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Supplemental Figures 

 
Figure S1. Assessment of accuracy of the DPR strategy for cell selection, related to Figure 1B. Y-axis 
shows Spearman rank correlation of weights estimated from the DPR strategy to weights estimated from the 
known labels from the reference data. Dataset sources used are listed on the x-axis labels.  
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Figure S2. Quantification of batch effect in the reference/target dataset pairs used in the manuscript, 
related to Figures 1, 2 and 3. Extent of batch effect as measured by kBET (Buttner, Miao et al., 2019)  is shown 
on the y-axis (normalized units). The larger the difference between the observed and expected rejection rate, the 
bigger the batch effect. Target datasets used are listed in the title of the panel. 
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Figure S3. Different target datasets with the same cell types have different weights, related to Figure 1E. 
Scatter of weights estimated from pancreas scRNA-seq data from CEL-Seq (x-axis) (GSE81076) and weights 
estimated from pancreas scRNA-seq data from CEL-Seq2 (y-axis) (GSE85241) using the pancreas Smart-seq2 
scRNA-seq data (Segerstolpe, Palasantza et al., 2016) (E-MTAB-5061) as reference. For each of the cell types 
in the reference dataset, weights were computed using DPR positive and negative set selection in the two target 
datasets. Spearman rank correlation is shown in the title of each panel. Divergence of the correlation from r=1 
suggests that the weights are not exactly the same in the two datasets for the same cell type. 
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Transparent Methods 
 
scID workflow 
Given a set of 𝑘" = 𝑘$" + 𝑘&" features (genes) that are positive (𝑘$") and negative (𝑘&") 
markers for a reference cluster 𝐶, scID selects target cells equivalent to reference 
cluster 𝐶 based on their score 𝑠*" , which is a weighted linear sum given by 

𝑠*" = 	
∑ 𝑤."𝑔0.

*12
.34

5∑ 𝑤."	612
.34

 (Eq. 1) 

for 𝑗 = 1,… , 𝑛 where 𝑛	is the number cells in the target data, 𝑔0.
* 	 ∈ [0,1] is the 

normalized gene expression value of the 𝑖-th gene in the 𝑗-th cell, and 𝑤." is a 
weighting factor that represents the discriminative power of gene 𝑖 to identify target 
cells equivalent to reference cluster 𝐶. To reduce sensitivity to outliers, the gene 
expression values are normalized to [0,1] by the 99th percentile instead of the 

maximum i.e. 𝑔0.
* = minD EF

G

HII
, 1J, where 𝑔.

* is the library depth normalized gene 
expression of gene 𝑖 in cell 𝑗	and 𝑃LL is the 99th percentile of the expression of gene 𝑖 
across all target cells. 
 
The weights can be computed from the reference data as follows  
 

𝑤." = 	
𝜇." − 𝜇."

O

𝜎."	6 +	𝜎."
O	6 (Eq. 2) 

where 𝜇." , 𝜎." (𝜇."
O, 𝜎."

O	6) represent the mean and standard deviation, respectively, of 
gene 𝑖 in the cluster 𝐶 (all clusters except 𝐶). Each term of the weight of gene 𝑖 is in 
turn calculated as follows: 

𝜇." = 	
1
𝑙"R 𝑟̃.

*

*∈"

 

𝜇."
O = 	

1
𝑁 − 𝑙" R 𝑟̃.

*

*∈"O
 

𝜎."	6 = 	
1
𝑙" 	R(

*∈"

𝑟̃.
* − 𝜇.")6 

𝜎."
O	6 = 	

1
𝑁 − 𝑙" 	 R (

*∈"O
𝑟̃.
* − 𝜇."

O)6 

 
where 𝑙" is the number of cells in cluster 𝐶, 𝑁 is the total number of cells in the 
reference data, and 𝑟̃.

* 	 ∈ [0,1] is the normalized gene expression value of the 𝑖-th 
gene in the 𝑗-th cell in the reference data.  
 
This definition of the weights (Eq. 2) is a solution to Fisher's linear discriminant 
analysis assuming diagonal covariance, where the separation between the two 
classes is defined as the ratio of the variance between the classes to the variance 
within the classes. Ideally, we would like to include the full covariance matrix in order 
to better capture the relationships among clusters. However, we have chosen to 



approximate the covariance matrix as diagonal for computational efficiency but also 
due to limitations posed by the nature of scRNA-seq data. When datasets have 
sparse coverage, the covariance matrix is not full rank and cannot be inverted. 
Additionally, when the list of genes is long, computing the full covariance matrix is 
error prone due to insufficient number of samples.  
 
Choosing the weights in this way penalizes high variability and low mean expression 
in order to account for the following cases:  

a. When a positive marker is not expressed uniquely in the 𝐶 population, 𝜇.	"  will 
increase, reducing the weight as it does not provide sufficient evidence of 
belonging to the cells of interest. 

b. When a positive marker is expressed only within a subpopulation of 𝐶, 𝜎."	6 
will increase, reducing the weight so that a cell’s score does not drop sharply 
when the gene is missing. This also accounts for genes with high dropout rate 
even though they might be specific and sensitive markers. 

c. Finally, non-discriminative genes will be down-weighted, as the numerator 
𝜇.	" − 𝜇."

O  will be low. 
 
Although we can compute these weights from the reference, computing them from 
the target data can lead to improved accuracy, due to adjustments to the data quality 
and cell type composition in the target data. However, to do this we need to select 
target cells that are likely equivalent to the reference cluster 𝐶. The target cells 
(denoted as 𝑐) that express the 𝑘$" signature genes precisely and specifically and do 
not express the 𝑘&" signature genes are selected as equivalent to the reference 
cluster 𝐶 by clustering the data in the differential precision–differential recall domain 
which we refer to as differential precision recall or DPR approach.  
 
In general, precision of a cell expressing a set of genes is defined as the total 
number of expressed genes that belong to the given set divided by the total number 
of expressed genes and recall is defined as the number of expressed genes that 
belong to the set divided by the total number of genes in the set. 
So, for the set of positive markers (𝑘$") 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ = 	
𝑛$[\
𝑛\

 

 
𝑟𝑒𝑐𝑎𝑙𝑙$ = 	

𝑛$[\	
𝑛$[

 

where 
𝑛$[\: number of upregulated signature genes expressed 
𝑛$[: total number of upregulated signature genes 
𝑛\: total number of expressed genes 
 
A cell expressing all positive markers will have 𝑟𝑒𝑐𝑎𝑙𝑙$ = 1 and a cell expressing only 
positive markers (and no other genes) will have 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ = 1. Thus, cells 
equivalent to cluster 𝐶 will be in the first quadrant of the (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$, 𝑟𝑒𝑐𝑎𝑙𝑙$) space 
close to (1,1) and other cells not expressing the positive markers will be close to 
(0,0).  
 



For the set of negative markers (𝑘&")  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛& = 	

𝑛&[\
𝑛\

 

 
𝑟𝑒𝑐𝑎𝑙𝑙& = 	

𝑛&[\	
𝑛&[

 

where 
𝑛&[\: total number of downregulated signature genes expressed 
𝑛&[: total number of downregulated signature genes 
𝑛\: total number of expressed genes 
 
Similar to precision-recall for positive markers, a cell expressing all negative markers 
will have 𝑟𝑒𝑐𝑎𝑙𝑙& = 1 and a cell expressing only negative markers will have 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛& = 1. Thus, cells equivalent to cluster 𝐶 should be in the third quadrant of 
the (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛&, 𝑟𝑒𝑐𝑎𝑙𝑙&) space close to (0,0). 
 
To identify target cells equivalent to reference cluster 𝐶, we have combined the 
precision and recall for positive and negative markers via a differential precision (𝐷𝑃) 
and differential recall (𝐷𝑅) metric as follows: 
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Thus, target cells equivalent to cluster 𝐶 will be close to (1,1), cells very different 
from cluster 𝐶 will be close to (-1,-1), and cells belonging to clusters that are similar 
to cluster 𝐶 and share markers will be around (0,0). This will help separate cells 
equivalent to cluster 𝐶 from cells belonging to very similar clusters that could be 
otherwise grouped together if we were only using the positive markers.  
 
To select putative positive and negative training populations from the DP-DR space, 
we cluster the cells using different Gaussian finite mixture models(Scrucca, Fop et 
al., 2016)  and select the model with the lowest Bayesian Information Criterion (BIC). 
The clusters with highest DP and/or DR are selected as candidate matching clusters. 
From the candidate clusters, we select as 𝑐 the one with the closest to (1,1) centroid 
as measured by Euclidean distance. All other candidate clusters are discarded from 
the training set and the remaining clusters are used as training non-matching 
clusters (𝑐`). 
 
Analogous to computing the weights in the reference data, they can be computed 
from the target data using the training sets of cells (𝑐 and 𝑐`).  
 

𝑤." = 	
𝜇.a − 𝜇.a

O

𝜎.a6 +	𝜎.a
O6 (Eq. 2) 

where 𝜇.a, 𝜎.a represent the mean and standard deviation, respectively, of gene 𝑖 in 
the cluster 𝑐  and 𝜇.a

O, 𝜎.a
O represent the mean and standard deviation, respectively, 

of gene 𝑖 in the cluster 𝑐`. Each term of the weight of gene 𝑖 is in turn calculated as 
follows: 
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where 𝑙a, 𝑙aO are the number of cells in clusters 𝑐 and 𝑐` respectively.  
 
The weights estimated from the target data reflect the cellular composition of the 
target data and quality (i.e. the distribution of dropout and dynamic range of gene 
expression) of the target data both of which influence the discriminatory power of the 
features. 
 
Then, to identify target cells equivalent to reference cluster 𝐶, we fit different finite 
mixtures of Gaussians on the score 𝑠*"  (Eq. 1) and assign cells that belong to the 
population with highest average score to reference cluster 𝐶. 
 
When the reference data contains clusters that are highly similar transcriptionally, 
the features from a cluster can be correlated with the features from another cluster 
which in turn lead scID to assign target cells to multiple reference classes. To 
resolve this, the scores of target cells 𝑠*"  is first z-score normalized and the 
ambiguous cell is assigned to the reference cluster with the highest normalized score 
over all other reference clusters it was assigned to.  
 
Data source 
Human Metastatic Melanoma immune cells from Tirosh et al. 2016 (Tirosh, Izar et 
al., 2016).  This Smart-seq2(Picelli, Faridani et al., 2014) data consists of malignant, 
immune and stromal cells from metastatic melanoma tumours from 19 patients, a 
total of 4,645 cells. We have used the 3,254 immune (CD45+) cells for our analysis, 
which on average had 3,925 genes per cell. Data was downloaded from the Broad 
Institute Single Cell Portal. 
 
Mouse Retinal Bipolar Neurons from Shekhar et al. 2016(Shekhar, Lapan et al., 
2016): This study performed Drop-seq and Smart-seq2 experiments on Vsx2-GPF 
mouse retinal cells. The Drop-seq data had 27,499 cells with an average of 880 
genes per cell. The Smart-seq2 data had 288 cells with an average of 4,556 genes 
per cell. Gene expression data was downloaded from the Broad Institute Single Cell 
Portal. 
 
Brain cells from E18 mouse: This 10X data consists of brain cells from the cortex, 
hippocampus and subverticular zone of an E18 mouse. The scRNA-seq dataset had 
9,128 cells with an average of ~2,500 genes per cell and the single nuclei RNA-seq 
data have 954 cells with an average of 2,832 genes per cell. Both these datasets 



were downloaded from 10X Genomics (https://support.10xgenomics.com/single-cell-
gene-expression/datasets). 
 
Murine tracheal epithelium cells from Montoro et al. 2018 (Montoro, Haber et al., 
2018): This combination of plate-based and droplet-based scRNA-seq data of 
murine airway epithelial cells consists of 7,193 cells with an average of 1,712 genes 
per cell. The cells were partitioned into seven clusters annotated post hoc using a 
biomarker approach by the authors. Data was downloaded from the Broad Institute 
Single Cell Portal. 
 
Mouse brain cells from Hu et al. 2017 (Hu, Fabyanic et al., 2017): This Drop-seq 
single nuclei RNA-seq data from cortical tissues of adult mice consists of 18,194 
cells with 1,649 genes per cell on average that were partitioned into 40 annotated 
clusters. Data was downloaded from the Broad Institute Single Cell Portal. 
 
Unstimulated and stimulated PBMCs from Kang et al. 2018 (Kang, Subramaniam et 
al., 2018): This 10X data consists of 14039 human PBMCs from eight patients, split 
into two groups; one control and one stimulated with interferon-beta (IFN-β). Seurat 
CCA was used to align and cluster the data in order to obtain gold standard cell 
identities as shown in Butler et al (Butler, Hoffman et al., 2018).   
 
Human pancreatic islet cells from Segerstolpe et al. 2016 (Segerstolpe et al., 2016): 
This Smart-Seq2 data consists of pancreatic tissue and islets from six healthy 
individuals and four type 2 diabetes patients. RPKM-normalized gene expression 
data and cell labels were downloaded from ArrayExpress (E-MTAB-5061). 
 
Human pancreatic islet cells from Grün et al. 2016 (Grun, Muraro et al., 2016): This 
CEL-seq data consists of pancreatic cells from deceased organ donors with and 
without type 2 diabetes. Gene expression data and cell labels were downloaded from 
NCBI GEO (GSE81076).  
 
Human pancreatic islet cells from Muraro et al. 2016 (Muraro, Dharmadhikari et al., 
2016): This CEL-seq2 data consists of islets from cadaveric pancreas. Gene 
expression data and cell labels were downloaded from NCBI GEO (GSE85241).  
 
Data Normalization 
When datasets were obtained as UMI counts, Counts Per Million (CPM) library-depth 
normalization was performed prior to the analysis. For the biomarker-based 
approach we further normalized the gene expression to [0,1] by the 99th percentile in 
order to use the same threshold between marker genes that can differ significantly in 
their expression level.  
 
scID implementation 
The R implementation and tutorial for scID is available on Github 
(https://batadalab.github.io/scID/). 
 
scID has the following user-specified options: 

1. logFC: Log-fold-change threshold for extracting cluster-specific genesets 
from the reference data. The logFC used for extracting gene signatures for 
the reference datasets used in the figures are as follows: For Hu et al. 2017 



(Hu et al., 2017) logFC was set to 0.3; for Montoro et al. 2018 mouse 
tracheal epithelium data (Montoro et al., 2018) logFC was set to 0.5; for 
Shekhar et al. 2016 (Shekhar et al., 2016) logFC was set to 0.7; for Tirosh et 
al. 2016 (Tirosh et al., 2016) metastatic melanoma Smart-seq2 data  logFC 
was set to 0.5; for Segerstolpe et al. 2016 (Segerstolpe et al., 2016) Smart-
seq2 human pancreas  data  logFC was set to 0.5; for 10X E18 mammalian 
brain data (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/neuron_1k_v2) logFC was set to 0.6. 

2. estimate_weights_from_target: Estimate weights using the target data 
by selecting training sets using the precision-recall-like approach. For all 
figures in the paper we set this to TRUE. 

3. only_pos: Select only upregulated genes from each reference cluster. For 
all figures in the paper we set this to FALSE in order to select both 
upregulated and downregulated genes.  
 

 
Software tools and parameter settings 
We used the following R packages and parameters:  
 
Seurat (Buttner et al., 2019) (version 3.0.1)  
We used UMI count data when available and followed the standard Seurat workflow 
for clustering and data integration with default settings. When normalized data was 
provided instead, we skipped the NormalizeData() function of the workflow. 
 
scran (version 1.10.2) 
For running MNN (Haghverdi, Lun et al., 2018) we used log-transformed CPM-
normalized gene expression values. Aligned and merged expression matrixes were 
clustered using Seurat with default parameters. 
 
scmap (Kiselev, Yiu et al., 2018) (version 1.4.1) 
We used log-transformed CPM-normalized gene expression values for both 
reference and target data. We selected number of highly variable to genes to be 
used so that the maximum possible number of target cells can be classified. 
Specifically, for the data pairs of Figure 1E and Figure 3 we used 500 highly variable 
genes and for the data pairs of Figure 2 we used 150. 
 
CaSTLe (Lieberman, Rokach et al., 2018) 
For running CaSTLe we used the code provided in 
https://github.com/yuvallb/CaSTLe/blob/master/CaSTLeMultiClass.R with all 
predefined parameters. We used log-transformed CPM-normalized gene expression 
values for both reference and target data. 
 
Biomarker-based classification of cells 
To assign labels to target cells using the biomarker-based approach we first 
extracted the top two highly enriched markers (referred to as biomarkers) from each 
reference cluster, sorted by average log fold change. Then binarized the 99th-
percentile-normalized gene expression data using different thresholds (0.10, 0.25, 
0.50 and 0.75) and checked which marker genes are present in each cell. Cells that 
expressed biomarkers of different cell types were labelled as “ambiguous”. Cells that 
expressed biomarkers of a single cell type were assigned to the respective cell type 



and cells that did not express any biomarker were labelled as “orphans”. Only the 
uniquely classified cells were used to assess the performance of other methods.  
 
Quantification of batch effect between pairs of scRNA-seq data 
To measure the extent of batch effect between the reference-target pairs of data 
used in the manuscript, we used kBET (Buttner et al., 2019)(version 0.99.5). High 
rejection rate indicates poor mixing of the data. 
 
Statistical tests 
For testing the improvement of scID Stage 3 versus scID Stage 2 (Figure 1C), we 
tested the difference in True Positive (TPR) and False Positive Rate (FPR) between 
the two stages for each reference cluster using two-sided paired Kruskal-Wallis test.  
For the comparison of the various methods classification of cells to their gold 
standard labels we have used the Adjusted Rand Index (ARI) and the Variation of 
Information (VI) metrics. High similarity between the testing method and the true 
classification results in high ARI and low VI values. 
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