAINMAST	Full_length (1-890)	0.119	0.025	41.171

*Note: The labeled RMSD is used for MAINMAST and Rosetta.

Impact of Manual Threshold Selection

As mentioned in the Methods section, voxels below a certain threshold are zeroed out in a pre-processing step. This aims to reduce noise and allows the CNN to focus on high intensity voxels. However, this threshold has to be selected manually, which is a non-trivial task prone to error. Therefore, we examine how sensitive the accuracy of the backbone predictions is to variations in the selected threshold. To do so, we predict the backbone structure of three density maps using varying thresholds in a range of -100% to +100% of the manually selected threshold (see Table S6). As we can see the prediction accuracy is affected by the selected threshold, however, only to a limited extend. Particularly within the range of -25% to +25% of the manually selected threshold the accuracy variations are only minor.

Thresh]	EMD 8482	2]	EMD 8515	5	EMD 8642			
old	Pred.	RMSD	% Cα	Pred.	RMSD	% Cα	Pred.	RMSD	% Cα	
	Са		in 3Å	Са		in 3Å	Са		in 3Å	
-100%	5334	1.74	76.4	5225	1.34	75.2	4187	1.50	74.7	
-75%	2770	1.63	77.1	4815	1.25	76.6	2339	1.49	74.6	
-50%	1677	1.67	74.6	4505	1.23	75.4	1198	1.54	74.6	
-25%	1229	1.60	71.6	4042	1.26	76.6	819	1.39	84.3	
0%	1098	1.60	70.2	3594	1.12	76.5	731	1.36	84.8	
+25%	1021	1.61	70.4	3201	1.10	76.9	657	1.31	83.4	
+50%	914	1.63	66.2	2962	1.07	74.9	577	1.36	76.5	
+75%	833	1.64	62.0	2824	1.10	74.4	500	1.45	67.4	
+100%	698	1.70	55.5	2736	1.13	72.3	429	1.48	58.2	

Table S6. Prediction results of three density maps for thresholds varying between -100% to +100% of the manually selected threshold

Runtime of Predictions

In the following chart we can see the runtime of the predictions relative to how many backbone Cα atoms were predicted. The time is measured for the end-to-end processing time. However, the vast majority of the time is spent on the global Tabu-Search and chain tracing algorithm in post-processing step. The C-CNN voxel prediction step only takes less than a minute, even for the large maps. The format of the elapsed time is 'hh:mm:ss'.

Tabu-Search Algorithm

Below is the Python pseudo-code for our tabu-search algorithm. The confidence map corresponds to the Ca confidence map that is returned from the C-CNN. The result of the method is a list of traces and each trace is in itself a list of atoms. The confidence_map[atom] value expresses the confidence value at the location of an atom.

```
def tabu_search(confidence_map):
       traces = []
       while next_atom(confidence, traces) is not None:
               # Atom at which trace is continued
               atom = next_atom(confidence, traces)
               # Find next best atom to continue trace
               neighbor_atom = find_nearest_atom(atom, confidence_map)
               if neighbor_atom is not None:
                      # Append neighbor atom to corresponding trace
                      append_to_trace(traces, atom, neighbor_atom)
       return traces
def next_atom(confidence_map, traces):
       if len(traces) > 0:
               possible_atoms = []
               for trace in traces:
                      # Only the first and last atom of each trace can be the next atom
                      possible_atoms += [trace[0], traces[-1]]
               # Return atom with the highest value in the Ca confidence map
               return max(possible_atoms, key=lambda atom: confidence_map[atom])
       else:
               # Atom at global max in Ca confidence map
               atom = global_max(confidence_map)
               # Return atom if its confidence value is higher than some threshold
               return atom if confidence_map[atom] >= 0.5 else None
```

Preprocessing

The experimental cryo-EM maps were segmented using UCSF Chimera's "zone" tool if the deposited structure is only fitted in part of the density map, as described in the Rosetta and MAINMAST paper. The first step of the preprocessing was to use hideDust in Chimera to remove any dust from the density map (optional step). This was done with setting the contour levels to low and high to visualize the dust and then using Chimera's command hideDust to pick a size that removed any outliers that were making noise. The hide dust sizes and the low or high level contour levels could be inputted as a json file to the program.

Running Rosetta-Denovo:

Rosetta (rosetta_bin_linux_2018.33.60351_bundle) was used. We followed the tutorial released on <u>http://dimaiolab.ipd.uw.edu/software/</u>. Almost all the parameters used were as described in the tutorial, but some specific parameters were taken from the following paper: Wang, R. Y. R., Kudryashev, M., Li, X., Egelman, E. H., Basler, M., Cheng, Y., Baker, D., & DiMaio, F. (2015). De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nature Methods, 12(4), 335-338.

First, fragment structures for the query protein were generated on the Robetta website: http://robetta.bakerlab.org/fragmentqueue.jsp

1. Local Fragment search in an input EM map using denovo_density.

This procedure searches the density map for each sequence-predicted backbone fragment generated in the previous step.

\$ROSETTA3/source/bin/denovo_density.static.linuxgccrelease \ -in::file::fasta ./target.seg \ -fragfile ./aaabini09_05.200_v1_3 \ -startmodel ./start_model.pdb \ -mapfile ./MAP.mrc \ -n_to_search 1500 -n_filtered 3000 -n_output 100 \ -bw 16 \ -atom_mask_min 2 \ -atom_mask 3 \ -clust_radius 2 \ -clust_oversample 4 \ -movestep 1 \ -delR 2 \ -frag_dens 0.8 \ -ncyc 3-min_bb false \ -pos \$1 \ -out:file:silent round\$2/fragment.\$1.silent

2. Placed fragment scoring using denovo_density:

This step score the placement of fragments for compatibility to the EM map. \$ROSETTA3/sourcebin/denovo_density.static.linuxgccrelease \
-mode score \
-in::file::silent round1/fragment*silent \
-scorefile round1/scores1 \
-n_matches 50

3. Monte Carlo fragment assembly using denovo_density:

This step generates "maximally consistent" fragment assembly in the map. \$ROSETTA3/source/bin/denovo_density.static.linuxgccrelease \
-mode assemble \
-nstruct 5 \
-in::file::silent round1/fragment*silent \
-scorefile round1/scores1 \ -assembly_weights 4 20 6 \ -null_weight -150 \ -out:file:silent round1/assembled.\$1 \ -scale_cycles 1 \ -mute core

4. Consensus assignment using denovo_density:

This step is to identify the consensus assignment from the lower-scoring Monte Carlo Trajectories.

\$ROSETTA3/source/bin/denovo_density.static.linuxgccrelease \
-mode consensus \
-in::file::silent round1/assembled.*silent \
-consensus_frac 1.0 -energy_cut 0.05 \
-mute core

If the assigned backbone residues are less than 70% of the target protein or the coverage is not converged, we iterate the four (1-4) steps.

Running Phenix:

We followed the tutorials of Phenix(1.16-3549) released on <u>https://www.phenix-online.org/documentation/reference/map_to_model.html</u>. The default parameters are used, and the command is as follows:

phenix.auto_sharpen 6272.mrc resolution=2.6 sharpened_map_file=density.ccp4

phenix.map_to_model density.ccp4 seq_file=6272.fasta resolution=2.6 nproc=10 pdb_out=result.pdb find_symmetry=True thoroughness=quick

Running MAINMAST:

We followed the tutorials of MAINMAST released on <u>http://kiharalab.org/mainmast/Tutorials.html</u>. The following command is used:

For segmented map:

\$MAINMAST/MAINMAST -m target.situs -filter 0.3 -Rlocal 10 > target_path.pdb

For simulated map:

\$MAINMAST/MAINMAST -m target_situs -filter 0.3 -Dkeep 1.0 -Ntb 10 -Rlocal 5 -Nlocal 50 -Nround 50 > target_path.pdb

For threading:

\$MAINMAST/ThreadCA -i target_path.pdb -a \$MAINMAST/20AA.param -spd target.spd3 -fw 1.3 -Ab 3.3 -Wb 0.9 > prediction.pdb