SUPPLEMENTAL INFORMATION

TABLE 1

∆sarA	Staphylococcus aureus, Streptococcus dysgalactiae, Pseudomonas aeruginosa, E. coli, non-haemolytic rough, Staphylococcus hyicus ss hyicus, Proteus vulgaris, Enterococcus faecalis, Lysinibacillus sp., Bacillus sp.
USA 300	Staphylococcus aureus, Staphylococcus hyicus ss hyicus, Enterococcus faecalis, Klebsiella oxytoca, E. coli, non-haemolytic rough, Proteus vulgaris, Proteus mirabilis
∆rexB	Staphylococcus aureus, Streptococcus dysgalactiae, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella oxytoca, Staphylococcus hyicus ss chromogenes, Pseudomonas aeruginosa

SUPPLEMENTAL METHODS

Characterization of Polymicrobial Wound Infection

Characterization of polymicrobial wound infection was done as previously described with minor modifications¹. The minced wound tissue samples were inoculated on TSA II (Becton Dickinson, NJ) with 5% sheep blood agar and on MacConkey agar (Becton Dickinson, NJ) and incubated at 37°C aerobically as well as on TSA II with 5% sheep blood agar with a nurse Staphylococcus aureus streak and Chocolate II (Becton Dickinson, NJ) with hemoglobin, IsoVitalex agar and incubated at 37°C in a 10% CO2 incubator. Growth was checked daily for three days. Bacterial colonies were set on MALDI-TOF[™] (Bruker, MA) for identification.

Laser Capture Microdissection

Laser capture microdissection of the granulation tissue of the engineered human scaffolds was done as previously described².

Preparation of Human Engineered Skin

Human engineered skin were prepared as described previously³

SUPPLEMENTAL FIGURE LEGENDS

Figure S1: Bacterial biofilm of $\triangle sarA$, USA300 & $\triangle rexB$ were developed on polycarbonate membrane. **A**, Digital photographs of the biofilm by the mutants and wild type strains of bacteria on polycarbonate membrane discs (left) along with its inverted images (right). Scale = 10mm. **B**, representative confocal Z stack images of the biofilms of $\triangle sarA$, USA300 & $\triangle rexB$ developed on polycarbonate membrane indicating the thickness of biofilm. The red arrow indicates the horizontal plane and the blue arrow indicates the vertical plane. **C**, bar diagram representing the intensity of the *in vitro* biofilms as calculated from the digital inverted photos. Data are mean±SEM (n=4), *p<0.05 compared to $\triangle sarA$. **D**, bar diagram indicates the average thickness of the biofilms developed on PCM membrane, as quantified from confocal images. *p<0.05 compared to $\triangle sarA$. **E**, the representative growth curve of the wild type and the mutant strains of *S.aureus*.

Fig S3. Hyper-biofilm infection by S. *aureus USA::* Δ *rexB* in murine wounds severely compromises tensile strength of the repaired skin. Two 8 x 16-mm full-thickness excisional wounds were made on the dorsal skin of C57BL/6 mice. Each of the two wounds was topically infected with isogenic strains of S. *aureus* USA300, USA300::*rexB* (Δ *rexB*) or USA300::*sarA* (Δ *sarA*). **A**, miR-143 expression in the healed skin measured on d5 post-wound closure (d21). **B**, Granulation tissue collagen content was determined in the repaired skin measured on d5 post-wound closure (d21) using hydroxyproline assay. **C-E**, Collagen 1 protein and mRNA expression in the repaired skin measured on d5 post-wound closure (d21). **F-G**, MMP2 expression in the repaired skin measured on d5 post-wound closure (d21). **H**, Tensile strength of the healed wounds was measured in the repaired skin measured on d5 post-wound closure (d21). Data are mean±SEM (n=3-7), *p<0.05 compared to Δ *sarA*. Scale bar = 30µm.

Figure S5. Bar diagram represents the bacterial collagenase activity measured on day 35 from the porcine burn wounds inoculated with $\triangle sarA$, USA300 & $\triangle rexB$. Data are mean±SEM (n=6).

Fig S6. Hyper-biofilm infection by S. *aureus USA::* $\Delta rexB$ in human engineered skin compromises miR-143 expression and attenuates Collagen 1 protein. Human engineered skin was subjected to treatment with conditioned media obtained from the 3 isogenic mutant strains of *Staphylococcus aureus* $\Delta sarA$, USA300 & $\Delta rexB$ for 72h A, miR-143 expression in the laser-captured dermal component of the human engineered skin was measured using RT-PCR. B, Collagen content of the human engineered skin was determined using hydroxyproline assay. C-D, Collagen 1 protein expression, Data are mean±SEM (n=3-6). **p*<0.05 compared to $\Delta sarA$. Scale bar = 30µm. D-E, MMP2 protein expression. Data are mean±SEM (n=3-6). **p*<0.05 compared to $\Delta sarA$.

REFERENCES

- Ganesh K, Das A, Dixith S, et al. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing *Annals of Surgery* 2017; in press.
- Shapiro JP, Biswas S, Merchant AS, et al. A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry. *J Proteomics* 2012; 77:433-40.
- Ebersole GC, Anderson PM, Powell HM. Epidermal differentiation governs engineered skin biomechanics. *J Biomech* 2010; 43(16):3183-90.

Figure S3

