Supporting information

Figure legends:

Figure S1. Generation and confirmation of *mcr11* knock-out and

complementation strains. A. A diagram of the *mcr11* locus and the relative position of the hygromycin resistance cassette. Lines with arrows indicated the DNA sequence included in the various listed complementation strains. B. PCR confirmation of *mcr11* knockout and complementation strains of BCG. C. PCR confirmation of *mcr11* knockout and complementation strains of Mtb. D. Northern blot analysis of the indicated strains of BCG from 3 μ g of total RNA harvested from late stationary phase cultures grown in hypoxic (1.3% O₂, 5% CO₂), shaking conditions. E. Northern blot analysis of the indicate-log phase cultures grown in hypoxic (1.3% O₂, 5% CO₂), shaking conditions. The number above the lane indicates the identity of each sample. The column to the left of the rows indicates which gene was amplified or which RNA was probed by Northern blot.

Figure S2. FACS analysis of TSEs in Msm. FACS analysis of GFPv fluorescence of 20,000 events for each sample as indicated by the label to the left of the histogram. Representative of three independent repeats.

Figure S3. *abmR* contributes to the termination of Mcr11 transcripts. A.

GFPv fluorescence assay used to measure m*cr11* promoter activity in mid-log phase Mtb in hypoxic (1.3% O_2 , 5% CO_2), shaking conditions. Fluorescence is normalized to the OD_{620} of each sample. B. The % termination in mid-log phase.

The various TSE constructs tested are indicated underneath the corresponding bar. C. Promoter reporter assay as in (A), but in late stationary phase. D. The % termination, as in (B), but in late stationary phase. Results representative of 3 biological replicates. Statistical analysis conducted with a one way ANOVA with Bonferroni correction for multiple comparisons. . Comparison made versus Mtb $\Delta abmR$ in A. and C., and versus Wt in B. and D. Asterisks indicate significance as follows: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

Figure S4. Termination at a sub-optimal TSE does not require a trans-gene for stabilization of Mcr11. A. A schematic of the transgene fusion constructs. *Mcr11* complementation was provided with (1) or without (2) the transgene GFPv fused to the end of *mcr11* downstream of sub-optimal terminator TSE1. An Mcr11 complementation construct was also tested with TSE3 (3). B. Northern blot analysis of Mcr11 expression in Mtb grown to late stationary phase in hypoxia (1.3% O₂, 5% CO₂). HisT was used as a loading control. Results of densitometry analysis are presented below the corresponding blot. The red line delineates the limit of detection. Results are the representative of 2-3 biological replicates.

Figure S5. Secondary structure of Mcr11 RNA generated by multiple modeling algorithms. A. The CentroidFold secondary structure using the CONTRAfold inference engine. B. The -54.40 kcal/mol MFE structure generated using Mfold. C. The -45.40 kcal/mol MFE strcture generated using NUPACK. D. The RNAfold centroid structure. E. The -54.00 kcal/mol MFE structure generated using RNAfold. F. The -53.80 kcal/mol MFE structure generated using RNAStructure. G. The ensemble centroid structure generated using Sfold. H. The -54.40 kcal/mol MFE structure generated using Sfold.

Figure S6. Regulation of Rv3280 and Rv3281 expression in Mtb. Mtb was grown for 12 days in under hypoxic, shaking conditions in -OA media. Gene expression was measured by qRT-PCR and normalized to the reference gene *sigA*. Comparison made of each strain versus Mtb Δ mcr11. Representative of three biological repeats.

Figure S7. Regulation of predicted targets of Mcr11 is condition specific in BCG and Mtb. A. BCG grown for 12 days in under hypoxic (1.3% O_2 , 5% CO_2), shaking conditions in Middlebrook 7H9 + 0.2% glycerol, 10% OADC, and 0.05% Tyloxapol (+OA). Gene expression was measured by qRT-PCR and normalized to the reference gene sigA. G.-H. Mtb was grown for 7 days in under hypoxic (1.3% O_2 , 5% CO_2), shaking conditions in Middlebrook 7H9 + 0.2% glycerol, 10% OADC, and 0.05% Tween (+OA) and treated with vehicle control (Control) or 10 mM dibutyryl cAMP on day 3 (+db cAMP). Gene expression was measured by qRT-PCR and normalized to the reference gene sigA. Representative of 2-3 biological repeats. Statistical analysis conducted with an unpaired, 2-tailed Student's t-test. Comparison made of each strain versus $\Delta mcr11$. Asterisks indicate significance as follows: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

Figure S2.

Relative Fluorescence Units

Figure S4.

Figure S5.

Figure S6.

Figure S7.

Supplemental Tables:

Table S1. Plasmids used in the study.

Supplement	al Table 1 Plasmids used in this study							
Plasmid		Selective	Insert	Vector				
Reference	Description	Markers	Primers	Backbone	E. Coli	Msm	BCG	Mtb
pMBC0562	lacZ gene with a S.D. downsteram of a BamH1 site	Нуд	None	pLACint	DH5a	N/A	Wt	Wt
pMBC0775	PgyrB fused to lacZ reporter	Hyg	KM3829-383	pMBC562	DH50	N/A	Wt	Wt
pMBC0819a	Rv1265 oriented promoter fusion from the end of Rv126	Hyg	KM1065-106	pMBC562	DH50	N/A	Wt	Wt
pMBC1070	Short hairpin mcrll terminator, mcrll, and the Rv1265 ORF for mcrll complementation	Kan	KM2658- 2659	pMBC409	DH5a	N/A	mcrll KO	N/A
DMBC1211	Ptuf driving mcrll gene with short hairpin terminator	Kan	KM2927-	pMBC280	DH50	N/A	N/A	moril KO
pribertit	CCIMIN(COL		KM2919-	pribezoo	biibu	M/ 11		MOTIT NO
			2920 and					
		Hyg, Cab,	KM2921-					
pMBC1216	For disruption of mcrll by homologous recombination	SucSensitive	2922	phAE159	DH50	N/A	mcr11KO	mcr11KO
pMBC1510	mcrll oriented promoter fusion to lacZ comprised of R	Hyg	KM1128-445	pMBC562	DH50	N/A	Wt	Wt
pMBC1566	Rv1265 oriented promoter fusion from mid-mcr11 to cor	Нуд	KM1128-445	pMBC562	DH50	N/A	Wt	Wt
pMBC1798	Promoterless control of GFPv expression reporter	Kan	none	pMBC304	DH5a	Wt	Wt, Rv1265KO	Wt, Rv1265KO
- 1073	Dauf funnal to CEDu sementer	¥	WWE10 E10	-MDG1700	DUEG	1.74	Wt,	Wt,
pmBC1875	Ptul lused to GPPV reporter	Kdll	KM512-515	pmbc1/98	DIDU	WC	RV1265KU	RV1265KU
			KM3829-				Wt. mcrll	mcr11KO.
pMBC1877	PgyrB fused to GFPv reporter	Kan	3830	pMBC1798	DH5a	N/A	KO	Rv1265KO
								Wt,
	Pmcrll with the short hairpin terminator fused to		KM1066-				Wt, mcrll	mcr11KO,
pMBC1902	GFPv reporter	Kan	1128	pMBC1798	DH5a	Wt	KO	Rv1265KO
-WDG1003	PRv1265 fused to GFPv, included mcr11 short hairping	V	KM1066-	-MDG1 700	DUEG	21/2	N1 / N	
PMBC1903	cerminator	Kdli	1120	pmbc1/98	Drou	N/A	N/A	MCTIIKU
	Pmcrll with the uneven "II" terminator fused to GEPv		KM4516-				Wt moril	mcr11K0
pMBC1911	reporter	Kan	1128	pMBC1798	DH5g	Wt	KO MOLIT	Rv1265KO
	Pmcrll with the "I" terminator fused to GFPv		KM4515-					Wt,
pMBC1914	reporter	Kan	1128	pMBC1798	DH50	Wt	mcrll KO	Rv1265KO
			KM4032-					
pMBC1988	PlipB internal promoter fused to GFPv reporter	Kan	4033	pMBC1798	DH5a	N/A	N/A	Wt
	Dipp internal promotor with mutation made to Moril		KM4032-					
pMBC2007	interaction sequence fused to GEPy reporter		4109-4110	pMBC1798	DH5a	N/A	N/A	w+
pribczoov	Pmcrll with the uneven "V" poly A terminator fused		KM4517-	pilberijo	bilba	м, п	Wt. mcrll	n c
pMBC2008	to GFPv reporter	Kan	1128	pMBC1798	DH5a	Wt	KO	mcr11KO
	Short "I" mcrll terminator, mcrll, and the Rv1265		KM4514-					
pMBC2040	ORF for mcr11 complementation	Kan	3498	pMBC409	DH50	N/A	mcrll Ko	mcrll KO
	Uneven "U" mcrll terminator, mcrll, and the Rv1265		KM4515-					
pMBC2041	ORF for mcrll complementation	Kan	3498	pMBC409	DH5a	N/A	mcrll KO	mcrll KO
pMBC2042	Rv1265 ORF for mcr11 complementation	Kan	KM4517- 3498	pMBC409	DH5a	N/A	mcrll KO	mcrll KO
					1			Wt,
WE GO O C C			KM5031-	wp. a1 7 6 6				mcr11KO,
pmbc2066	Unowon "V" poly & moril terminator moril and Bul265	Ndii	1120 VM4517	penci/98	Dupon	WC	merii KO	RV1205KU
DMBC2067	OPF	Kan	3498	pMBC1798	DH50	W+	N/A	N/A
			KM4451-			1		Wt,
pMBC2069	Pmcrll fused to GFPv reporter	Kan	1128	pMBC1798	DH5a	Wt	Wt	Rv1265KO
			KM4451-				1	
pMBC2071	Pmcrll with the Rv1265 ORF behind it, fused to GFPv	Kan	3498	pMBC1798	DH5a	Wt	N/A	Rv1265KO

Table S2. Primers used in the study.

Suppleme	ental Table 2 Primers used in this study	
Primer	Purpose	Segeunce 5' to 3'
KM0512	Ptuf for promtoer fusion studies	GGATCCACACCCGAGGACTACATGGG
KM0513	Ptuf for promoer fusion studies	GGATCCTGGTCCCGATGTTGACGTGG
KM0816	Kanamycin resistance cassette	AGCAGGTAGCTTGCAGTGGG
KM0817	Kanamycin resistance cassette	CGGCCACAGTCGATGAATCC
KM1066	For short bairpin terminator of mcr11	GGATCCCCGGCTCGTCACCGTAGGC
1111000	mcr11-Rv1265 intergenic region for promoter fusion	GGATCECCOGCTCGTCACCGTAGGC
KM1128	accave	GCGGATCCCGTGCATGTGATGGTGCC
KM1309	sigA ORE used to OC RNA as a PCR control	GATGACCGAGCTTAGCGAGC
KM1310	sigA ORF used to QC RNA, as a PCR control	CGTAGGTGGAGAACTTGTACC
KM1310	Hydromycin resistance cassette	CTCCCCCTCCCCCCAACCC
KM2220	Hygromycin resistance cassette	
KM26E0	Frygromychi resistance casselle	AGCCGGACCCGGTGATCAAGC
KM2658	For overexpression of RV1265 from its native promoter	AAGCTTGGATTTAGGGGGCCTTCGC
KM2659	For overexpression of RV1265	AAGCTTCCGTTTAGGCCCGGAAGATCC
KM2919	For mcr11 KO, upstrean sequence	GLGGLLGLGAATAAGGLLAAGALLTALL
KM2920	For mcr11 KO, upstrean sequence	GCGGCCGCACCAAAAATACAACGTCGAA
	,.,	GG
KM2921	For mcr11 KO, downstream sequence	CCATAGATTGGAGAGTCACGCCGGGTCTC
TO LEVEL		CC
KM2022	For mor11 KO, downstream segounce	CCATCTTTTGGACGACGGCACCTACGTAT
KH2322	Tor merri ko, downstream sequence	С
KM2927	Rv1264-165 intergenic region	GGATCCGCCCGTGCATGTGATGG
KM2928	Rv1264-165 intergenic region for run-off transcription	AAGCTTGGCCGGCTCGTCACCGTAG
KM3378	mcr11 sequence for checking KO and complementaiton	ATCGAAGCAGGCCGGGTTAGTGAC
KM3379	mcr11 sequence for checking KO and complementaiton	ACACCGGTACACATGGGCAGAC
KM3498	For overexpression of Rv1265	GGATCCCCGTTTAGGCCGGAAGATCC
KM3829	PayrB for promoter fusion studies	ACGAAGCGGATCCGTATG
KM3830	PayrB for promoter fusion studies	AGGATCCGAATACTCTCC
KM4404	Probe for HisT on Northern Blots	AACCCGGGACAGCCAGGATCACAAC
	mcr11-Rv1265 intergenic region for promoter fusion	
KM4451	accave	GGATCCGATACCAAAAATACAACGT
KM4504	PokoA/B for promoter fusion studies	GGATCCGACAGCGCCGCACTAGGG
KM4505	PoknA/B for promoter fusion studies	GGATCCGCTCATGGTTCCCCCTGCA
KM4505	Powerce primer with chart "I" terminator for mort 1	CATCCCCCCCATGGTTCCCCCTGCA
KM4514	Reverse primer with short 1 terminator for mort 1	CATCCCCCCCCCCCCCCC
KM4515	Reverse primer for ungager "U" terminator for mental	GGATCCCTCCGGCGGCGCGGCGCGGCCCAA
KM4516	Reverse primer for uneven "U" terminator for mcr11	GGATCCGTCCGGCGAGGGGC
KM4517	Reverse primer for uneven "V" with poly A terminator for	GGATCCTTTTTCGAGTCCGGCGAGGGGC
KM4521	Probe for Mcr11 on Northern Blots	GCGTGACTCTCGGGGGGGCGTCTGA
11111111111	Trobe for Herri on Northern Blots	GCATCCAAAAAAAAAAACCCCCCCCAATCGC
KM5031	Synthetic terminator for mcr11	GGGGCACACCGGTACACATGG
		CAACCACCOGIACACAIGG
KM5295	For mapping Mcr11's 3' end	GAAGCAGGCCCGGTTAGTGACCAATCGA
KM4CE2		AGIGU
KM4655	SIGA ORF QRI-PCR	TCAAACAGATCGGCAAGGTAG
KM4654	SIGA OKF GRI-PCR	
KM4690	mcr11 qRI-PCR	AICGAAAGIGCCGGAAGAC
KM4691	mcr11 qRI-PCR	CGGTACACATGGGCAGAC
KM4694	gyr ORF qRT-PCR	CTGCACCGCACAAAGTTAAG
KM4695	gyr ORF qRT-PCR	GTCCACGATGCTGCTATGAA
KM4698	pknA ORF qRT-PCR	CGTCTATTCACTGGGAGTTGTT
KM4699	pknA ORF gRT-PCR	GCTCCTTGATGTGCTTCATTG
KM4846	tuf ORF gRT-PCR	CGAGGACGTCTTCACCATTAC
KM4847	tuf ORF qRT-PCR	ATGCCGACGATCTCAACTTC
KM5168	Rv2216 ORF qRT-PCR	GGGTTCGTCTGGCTTGAT
KM5169	Rv2216 ORF gRT-PCR	GGGATTCCAGTGCAGTTCTT
KM5170	lipB ORF qRT-PCR	CGACACTGCACGGGTTT
KM5171	lipB ORF gRT-PCR	CTGCGGCGTCACTGATT
KM5192	Rv3282 ORF aRT-PCR	TACATCGAAGGCAGGCTACT
KM5193	Rv3282 ORF gRT-PCR	TIGTCCTGCAACCGGATAAC
KM5032	dlaT ORF gRT-PCR	GACCTICCIGCCGTICTIC
KM5033	dlaT ORE gRT-PCR	CTCGTTGTAGCTAGCGTTGAT
KM5287	Rv3280 ORE gRT-PCR	ACCTGCGACTGCTTCAATATC
KM5289	RV3280 ORF gRT-PCR	GGATGATGCCGTTGTATTCCT
KME201		CCCCAACCACCACCAACAAT
KME202	RV3201 URF UKI-PUK	
KM25292	IKVJZOI UKF (IKI-PCK	ICGITCUCGICACICACIIC

Table S3a. Impact of stress on efficiency of mcr11 termination in H37Rv.

Table S3b. Impact of stress on efficiency of *mcr11* termination in BCG.

Table S3c. Impact of stress on efficiency of mcr11 termination in delta

H37Rv_delta_abmR

Supplemental Table 3A Impact of stress on mcr11 termination in H37R										
H37Rv	TSE1	TSE2	TSE3	ttsbiB						
Mid-Log	71.1 ± 2.54	79.6 ± 7.62	88.8 ± 2.05	95.0 ± 2.80						
Late	78.8 ± 1.62	84.8 ± 1.94	92.4 ± 0.78	98.5 ± 0.23						
Stationary										
DMSO	77.1 ± 3.08	82.4 ± 3.03	91.7 ± 1.17	97.9 ± 0.47						
DETA-NO	73.3 ± 2.18	75.2 ± 6.83	88.4 ± 4.23	97.3 ± 1.24						
BDQ	73.8 ± 6.24	81.9 ± 3.91	91.6 ± 1.88	97.6 ± 1.03						
RIF	76.2 ± 8.25	82.7 ± 3.95	90.9 ± 2.89	95.6 ± 3.35						

Supplemental Table 3B Impact of stress on mcr11 termination in BCG

BCG	TSE1	TSE3	TSE4		
Mid-Log	39.6 ± 4.35	72.3 ± 2.87	66.6 ± 1.69		
Late Stationary	69.6 ± 2.54	84.8 ± 3.16	78.4 ± 7.54		
DMSO	69.8 ± 0.89	84.6 ± 2.95	78.4 ± 5.89		
DETA-NO	67.7 ± 4.84	83.8 ± 2.70	74.8 ± 8.45		
BDQ	71.8 ± 3.29	85.1 ± 3.53	82.0 ± 5.39		
RIF	67.1 ± 4.37	84.0 ± 1.65	78.7 ± 2.65		

Supplemental Table 3C Impact of stress on mcr11 termination in Δ abmR H37Rv

Condition	H37Rv TSE1	∆abmR TSE1
Mid-Log	71.1 ± 2.54	47.7 ± 2.57
Late	78.8 ± 1.62	68.27 ± 2.85
Stationary		
DMSO	77.1 ± 3.08	62.1 ± 7.36
DETA-NO	73.3 ± 2.18	64.9 ± 0.15
BDQ	73.8 ± 6.24	69.1 ± 1.67
RIF	76.2 ± 8.25	62.8 ± 3.56

(Comparison of the mean % termination of each TSE with standard

deviation of 3 biological replicates after 24 hour exposure to a variety of

stress conditions: (DMSO vehicle control, nitric oxide (DETA-NO),

bedaquiline (BDQ), or rifampicin (RIF)).

Table S4. Results of TargetRNA and TargetRNA2 predictions of Mcr11

regulatory targets.

Supplemental 1	Table 4 Bioinfo	ormatically pr	edicted targets of Mcr	11 regulati	on		1								
		Gene		Mapped	Mapped	Size									
Rv #	Gene	Description		3' Ends	5' Ends*	Estimates									
ncRv11264c	Mcr11	Stable non-co	ding RNA	1413106	1413224	117nt									
#DiChiara 2010				1413107	1413227	1218									
Torontera, Auto															
Rank	Rv #	Gene	Gene Description	Score	P-value	Base Pairing in Mcr11 Start	Base Pairing in Mcr11 Stop	Base pairing in mRNA relative to the Start Codon Start	Base pairing in mRNA relative to the Start Codon Stor	TSS Category (Position of Gene/Number of Genes in Operan)	Relative Position of	5' mRNA Start	Gene Start	Gene Stop	Essentiality
											No overlap if leaderless,				
1*	Rv1265	CHP	Regulatory Protein	-75°	0°	14	34	-67	-47	Leaderless (1/1)	otherwise in the 5' UTR	1413371 ^d	1413260	1413940	Non-essential
2	0-1074-	6-102	Beta-ketoacyl CoA	50	0.00246	40	54	22	10	EN(TD (1(1))	To the ENITE	1100411	1100156	1100373	New secondial
3	Rv2217	lipB	Lipoate biosynthesis protein B	-54	0.00685	41	54	-51	-38	SD Operon (3/3)	Intracistronic between Rv2216 stop codon and lipB start codon	2481870	2484584	2485276	Essential
Target RNA2 Hits															
		_		_		Base Pairing in Mcr11	Base Pairing in Mcr11	Base pairing in mRNA relative to the Start Codon	Base pairing in mRNA relative to the Start	TSS Category (Position of Gene/Number of	Relative Position of	5' mRNA			
Rank	Rv #	Gene	Gene Description	Energy	P-value	Start	Stop	Start	Codon Stop	Genes in Operon)	Putative Base-Pairing	Start	Gene Start	Gene Stop	Essentiality
1	By1265	CHP	Regulatory Protein	-20 11°	0.000	14	34	-67	-47	Leadedess (1/1)	otherwise in the 5' UTR	1413149	1413260	1413940	Non-essential
-															
2	Rv1138c	CHP	Oxidoreductase	-12.54	0.005	44	60	-75	-59	Unknown	Unknown	Unknown	1265472	1266488	Non-essential
3	Rv2831	echA16	Epoyl-CoA bydratase	-11 42	0.011	43	57	-70	-55	Leaderless	otherwise in the 5' UTR	3137271	3137271	3138020	Non-essential
-											Within the open reading frame of the preceding				
4	Rv2103c	vapC37	Ribonuclease	-10.46	0.018	6	19	-79	-65	Leaderless Operon (2/2)	gene (VapB37)	2364781	2364086	2364520	Non-essential
5	Rv0291	mycP3	Membrane-anchored mycosin, ESX-3	-10.03	0.023	36	56	-55	-36	SD Operon (8/9)	Within the open reading frame of the preceeding gene (eccD3)	345432	354498	355883	Essential
	0.0070	0.00	Conserved Hypothetical	0.04	0.005	50		6.0	15						
0	KV3075C	Chr	Divalent metal cation	-2.00	0.023	- 23	03	-37	-43	UNKIOWI	UTKIIOWIT	Oliviowii	2441/70	244222/	NOT-ESSETICIAL
7	Rv0924c	mntH	transporter	-9.71	0.027	49	67	-68	-51	Unknown	Unknown	Unknown	1030578	1031864	Non-essential
8	Rv1952	vanC14	Ribonuclease	-9.41	0.031	38	57	-18	2	5' LITR Operan (2/2)	Within the open reading frame of the preceeding gene (VapB14) and overlapping the start codon of vanC14	2200712	2200938	22012/0	Non-essential
°		vujC14	Conserved Hypothetical	2.41	0.051		5/	10	2	5 61K 6/81011 (2/2)	COUCH OF VAPU14	2200/12	2200330	1101249	non easenda
9	Rv2645	CHP	Protein	-9.05	0.036	47	60	-78	-64	5' UTR (1/5)	In the S'UTR	2969669	2970123	2970554	Non-essential
10	Rv1991A	mazE6	Antitoxin to MazF6/MazF Mt3	-8.91	0.039	36	51	-42	-26	Leaderless Operon (1/4)	No overlap if leaderless, otherwise in the 5' UTR	2234891	2234643	2234891	Unknown
11	Rv3282	СНР	Similarity to septum- site inhibition protein Maf	-8.72	0.042	39	55	-60	-44	Leaderless Operon (3/3)	Within the open reading frame of the preceeding gene (accES)	3662062	3664219	3664887	Slow growth mutant in vitro
12	Rv0979c	CHP	Conserved Hypothetical Protein	-8.6	0.044	45	62	-22	-6	Linknown	Linknown	Unknown	1094670	1094864	Non-essential
	Taroets are ra	nked in order o	f ascending P-value	5.0			71	**						4004	- and and the state
b forgets are balance of observed to accelerate of acceler															

P-value for a traject corresponds to the likelihood of desiring as strong an interaction by chance
 d Transcriptional boundaries tabulated from Cortes et al, 2013
 e Thermodynamic energy (Local And) of hydridization between the two RNA molecules
 e Thermodynamic energy (Local And) of hydridization between the two RNA molecules
 Blue Genes selected for follow-up in this study: