A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes

Sreeram Peringattu Kalarikal^{1&2}, Durga Prasad³, Ravi Kasiappan², Sachin R. Chaudhari³, Gopinath M Sundaram^{1,2*}

¹Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka, India.

²Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, India.

³Department of Spice & Flavor Science, CSIR-CFTRI, Mysuru, Karnataka, India.

Fig. S1: Effect of PEG molecular weight and different rcf_{max} values on ginger ENP characteristics. Photomicrographs of ENP pellets obtained with PEG4000, 6000 or 8000 (a) or ENP pellets obtained by subjecting 10% PEG6000 samples to different rcf_{max} values of 4000g, 6000g and 8000g (c). The ENP pellets were lyophilized and weighed to calculate the total yield per kg of ginger rhizomes under similar conditions (b and d). The mean size of ginger ENPs precipitated with different molecular weight PEGs or precipitated under different rcf_{max} conditions with 10% PEG6000 samples (e & f). Zeta potential values of

ginger ENPs precipitated with different molecular weight PEG or centrifuged under different rcf_{max} conditions (g & h). Values are average of three independent batches of ginger rhizomes purified under given conditions. ***P<0.001, **P<0.01, *P<0.05, n.s: non-significant.

Fig. S2: Analysis of residual PEG6000 in PEG purified ENP samples. 200µg of ENP samples were resolved through 15% SDS-PAGE along with PEG6000 standards at indicated amounts. PEG6000 was visualized using Barium iodide staining procedure as described in method section. Band intensities were quantified using Image J software after background subtraction. The relative percentage of PEG in PEG-ENPs samples (in Table S1) was calculated using the standard curve obtained with standard PEG6000 band intensities.

Fig. S3: Comparison of intracellular uptake of 10% PEG-ENPs with ultra ENPs at different time points post addition. Murine macrophages were either mock treated or treated with Nile

red labeled ultra or PEG-ENPs (100µg), for indicated time points. Cells were fixed and counterstained with the nuclear stain, DAPI. Images were acquired under same exposure settings under 10X magnification. Fluorescence intensity representing only the red channel (Nile red) is shown in grey scale while merged color images are shown for DAPI and Nile red. Scale bar-50µm. Images are representative of three independent experiment. In each experiment, images from five random fields were acquired.

Fig. S4: ATR-FTIR Absorbance spectrum of Ultra-ENP, 8% PEG 10% PEG-ENP sample. The selected region bands of interest of CH_2/CH_3 and =CO are expanded.

Fig S5:

Fig S5: ATR-FTIR Absorbance spectrum of blank containing 10% PEG6000 as a blank (black), 8% PEG-ENP sample (blue) and 10% PEG-ENP (red) sample. The selected region of CH₂/CH₃ representing CH-stretch contributed from lipids or PEG and =CO amide- I functional group likely representing proteins are expanded.

Fig S6.

Fig S6: The antioxidant activity of ultra and PEG ENPs is not affected by the presence or absence of serum in culture medium. Cell viability of RAW macrophages treated with H_2O_2 alone or in the presence of ENPs, in medium with (complete medium) and without serum were measured by MTT assay (n=3). **P<0.01, n.s: non-significant. Under serum free conditions, RAW macrophages showed reduced cell viability compared to treatment with H_2O_2 in serum containing medium.

Table S1:

PEG concentration	Residual PEG in PEG-ENPs (in percentage)	
8%	4.4 ± 0.3	
10%	5.6 ± 0.2	
12%	6.6 ± 0.6	
15%	7.7 ± 1.1	

Table S2: Acquisition Details for the ATR-FTIR spectrum

Additional Data Treatment	2	
Acquisition Mode	Double Sided, Forward-Backward	
Low intensity power mode with		
DTGS	Off	
Correlation Test Mode	OFF	
Delay Before Measurement	0	
Stabilization Delay	5	
Wanted High Frequency Limit	8000	
Wanted Low Frequency Limit	0	
Sample Meas. Duration in Min.	1	
Background Meas. Duration in Min.	1	
Sample Scans	128	
Background Scans	16	
Result Spectrum	Absorbance	
Resolution	4	
Signal Gain, Background	Automatic	
Sample Rotations	32	
Background Rotations	32	
Sample Scans or Time	Scans	
BG Scans or Time	Scans	
To do list	37	
Signal Gain, Sample	Automatic	
Signal Gain, Sample 2nd Channel	Automatic	
Signal Gain, Background 2nd		
Channel	Automatic	
Source Setting	MIR	
Scanner Velocity	7.5 KHz	
Preamplifier Gain Background	Ref	
Preamplifier Gain	Ref	
Optical Filter Setting	Open	
Measurement Channel	Sample Compartment	
Low Pass Filter	Automatic	
High Pass Filter	On	
External Synchronisation	Off	
Extended Ready Check	OFF	
Detector Setting	RT-DLaTGS [Internal]	
Correlation rejection mask	0	
Beamsplitter Setting	KBr-Broadband	
Background Measurement Channel	Sample Compartment	
Aperture Setting	6 mm	

Table S3:

Factor	Ultracentrifugation	PEG Method
Cost of instrument:	Expensive	5-10 times cheaper
Ultracentrifuge versus		
regular bench top centrifuge		
that can reach at least 8,000g		
Cost of plasticwares:	Expensive: Each SW32	Each 50ml regular
Ultracentrifuge tubes versus	ultracentrifuge tube costs	centrifuge tube costs <20
regular centrifuge tubes	10-15 USD per tube	cents
Cost of PEG6000	Not applicable	R&D grade PEG6000 costs
		~80-100USD per Kg.
		Approximately, 100g of
		PEG6000 is required to
		purify 2g of ENP from
		ginger
Scalability: Availability of	To our knowledge,	Commercial rotors are
rotors and tubes to reach	Beckman 1145 is the only	capable of centrifugation up
required RCF in larger	rotor which can reach up to	to ~15000g with 1 litre
volumes	RCF _{max} 235,000g with	sample per tube. Example:
	maximal volume 94ml per	Kubota AG-IK4 rotor can
	tube. Beckman type 19	centrifuge 4 X 1,000ml at 15.760 m/s
	to 250ml nor type but	15,700 x g.
	DCE is limited to	
	53,900g	
Expertise required to operate	Extreme caution is required	The balancing requirement
the instrument	in operation, especially	is significantly less at low
	proper balancing down to	speeds such as 8000g
	1% of total weight	
Availability	It is usually a part of a	Readily available in any
	central instrument facility in	individual research
	research institutes.	laboratories.

Uncropped versions of Agarose and SDS-PAGE gel images corresponding to Figure 4a and

b.