
 

 

Answer: We thank the reviewers for their comments. We provide below a point-by-point response to all 
the questions they raised. Our answers appear in blue. 
 
 
Reviewer #1: This paper addresses an important problem: the modelling of feedforward control necessary 
to deal with large sensory delays in human sensorimotor control i.e. motion planning. Specifically, the 
paper develops a method to compute the force and mechanical impedance (or muscles activation) for 
learned arm movements, considering intrinsic motor noise. The method is illustrated by simulating well 
selected experimental studies from the literature. The presentation is clear and accurate, and i have no 
major concern. In the following, i will first give general comments, then list minor suggestions. 
 
General comments: 
1. The paper seems to target co-contraction of antagonist muscle pairs, however i) mechanical impedance 
at a joint arises from the co-contraction of the group of all muscles actuating this joint, ii) i guess the 
technique developed in this paper is valid for such muscle groups, not only for antagonist muscle pairs. If ii) 
holds, the paper could be formulated in the more general case i). 
Answer: It is true that the method works equally well for muscle groups. We often refer to pairs of 
agonist/antagonist muscles for simplicity but the framework is general enough to handle a group of 
muscles (as suggested by the simulations with the 6-muscle model). We revised the text accordingly and 
now refer to group of muscles instead of pairs of agonist/antagonist muscles when relevant. 
 
2. Muscle viscoelasticity varies with their activation, and the human nervous system (NS) can control 
muscles to shape the interaction with the environment, i.e. impedance control. This environment may 
involve stable or unstable dynamics, and contain noise. In the paper's current formulation, only internal 
motor noise is considered, not environmental noise. This should be corrected. 
Answer: It is true that we mostly focused on internal motor noise but the noise in the dynamics can also 
capture environmental noise. We corrected our formulation (in particular in the Author Summary and Lines 
41 and 57-58). 
 
3. Impedance control is shaped by muscle mechanics, stretch reflexes as well as long-delay reflexes, see 
[Franklin2007, Franklin2008]. Long-delay reflexes are missing in the corresponding description at lines 27-
31. Note that they still come naturally under feedforward motor commands as defined by the authors as 
"defined prior to movement execution". 
Answer: We modified the text according to the suggestion of the reviewer. We initially considered long-
delay reflexes separately in the Introduction because of our considerations of open-loop versus closed-loop 
control. However, at this point of the Introduction, it is not necessary to make this distinction. We adapted 
Lines 25-31. Note that we already mentioned Lines 54-55 for instance that feedback gains can be planned 
and contribute to the feedforward control of impedance, but the actual motor command (if one thinks of 
the descending signals to the motoneurons) cannot be exactly known in advance because their activation 
does require knowledge of the current system state (see Lines 55-56).  
 
4. Mechanical impedance is not just stiffness (see e.g. line 33), but can be expressed as corresponding to 
viscoelasticity. In fact several studies such as [Milner1993] have demonstrated the ability of the NS to adapt 
wrist viscosity (thus not just stiffness can be controlled, although stiffness and viscosity will co-vary). 
Answer: We agree with the reviewer. We just wanted to give an example there. To be more accurate, we 
now use the term “viscoelasticity” to illustrate the notion of mechanical impedance. See Abstract and 
Author Summary in particular, and Lines 267-269. 



 

 

 
5. To facilitate the reading, would suggest adding a figure 1 to describe the different setups corresponding 
to equations 1, 14-16, close to these equations and with the related parameters. 
Answer: We thank the reviewer for the suggestion. However, we believe that the model in Eq. 1 is very 
simplified and that an illustration would not be especially informative for the reader. The model in Eq. 16 
(Katayama & Kawato) is in contrast quite involved and we only briefly describe it in the text. To better 
understand the details of this model, we believe the reader should look at the paper of Katayama and 
Kawato where an illustration is provided together with full details about the notations. 
 
6. The proposed model can predict muscles activation of movements learned in various stable and unstable 
environments. Similarly, the model of [Franklin2008,Tee2010] can predict at least the experiments of 
figures 1,2,4,5. It is currently just mentioned at line 523, but i think a comparison with the new model 
should be provided. In my understanding: 
- The new model determines the trajectory, force and impedance corresponding to the learned behaviour 
of a limb with known kinematics and dynamics, in a known dynamical environment. 
- On the other hand, the model of [Franklin2008,Tee2010] can learn the force and impedance along a 
reference trajectory, and does not need a-priori knowledge of the plant and environment dynamics or 
kinematics. Note that while model is formulated in an ad-hoc way in [Franklin2008,Tee2010], it in fact 
corresponds to the gradient descent minimisation of error and effort as analysed in [Yang2011]. 
- I guess that the simulations of reaching forward movements with lateral instability, the conditions are 
different from the experiment [Burdet2001] and the simulations of [Franklin2008,Tee2010], where the 
external force drops when the hand deviates laterally more than x centimeters from the straight line (the 
experiment would be dangerous and tiring to carry out without this). This may explain the different 
terminal muscle activation in the simulations in Fig.4,5. 
Answer: We added more elements regarding the comparison with these previous models (see Lines 535-
545 in Discussion). For our simulations, indeed, we did not remove the divergent force field when the hand 
deviated more than x centimeters from the straight line. We performed simulations by implementing this 
force field removal and results were actually very similar to the ones presented in the paper.  
Actually, the muscle activations in these simulations seem to depend more on the cost function design. For 
instance, one may adjust the weight of the variance cost. One could also introduce a running variance cost 
etc., but we did not test extensively all these possible variants of modeling in the present paper. Finally, 
note that the depicted muscle activations also depend on the specific 6-muscle model under consideration 
in our study (other muscle models could yield different optimal muscle activations). 
 
7. As pointed out by the authors, the major difference of their model to SOC is that it is feedforward while 
SOC is "closed-loop". I would stress this difference even more by calling the SOC closed-loop control at 
every opportunity in the text. (also it would be possible to use SOC corresponding to the control 
community which invented it rather than SOFC used much later in the computational neuroscience 
community, and FSOC (i.e. feedforward SOC) could then be used instead of SOOC?) 
Answer: In this revision, we tried to emphasize the closed-loop aspect of SOC more systematically. We now 
use SOC instead of SOFC. Regarding the acronym of the proposed framework, we would prefer to keep 
using SOOC because we also used this term in a companion paper. Hence, for the sake of coherence, we 
believe it is better to have the same terminology.  
 
Minor suggestions: 
Answer: We thank the reviewer for all the suggestions provided below, which greatly improve the accuracy 
of our paper. 



 

 

 
Abstract 
While these approaches have yielded valuable insights about motor control, they typically fail explain a 
common phenomenon known as muscle co-contraction. Co-contraction of agonist and antagonist muscles 
contributes to modulate the mechanical impedance of the neuromusculoskeletal system (e.g. joint 
stiffness) and is thought to be mainly under the influence of descending signals from the brain. 
-> 
While these approaches have yielded valuable insights about motor control, they typically fail in explaining 
muscle co-contraction. Co-contraction of a group of muscles associated to a motor function (e.g. agonist 
and antagonist muscles spanning a joint) contributes to modulate the mechanical impedance of the 
neuromusculoskeletal system (e.g. joint viscoelasticity) and is thought to be mainly under the influence of 
descending signals from the brain. 
Answer: Changed. 
 
Optimal feedback (closed-loop) control, preprogramming feedback gains but requiring on-line state 
estimation processes through long-latency sensory feedback loops, 
-> 
Optimal closed-loop control, ... 
Answer: Changed. 
 
Author summary 
to explain the planning of force and impedance (e.g. stiffness) 
-> 
to explain the planning of force and impedance (e.g. viscoelasticity) 
Answer: Changed. 
 
A major outcome of this mathematical framework is the explanation of a long-known phenomenon called 
muscle co-contraction (i.e. the concurrent contraction of opposing muscles). 
-> 
A major outcome of this mathematical framework is the explanation of muscle co-contraction (i.e. the 
concurrent contraction of a group of muscles involved in a motor function). 
Answer: Changed. 
 
line 9 
On the other hand, stochastic optimal –feedback– control (SOC or SOFC) theory was developed to account 
for the 
-> 
On the other hand, stochastic optimal control (SOC) was used to account for the ... 
Answer: Changed. 
 
16 
The SOFC theory led to a number of valuable predictions among which the minimal intervention principle, 
stating that errors are corrected on-line only when they affect the goal of the task, is a significant outcome 
[9]. 
-> 
The SOC theory led to a number of valuable predictions among which the minimal intervention principle, 



 

 

stating that errors are corrected on-line only when they affect the goal of the task [9]. 
Answer: Changed. 
 
19 
However, these two prominent approaches have in common that they fail to simply account for a 
fundamental motor control strategy used by the central nervous system 
-> 
However, both of these approaches fail at accounting for a fundamental motor control strategy ... 
Answer: Changed. 
 
21 
co-contraction or co-activation of antagonist muscles 
-> 
co-contraction or co-activation of muscles groups 
Answer: Changed. 
 
27 
This effect does not only result from the summation of intrinsic stiffnesses of opposing muscles [20, 21] but 
also from nonlinear stretch reflex interaction [22, 23]. 
-> 
This effect results both from the summation of intrinsic stiffness of muscles around a common joint [20, 21] 
and reflexes [22,23,Franklin2007]. 
Answer: Changed. 
 
33 
First, co-contraction contributes to modulate the effective limb’s impedance (e.g. joint stiffness), 
-> 
... the effective limb’s impedance (e.g. joint viscoelasticity), 
Answer: Changed. 
 
48 
More fundamentally, an optimal feedback control scheme requires 
-> 
More fundamentally, a closed-loop optimal control scheme requires ... 
Answer: Changed. 
 
53 
This may seem to contrast with the feedforward nature of impedance and co-contraction control that has 
been stressed in several studies [16, 18, 34–36]. 
-> 
This may seem to contrast with the feedforward nature of impedance and co-contraction control 
[16,18,34,Franklin2013B] 
(xxx these papers present direct experimental evidence for the feedforward nature of impedance control) 
Answer: Changed. 
 
57 
As this ability may be limited in some cases (e.g. unstable task or too fast motion), co-contraction 



 

 

-> 
As this ability is limited in some cases (e.g. unpredictable interaction with the environment, unstable task or 
too fast motion), co-contraction 
Answer: Changed. 
 
82 
Although we use the term open-loop –in the sense of control theory–we do not necessarily exclude the role 
of automatic short-latency reflexes that contribute to the spring-like behavior of intact muscles beyond 
their short-range stiffness. 
-> 
... we do not necessarily exclude the role of reflexes that contribute to the spring-like behavior of intact 
muscles beyond their short-range stiffness. 
Answer: Changed. 
 
90 
Our working hypothesis is that both force and impedance are planned 
-> 
Our working hypothesis is that both force and mechanical impedance are planned 
Answer: Changed. 
 
93 
open-loop controls 
-> 
open-loop control 
Answer: Changed. 
 
128 
where R, Q and Qf are positive definite and positive semi-definite matrices with appropriate dimensions 
respectively. 
-> 
where R, Q are positive definite matrices and and Qf is a positive semi-definite matrix, all of appropriate 
dimensions. 
Answer: Changed (but note that Q and Qf were the positive semi-definite matrices). 
 
130 
it can be put out of the expectation 
-> 
it can be taken outside the expectation value integral 
Answer: Changed. “Because u(.) is a deterministic function by hypothesis, the related integral value can be 
taken outside the expectation operator”. 
 
145 
has a nonlinear dynamics 
-> 
has nonlinear dynamics 
Answer: Changed. 



 

 

 
152 
in agreement with the well-known minimum variance model 
-> 
in agreement with the minimum variance model 
Answer: Changed. 
 
173 
1st order Taylor approximations 
-> 
first order Taylor approximations 
Answer: Changed. 
 
lines 200 to 220: 
is it necessary to invoke Feldman (thus a physiological hypothesis) here, or would a linearisation do the 
same job 
Answer: If one linearizes a nonlinear system using standard methods, then one should obtain a linear 
system and not a nonlinear system like in Eq. 9. Actually, a “statistical linearization” is needed to capture 
the relevant nonlinear effects to exploit co-contraction and impedance. Eq. 9 is a nonlinear system that is 
necessary to have a control on the variance via impedance regulation. Invoking Feldman’s work is not 
strictly necessary at this point but it may be a good reference to interpret this model. We slightly adjusted 
the related sentence to improve our purpose. 
 
230 
To illustrate an enlightening point, let us focus on horizontal movements now. The system then simplifies 
as follows: 
-> 
Focusing on horizontal movements, the system then simplifies to: 
Answer: Changed. 
 
268 
A two degrees-of-freedom (dof) version of the arm with 6 muscles was also considered to simulate planar 
arm reaching movements, corresponding to the full model of [51]. 
-> 
A two degrees-of-freedom (dof) version of the arm with 6 muscles was also considered to simulate planar 
arm reaching movements. This is exactly the full model described in [51]. 
Answer: Changed. 
 
273 
C is the Coriolis/centripetal term 
-> 
C \dot{q} is the Coriolis/centripetal term 
Answer: Changed. 
 
276 
The net joint torque vector was a function 
->? 



 

 

The net joint torque vector is a function 
Answer: Changed. 
 
291 
In the seminal study of Hogan described above [46], 
-> 
In Hogan's study [46] described above, 
Answer: Changed. 
 
302: 
i) add: "where the parameters are defined by Eq.1." 
ii) what are the units of the parameters in this simulation? 
Answer: (i) Added. (ii) Units were indicated when relevant. Note that some parameters are dimensionless 
(T and K for instance). The matrices R and Q, Q_f are also dimensionless. Full details about the parameters 
of the simulations are now given in the caption of Figure 1. 
 
309 
in such an unstable posture 
-> 
in the unstable posture 
Answer: Changed. 
 
311 
(remind that we prevent feedback control) 
-> 
(remind that feedback control is prevented) 
 
314 
In the loaded case, the task instability is increased 
-> what does this mean? what would be the measure of stability? 
Answer: Changed. “In the loaded case, the destabilizing gravity torque is increased and optimal co-
contraction levels become larger to counteract it” 
 
Fig.1 
the lines are currently hardly visible. To increase the visibility, one could e.g. reduce the position range to 
e.g. [-3,3] and the velocity range to e.g. [-10,10], and indicate the standard deviation using e.g. a fine dotted 
line? 
Answer:  We improved Fig. 1 as suggested. 
 
348 
in order to model that co-contraction does not lead to increased variability 
-> 
in order to model that co-contraction does not lead to increased variability [Burdet2001] 
Answer: Changed 
 
Fig.2 For these simulations, why using different q_var values? could for example all simulations be done 
with q_var=5000 ? 



 

 

Answer: Yes, we can perform all the simulations with the same q_var. The Figure has been modified. 
 
362 
behavior of subjects described in [61] 
-> 
behavior of subjects in this experiment 
Answer: Changed. 
 
Fig.3, similar to Fig.1, could the visibility be improved? 
Answer: It is hard to better rescale the graphs here like in Fig. 1. However, we can increase the width of this 
Figure for better visibility. 
 
397 
Therefore, it was impossible for the subjects to predict 
-> 
Because the hand would start with random lateral deviation due to motor noise, it was not possible for the 
subjects to predict ... 
Answer: Changed 
 
404 
(e.g. participants kept co-contracting when the divergent force field was unexpectedly removed) [18, 65–
67]. 
-> 
[18, Franklin2003B,66] 
Answer: Changed. 
 
418 
there was a paper by Wolpert around 1996 showing how the visual feedback can lead to deforming the 
hand trajectory, which may back the use of a jerk term for this simulation 
Answer: We believe the reviewer refers to this paper “D. M. Wolpert, Z. Ghahramani, and M. I. Jordan, "Are 
arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.", Exp. Brain Res. 103, 3 
(1995), pp. 460—470”. We added this reference to justify the use of the jerk here. 
 
445 
We noticed this is actually a limit of the 6-muscle model used in these simulations, which does not allow 
arbitrary geometries for the endpoint stiffness in a given posture 
-> 
xxx note that the geometry of the 2 link model allows modifying the stiffness ellipse shape and orientation, 
see e.g. [Tee2010] 
similarly the difference to [Tee2010] could be mentioned in lines 450-460. 
Answer: We agree, which is why we insisted on the fact the “for this posture”. We modified the text to be 
more accurate. We also added a sentence to mention that other muscle models could yield stiffness 
ellipses elongated in the direction of instability. See Lines 455-465. 
 
462 
Finally, we revisit the minimum intervention principle [9]. This well-known principle is most simply 
illustrated in a pointing-to-a-line task as in [9, 69, 70]. 



 

 

-> 
Finally, we revisit the minimum intervention principle [9] as illustrated in a pointing-to-a-line task in [9, 69, 
70]. 
Answer: Changed 
 
502 
the consideration of open-loop controls 
-> 
the consideration of open-loop control, ... 
Answer: Changed 
 
516 
effort and energy-like criteria are often minimized in optimal control models which tends to prevent 
-> 
... which tend to prevent 
Answer: Changed. 
 
523 
Researchers have nevertheless attempted to explain co-contraction or its contribution to impedance in 
existing DOC or SOFC frameworks, but this was often an ad-hoc modeling [75,76]. 
-> 
xxx i believe this requires more discussion, and a comparison with this paper's results. To note, [75, 
Franklin2008] are formulated in an ad-hoc way, but the underlying mathematical principle is described in 
[Yang2011]. 
Answer: We added some sentences in the Discussion to better stress the main differences with these 
papers. See Lines 535-545. 
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Reviewer #2: This paper proposes a stochastic optimal open-loop control theory which enable to plan the 
movement and the stiffness of a biological system moved by antagonistic muscles. The core of the work is 
to show how such a model is able to easily exploit the use of co-contraction to account for task 
uncertainties/disturbances. 
 
The idea is very interesting, and the paper presents a novel contribution which is worth for consideration. 
However, I have several comments that I would ask the authors to consider as suggestions to improve their 
manuscript. 
 
The major drawback that I see in this work is related to the significant variability in the definition of cost 
functions to implement the approach in the different experimental conditions. I am pretty convinced that 
there could be a unique definition of a general problem definition/cost function able to “work” in all the 
conditions. This is also motivated by a biological counterpart; indeed it is pretty unlikely that the human 
motor control employ different feedforward strategies for different tasks, but rather I would expect an 
unifying framework (which is one of the main point of strength for the equilibrium point hypothesis). I think 
that this aspect is at least worth a discussion in the manuscript, together with a clarification on the 
particular choices in defining the optimisation problems. 
 
Answer: We thank the reviewer for his comments. We agree that it would be nice to have a single cost 
function to replicate all the experimental findings of the present paper. Actually, there is a general picture 
that emerges from the present paper since we always consider a trade-off between an “effort” term and a 
“variance” term (these terms are listed as critical ingredients to get co-contraction patterns, see Line 509-
512 as well as in the Abstract). However, the variety of models (e.g. choice of coordinates) and tasks under 
consideration makes it impossible to define a unique cost function throughout the whole study. For 
example, effort can be written differently depending on whether muscles are modeled or not, and variance 
can be expressed in joint space or Cartesian space etc. Our approach was rather to show the versatility of 
the SOOC framework to handle a variety of tasks and models. 
 
Additional comments are provided below, divided in major and minors. 
 
Majors: 
- In Fig. 1A, the plot of variance in position and velocity plots is not visible, maybe the authors could try with 
a different set of colors. 
Answer: This was also noted by Reviewer #1 and we have changed the scale to better visualize the graphs. 
- The description of Fig.1 is a bit confused, I would suggest naming the 4 subplots of subfig A (and the same 
for B) and refer to those labels in the caption in an ordered way. 
Answer: We improved the figure by adding labels and rewriting the text of the caption. 
- I would expect that, as soon as an equilibrium is reached, the parameters are maintained constant for the 
whole execution. In the simulations shown in Fig.1, instead, it seems that the optimal solution shows some 
oscillations in the last 0.5 seconds. Is there a modeling reason for this, or it is related to the optimization 
itself? I think this is a relevant aspect to discuss. 
Answer: The oscillations in the trajectory and control reflect both boundary conditions, the terminal cost 
and the finite motion duration. The initial change arises because the initial state of the plant is not optimal, 
and the control must move the system to a better state. The final changes rather come from the terminal 
cost Qf and the fact that we have a finite time horizon in our simulations. If we set Qf to zero for instance, 
the muscle torques would decrease to zero at the final time. If we extend the time horizon, the middle 



 

 

steady-state phase would extend as well. We added a few words about these considerations to help the 
reader (see Lines 321-325). 
 
- In section “Reaching task with the forearm” the authors refer to Fig. 2C to show the effect of trajectory-
time on the resulting stiffness. However, this is not completely clear in the figure. I guess the higher 
trajectory-time the lower overall torque, but explicitly indicating the time dependency of the stiffness 
would be beneficial. Moreover, it could be really interesting observing and comparing the whole optimal 
stiffness profile at different trajectory-time values (with a suitable time-scaling to enable the comparison). 
Answer: We initially reproduced this plot to compare to a Figure in ref [54]. We now also display the 
stiffness profiles for the different conditions for the sake of completeness. 
- Also, in the simulations of section “Reaching task with the forearm” I observe an oscillation in the optimal 
impedance at the beginning and at the end of the task, is there a “methodological” reason for this? I would 
expect instead a steady value (as shown in the reference [54] for humans) 
Answer: The results should rather be compared to reference [59] where time-varying stiffness profiles, 
quite similar to the depicted ones, were found. 
- Fig 4, the plot of velocities is not clear. Please report them in dedicated subfigures. Controls and Muscles 
Tensions subfigures are not explained in the caption. 
Answer: We apologize for the lack of clarity. The point is that the figure is relatively big and we have to save 
space (adding a new column of subplots would be make other plots less clear). Hence, we decided to add 
more information about the axes of the velocity profiles to clarify these subplots. Also, the controls and 
tensions subfigures are now better described in the caption. 
- I would include further discussions regarding the following points: 
o what happens if the stiffness cartesian matrix is not diagonal? 
Answer: To check this point, we performed new simulations by considering a general positive definite 
stiffness matrix instead of a diagonal one, and the results were the same than those presented in the 
paper. We modified the text accordingly because the “diagonal” matrix assumption was not necessary.  
o what happens if there is an unpredicted interaction with the environment (e.g. a contact with the 
environment, thus a force in a specific direction)? 
Answer: Contact with the environment can be considered and noise can model some degree of uncertainty 
about the external force applied by the environment onto the human system. The case of a totally 
unpredictable interaction with the environment (e.g. no contact force at all or significant contact force on 
successive trials) would require a different modeling because such an uncertainty cannot be modeled as a 
Brownian motion (it is rather a structural uncertainty in the dynamics). However, we keep this type of issue 
for future work.  
o Does this approach scale well with the dimensionality of the problem? E.g. is it possible to generalize to 
full upper limb models? 
Answer: Our approach scales relatively well with the dimensionality of the problem (compared to classical 
SOC) but the state augmentation resulting from the inclusion of the covariance matrix as a part of the state 
vector may increase the dimensionality of the problem. For a 7-dof arm and a torque control case for 
instance, the mean part of the augmented state would be of dimension n=14 (position+velocity) and the 
covariance part would be of dimension (n*(n+1)/2)=105… Hence the total dimension of the state in the 
optimal control problem would be 119. With existing optimal control software, this may be something that 
could be handled numerically as nonlinear programming softwares can handle optimization in large spaces. 
In any case, this should still be much faster than trying to fully resolve a SOC problem in dimension 14 using 
the HJB formalism for example. 
o is it possible to model dual arm constraints (e.g. executing a task while holding an object)? 



 

 

Answer: The method applies to any system or problem that can be modeled as a controlled Ito stochastic 
differential equation with costs and constraints on the mean and covariance of the stochastic state process. 
This is quite general. Hence, it should be relevant to handle constraints like those needed to model holding 
an object while executing a task. 
 
Minors and Typos: 
- In abstract: “fail to explain” 
Answer: Corrected. 
- In abstract, the sentence “Optimal feedback (closed loop) control, preprogramming feedback gains but 
requiring on-line state estimation processes through long-latency sensory feedback loops, may then 
complement this nominal feedforward motor command to fully determine the limb’s mechanical 
impedance.” Is too long, I would suggest to rephrase by splitting in two. 
Answer: Corrected according to the advice of Reviewer #1 
- In caption of Fig. 1A, “corresponding individual muscle torques are depicted below (black for the flexor 
activation and gray for the extensor activation)” shouldn’t be filled and dashed line instead? 
Answer: We apologize for the confused caption. The reviewer is correct. We clarified the text in this caption 
as suggested above. 
- Line 210 --- kd = sqrt(iks)? Is not 1/2 
Answer: We used the definition of the damping ratio as (actual damping)/(critical damping). Here, the 
critical damping was 2*sqrt(iks), hence the 1/2 result.  
- Line 225 --- Weight factors α, β and qvar can be chosen to adjust the optimal behavior of the system. How 
do you select these parameters? 
Answer: This is true that the design of the cost function will affect the optimal solution. This is typical of the 
optimal control framework more generally. Here these factors have the following meaning. The factor α is 
the weight of ‘co-contraction’ in the effort term (with respect to the cost of net torque) and qvar is the 
overall weight of the variance term. The role of β is perhaps more minor as it is only used to dissociate the 
position-related variance and the speed-related variance in the state vector. We renamed β as qv to have a 
better notation and because beta is used also in the paper to set the magnitude of the divergent force field. 
Note that in our simulations, we did not try to carefully adjust these weights (for instance we just took α=1, 
but we tried to select a variance weight such that the magnitude of the predicted stiffness was comparable 
to experimental data (as a rule of thumb, a small qvar would lead to low stiffness –zero in the limit– while a 
large qvar would lead to high stiffness). As our model is based on a compromise between effort and 
variance, at least one parameter must be adjusted to determine the optimal behavior (e.g. increase effort 
to reduce variance or the other way around). 
- Eq 26 should be followed by a comma and not a dot 
Answer: Thanks. Corrected. 
 
  



 

 

Reviewer #3: In the article, the authors use an Optimal Control framework to develop multiple models in 
different state-spaces (muscle level and joint level) to show that the optimal control principles can be used 
to explain the co-contraction in human movements. This is an important attempt, as the modelling of co-
contraction has not been done in this framework before, and the simulation results have replicated 
multiple experimental results. 
Although this is a very interesting approach I have several concerns. 
 
Major. 
The key idea in the joint level model is that there is a reference trajectory, which is controlled by joint 
torque, and the deviation from this trajectory, which is controlled by the co-contraction. The two parts are 
separable. In other words, there is the part of the model that deal with the trajectory planning, which is not 
new when it comes to modelling. This planned trajectory is subjected to system noise, and therefore there 
is another, one-input controller, where the only control input is stiffness. Is this then a non-trivial result, 
that such model predicts stiffness control? Would the results still hold, if the control was dependent on the 
torque too? 
Answer: This joint-level model is used for the purpose of illustrating how stiffness control may arise in the 
proposed framework and for illustrating this theoretical uncoupling of net torque control and stiffness 
control. However, in more general cases (e.g. a planar 2-dof arm or a 1-dof arm with gravity torque), this 
result would not hold. However, the same theoretical derivation can still be applied. This was said Line 228 
and Lines 243-246. 
 
Inferring from Fig. 1, numerically the state x and control u are of the similar order of magnitude. However, 
the selected costs for that model Q and R differ by 3 or 4 orders of magnitude (line 303). This would mean 
that the effect of activation cost is small compared to the state dependent costs, suggesting that the co-
contraction is energetically cheap, which is not the case in humans. Is this correct? What is the relative 
weighting of these costs? How sensitive are the results to this cost? Normally, the cost parameters are 
selected so that the effects of the separate modalities are comparable, otherwise why have it as a cost in 
the first place? 
Answer: In Figure 1, we plotted angles in degrees but in the mathematical model they would be expressed 
in radians. Hence the order of magnitude is not really similar (x has values much smaller than u actually; 
typically, x is <0.05 radian while u>1 Nm). Given that these values are squared and integrated over time, 
this means that there are several orders of magnitude of difference between the variance magnitude and 
the effort magnitude. Hence, the weights for R and Q which are indeed adapted to make the two cost 
components (effort and variance) of comparable magnitude. Regarding the sensitivity of the results with 
respect to the weights of the cost, this is not very sensitive when the weights are similar orders of 
magnitude. A fine-tuning of the weights was not needed in these simulations. 
 
Specific. 
The joint-level model description considers the model as open-loop. However, the behaviour contains the 
corrections from the reference trajectory, which is clearly feedback control. The authors should clarify what 
they mean by open loop in this case? 
Answer: We mean that the control is open-loop here because both the net torque and stiffness are 
specified prior to movement execution as functions of time [tau(t) and kappa(t)]. From a control theory 
terminology this is therefore “open-loop” and there is no feedback at all (i.e. we do not need to estimate 
the system’s state during execution to correct deviations from the reference trajectory). This is possible 
because we model the viscoelastic (or spring-like) properties of the muscles (hence this is possible just like 
a spring can “correct” a deviation without position sensor). From a biological perspective, this means that 



 

 

the system should be at least able to modify its intrinsic impedance in a feedforward manner (which we 
assume is in part the role of co-contraction). 
 
Joint level modelling is clearly described and easy to follow. However, the muscle level modelling lacks 
clarity in definition. Authors provide the equations for the mechanical model behaviour, but the 
implementation of the controller (at least to me) is unclear and not nearly at the level of the joint level 
model. 
Answer: The model was described more briefly because it was taken from another paper (Katayama and 
Kawato’s paper). We added a few sentences to stress the important points in this model but refer the 
reader to the original paper by Katayama and Kawato for full details. See Lines 267-269. 
 
I understand that it is probably beyond the scope of the paper, but I would like to see (at least the 
discussion) of how such model would extend to the case where the feedback control is available. Would co-
contraction still be present? 
Answer: This is a very good point and we would like to investigate this aspect in the future. The easy way 
that we mention in the paper would be to use SOOC and then perform feedback control on the top of this 
nominal feedforward command. However, this method is sequential, meaning that the level of co-
contraction cannot depend on whether feedback control would not be a more efficient strategy. Actually, 
merging the SOOC and SOC approaches in a unique framework considering both control modes at once 
(and modeling sensory delays for instance) would to be an interesting problem for future work. 
 
The 6-muscle model is unable to learn to increase the endpoint stiffness only in the direction of the 
instability (Figure 5A). However previous muscle-based models have shown that this is possible when 
considering costs of stability, accuracy and metabolic cost (Franklin et al., J Neuroscience, 2008; Tee et al., 
Biological Cybernetics, 2010; Kadiallah et al., PLoS ONE, 2012). Is this because of the specific parameters of 
the muscle/joint model that was used, or specific to the newly developed SOOC model. Could this result 
from the extreme low cost of co-contraction such that learning the specific endpoint impedance is not 
necessary/optimal? 
Answer: It is likely that other muscle models may have been used to change the shape of the stiffness ellipse 

(as mentioned in the referred works). Here we used the model of Katayama and Kawato (with exactly their 

parameters). When checking all the possible orientations of the stiffness ellipse in the considered posture, 

we could not find any muscle activation vector that would make the ellipse horizontal (but note that this was 

possible for other arm postures). We added a few more words on this issue (Lines 450-460). Finally, please 

note that co-contraction is always a costly strategy in our models, and it is not negligible compared to the 

variance cost (thanks to the weights in the cost function). 


