
Supplementary Information for:
Generic predictions of output probability based on complexities of inputs and outputs

Kamaludin Dingle1,2, Guillermo Valle Pérez2, Ard A. Louis2
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I. ALTERNATIVE WAYS TO DERIVE THE
CUMULATIVE BOUND

In the main text an upper bound on the probability
P (x) that an output obtains upon uniform random sam-
pling of inputs, is given as

P (x) ≤ 2−aK̃(x)−b (1)

This bound was introduced in1.
Here we examine other ways of deriving what are ef-

fectively lower bounds on the probability, as expressed
in the cumulative bound (8). First consider, as in1, the
function

q(x) =
P0(x)

P (x)
(2)

where P0(x) = 2−K(x|f,n)+O(1). Here q(x) measures the
ratio of the upper bound of Eq. (1) to the probability
P (x) that an output x is generated by random sam-
pling of inputs. Because we work with computable maps,∑

x P (x) = 1, by definition. However, the bound P0(x)
is not normalised, as it is an upper bound on the true
probability. One measure of its cumulative tightness is
to calculate the expected value of q(x) summed over all
inputs, which we call EI . This can be written as a sum
over all outputs, where every output is weighed as P (x):

EI =
1

NI

NI∑
i=1

q(x(pi)) =

NO∑
j=1

P (xj)q(xj) =

NO∑
j=1

P0(xj)

(3)
By definition of an upper bound, q(x) ≥ 1 which means
that EI =

∑
x∈O 2−K(x|f,n)+O(1) ≥ 1. Interestingly, be-

cause K(x|f, n) is a prefix code,
∑

x∈O 2−K(x|f,n) ≤ 1.
Therefore EI > 1 due to the O(1) terms.

In1 Markov’s inequality was used to derive a lower
bound upon uniform random sampling of inputs,

P0(x)

EIr
≤ P (x) ≤ P0(x) (4)

which holds with a probability of at least 1 − 1
r . The

upper bound, given approximately by equation (1), al-
ways holds of course. We measured EI explicitly for the
maps in the main text compared to our approximate up-
per bound and find that typically log10 EI ≈ 1 or 2, which
means that the bound is tight on a log scale at least.

Another related way to derive a cumulative bound such
as that of Eq (10) from the main text follows a very sim-
ple argument. Recall that D(f) is defined as the set of all
outputs xi that satisfy (log2(P0(xi))− log2(P(xi))) ≥ ∆.
Recall also that the upper bound is defined as P0(x) =
2−K(x|f,n)+O(1). Then we can obtain the bound as fol-
lows.

∑
x∈D(f)

P (x) ≤
∑

x∈D(f)

P0(x)2−∆ =
∑

x∈D(f)

2−K(x|f,n)+O(1)−∆

= 2−∆+O(1)
∑

x∈D(f)

2−K(x|f,n)

≤ 2−∆+O(1)
∑
x

2−K(x|f,n)

≤ 2−∆+O(1),

where the last line follows from Kraft inequality2, which
applies because K(x) comprise a prefix code. If instead
Eq (3) were used for

∑
x P0(x) = EI in the derivation

above, then we would obtain∑
x∈D(f)

P (x) ≤ EI2−∆ (5)

Although these arguments result in essentially the
same bound as the cumulative bound in the main text,
the connection with the complexity of inputs is more
opaque. However, these derivations highlight other as-
pects of the bound, such as the role of the O(1) term in
the exponent. Therefore, the two derivations may give
insight into the tightness of the looseness of the bound
in different situations.
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