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S1.1 Maximum-entropy methods with equality constraints

In this Section, we will review maximum-entropy models with equality constraints [33], which rely on
the hypothesis that the experimental data provide exact estimates for the correlation and polarization.
In particular, here we assume that the nominal cell positions at different times are all different, i.e., all
directions of motion si (t) are well defined. Details on the derivation are discussed in Section S1.2, where
we present the extension to inequality constraints.

We denote the exact experimental estimate for the correlation and polarization by

〈C(S)〉 � Cex (S1)
〈M (S)〉 � Mex (S2)

where 〈〉 is the average over a set of temporal snapshots of the population, and we estimate the minimal
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probability distribution of the velocities with the ME principle given by Eqs. (4), (5) (6)

max
P

S[P] (S3)

subject to
〈C(S)〉P � Cex (S4)
〈M (S)〉P � Mex (S5)∫

dSP(S) � 1 (S6)

where the entropy S is given by Eq. (3) and the observable x by the directions of motion S. In the
equations above,

∫
dS ≡

∫
ds1 · · · dsN denotes the integral over the directions si given by Eq. (8), where∫

dsi ≡
∫ 2π
0 dθi and 〈·〉P ≡

∫
dSP(S)· is the average with respect to the model distribution P. The

solution of the optimization problem (S3)-(S6) is given by Eq. (12), where the partition function reads

Z �

∫
dS exp {N[JC(S) +H ·M (S)]} (S7)

The average correlation and polarization can be obtained explicitly for any given J andH . Setting

κ± ≡

√
±2J

N − 1
(S8)

for J > 0, the result is

〈C(S)〉P � −
1

N − 1
+

(N − 1) |H |2

4N J2
(S9)

+

∫
∞

0
rdre−NS+ (r)
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√
2Jr)r

√
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√
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(√
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r |H |
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(√
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r |H |
)

(N − 1)r |H |
N (2J)3/2

]
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∞
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r |H |
)

〈M (S)〉P � −
(N − 1)H

2N J
+

∫
∞

0
rdre−NS+ (r) (N − 1)rH

N
√
2J |H |
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∫
∞
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(√
N − 1
κ+

r |H |
) (S10)

where
S+(r) ≡

N − 1
2N

r2 − log[I0(
√

N − 1κ+r)] (S11)

.



and In is the modified Bessel function of the first kind [34].

For J < 0, we obtain

〈C(S)〉P � −
1

N − 1
+

(N − 1) |H |2

4N J2
(S12)

+
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∞
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) (S13)

where
S−(r) ≡

N − 1
2N

r2 − log[J0(
√

N − 1κ−r)] (S14)

and Jn is the Bessel function of the first kind.

Finally, for J � 0 the velocities behave as independent variables, and the correlation factors out as a
product of polarizations:

〈C(S)〉P � |〈M (S)〉P |2 (S15)

〈M (S)〉P �
I1(|H |)H
I0(|H |) |H |

(S16)

S1.2 Maximum-entropy methods with bound constraints

In this Section we discuss maximum-entropy models with bound constraints [21, 22], which apply to a
more general scenario where the experimental data do not provide exact values for the correlation and
polarization, but their lower and upper bounds

Cmin
ex ≤ 〈C(S)〉 ≤ Cmax

ex (S17)
Mmin

ex ≤ 〈M (S)〉 ≤ Mmax
ex (S18)

We construct theminimal probability distribution of the velocities with themaximum-entropy principle

max
P

S[P] (S19)

subject to
Cmin
ex ≤ 〈C(S)〉P ≤ Cmax

ex (S20)
Mmin

ex ≤ 〈M (S)〉P ≤Mmax
ex (S21)∫

dSP(S) � 1 (S22)

The optimization problem (S19)-(S22) involves both equality and inequality constraints, and can be
solved by means of the KKT conditions [24, 25]. To achieve this, we introduce the auxiliary function

L ≡ S[P] − N
[
J−(Cmin

ex − 〈C(S)〉P ) + J+(〈C(S)〉P − Cmax
ex )

+H− · (Mmin
ex − 〈M (S)〉P ) +H+ · (〈M (S)〉P −Mmax

ex ) + ν
(∫

dSP(S) − 1
) ] (S23)



0 �
∂L

∂P(S)
� − logP(S) − 1 − N[JC(S) +H ·M (S) + ν] (S24)

where we have set

J ≡ J+ − J− (S25)
H ≡ H+ −H− (S26)

In addition, the optimum must satisfy the primal-feasibility conditions (S20), (S21) and (S22), the dual-
feasibility conditions

J± ≥ 0,
H±

α ≥ 0, α � x , y
(S27)

and the complementary-slackness conditions

±J±[〈C(S)〉P − Cmax(min)
ex ] � 0,

±H±

α [〈Mα (S)〉P −Mmax(min)
α ] � 0

(S28)

where, in what follows, the identities that contain a ± sign denote two distinct equations, one for each
value of the sign, and the index α runs over the two vector components. By solving Eq. (S24) for P
and using the normalization condition (S22), we obtain the explicit form (12) for the distribution of
normalized velocities, where the partition function is given by Eq. (S7).

S1.2.1 Partition function

We will now compute the partition function, so as to obtain an explicit expression for the averages 〈〉P
that appear in the KKT conditions. First, we rewrite Z as a function of the sum of the directions ofmotion
as

Z � exp
(
−

N J
N − 1

) ∫
dS

∏
α

exp
[

J
N − 1

(∑
i

si α

)2
+ Hα

∑
i

si α

]
(S29)

Let us consider the case J > 0 first, and rewrite the square in the exponential of Eq. (S29) in terms of
a Gaussian integral [35]

Z � exp
(
−

N J
N − 1

) ∫
dx
2π

exp
[
−

1
2

(
x −

H

κ+

)2]
[ f (x)]N (S30)

where x � (x1 , x2), κ± is given by Eq. (S8), we set

f (x) ≡
∫ 2π

0
dθ exp[κ+(x1 cos θ + x2 sin θ)] � 2πI0(κ+ |x|) (S31)

where J±, H± and ν are the Lagrange multipliers related to the inequality constraints (S20) and (S21)
and to the equality constraint (S22), respectively. Note that we defined the multipliers by including the
additional factor N in such a way that these are of order unity for large N . The KKT conditions are given
by the stationarity condition for the auxiliary function



and In is themodified Bessel function of the first kind [34]. By using polar coordinatesx � r(cosφ, sinφ)
in the integral in Eq. (S30), we obtain

Z �
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N J
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−
|H |2
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∞
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(S32)

where we have defined S+ according to Eq. (S11), and in the second line we rewrote the integral with
respect to φ in terms of I0, cf. Eq. (S31). In Eq. (S32), we have reduced the partition function to a
simple, one-dimensional integral that can be evaluated with arbitrary precision. In addition, the average
correlation and polarization can be obtained from (S32) by taking its derivatives with respect to the
Lagrange multipliers

〈C(S)〉P �
1
N
∂ logZ
∂J

(S33)

〈M (S)〉P �
1
N
∂ logZ
∂H

(S34)

and the result is given by Eqs. (S9) and (S10).

Proceeding along the same lines for J < 0, we obtain Eqs. (S12) and (S13), where S− is given by Eq.
(S14), and Jn is the Bessel function of the first kind [3 ]. Finally, we consider the case J � 0, for which the
directions si in P(S) behave as independent variables, and the average correlation and polarization are
given by Eqs. (S15) and (S16).

Overall, Eqs. (S9), (S10), (S12), (S13), (S15) and (S16) yield the average correlation and polarization
for any value of the KKT multipliers, thus allowing us to solve the KKT conditions. In particular, the
solution above for the average correlation and polarization is exact for any value of N , thus allowing us
to study both small and large cell populations.

S1.2.2 Solution of Karush-Kuhn-Tucker conditions and algorithmic implementation

Hereafter we describe the strategy used to solve the KKT conditions. According to Eq. (S28), the KKT
multipliers are nonnegative: It follows that for any pair of maximal and minimal bound constraints, e.g.,
Eq. (S20), the complementary-slackness conditions (S28) imply three possible cases:

• J+ > 0, J− � 0, thus Eq. (S28) implies 〈C(S)〉P � Cmax
ex ,

• J+ � 0, J− > 0, thus 〈C(S)〉P � Cmin
ex ,

• J+ � J− � 0,

where the case J+ > 0, J− > 0 would imply 〈C(S)〉P � Cmax
ex � Cmin

ex , and is ruled out because we assume
that Cmax

ex > Cmin
ex , and similarly for the other constraints. In the three cases above, each multiplier J+, J−

may be either equal to zero or positive, and in the latter case themultiplier is determined by the condition
〈C(S)〉P � Cmax

ex or 〈C(S)〉P � Cmin
ex . As a result, each case uniquely determines both multipliers.
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In order to solve the full KKT conditions, we considered the three cases above for each of the three
pairs of maximal and minimal bound constraints, cf. Eqs. (S20) and (S21), and obtained a total of
twenty-seven cases. We solved the KKT conditions for the multipliers in each of these cases as discussed
above, and checked whether the solution satisfies the complementary-slackness conditions (S28) and the
primal-feasibility conditions (S20) and (S21).

First, the fulfillment of the equality conditions (S28) is assessed as follows. For each nonzero mul-
tiplier, there is an equality condition that needs to be satisfied. For example, if J+ > 0, J− � 0 and
H+ � H− � 0, the only equality condition is 〈C(S)〉P � Cmax

ex . We thus introduce the relative residual
associated with this condition

∆eq �

�����
〈C(S)〉P − Cmax

ex
Cmax
ex

�����
(S35)

If there are multiple equality conditions, ∆eq is defined as the maximum over the residuals of all equality
conditions. Second, the fulfillment of the inequality conditions (S20) and (S21) is assessed by introducing
the residual

∆ineq � min
{
〈C(S)〉P − Cmin

ex
|Cmin

ex |
,

Cmax
ex − 〈C(S)〉P
|Cmax

ex |
, · · ·

}
(S36)

where the first two terms in braces are the relative residuals of Eq. (S20), and · · · incorporates the analog
for Eqs. (S21). If, for a given case under consideration, ∆eq � 0 and ∆ineq ≥ 0 within numerical precision,
then the equality and inequality conditions (S28), (S20) and (S21) are satisfied, and we consider the case
as admissible.

Finally, the solution of the ME problem is given by the admissible case with the largest entropy, see
Figs. 4, 5 and 6.

In this Section, we present the Figures relative to the test of the maximum-entropy method with bound
constraints for the XY and self-propelled model, discussed in Section 2.3.

Section S2  Tests of ME method with bound constraints .
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(A), (B) and (C) we set Hx � Hy � 0 and show the inferred parameters Jinf, Hinf as functions of J. In (D), (E) and
(F) we set J � 2, Hy � 0 and show the inferred parameters as function of Hx . The mean and standard deviation of
the inferred parameters are represented by circles and error bars, respectively, and solid lines represent the original
values of J and H used in the simulation.

Fig. S1. Test of ME method with bound constraints on synthetic data for the XY model. In
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Simulations for the self-propelled model were carried on with T � 100 samples, and for different choices
of the parameters α and γ, with β � 0.8, T0 � 50, nc � 9, ra � 10, rb � 1, re � 1.5 and r0 � 20. In addition, we
set hx � −hy � 1/

√
2, i.e., the field points in the direction −π/4. For each parameter configuration, we repeat the

simulation Q � 100 times. For each realization we evaluate averages, correlations and the related bounds, which
are then used as input for the maximum-entropy method with bound constraints. We thus obtain Q estimates of
the inferred parameters Jinf, Hinf whose mean values (symbols) and standard deviations (error bars) are depicted.
Results obtained with γ � 0 and varying α are shown in (A), (B), and (C), while those obtained with α � 1.2 and
varying γ are shown in (D), (E) and (F). The black solid lines give the best linear fit, i.e., y � 0 in (B) and (C), y � 0.3 x
in (E) and (F). Notice that, as the size N is varied, the width of the area where particles are placed at the beginning
of the simulation is modified in such a way that the initial particle density remains equal to 10−4.

 Fig. S2. Test of ME method with bound constraints on synthetic data for the SP model. 
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the self-propelled model, we rounded off the particle coordinates within a pixel size σ, chosen to emulate the
positional uncertainty in the experiments. The resulting x and y components of the connected correlation function
〈CM〉 − 〈C〉〈M〉 between the motional correlation C and the polarization M are shown (red), where each point
corresponds to a different simulation. Because of the uncertainty resulting from the pixel size σ, the connected
correlation above varies within a confidence interval, and the values shown have been obtained as themean between
the lowest and upper bound of the interval. The connected correlation above predicted by the maximum-entropy
method with bound constraints (black) is also shown, where each point corresponds to a different simulation.

In this Section, we present the visual comparison between tracks of the wound-healing and dendritic-cell
experiment, Fig. S4, discussed in Section 2.4.1.

Section S3  Visual comparison between experiments .

Fig. S3. Consistency test of ME method with bound constraints. Given a simulation for
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cell trajectories for the wound-healing experiment, see Fig. 2B for details. (B) Tracked cell trajectories for zone 2 in
the dendritic-cell experiment, see Fig. 3B for details. In (A), only a fraction of the tracking area of Fig. 2B is shown,
so as to obtain an area with the same aspect ratio as in (B). Similarly, only a fraction of the tracks is shown in (A), so
as to display a number of tracks comparable to (B).

S4.1 Wound-Healing experiment

Here we focus on the wound-healing experiment, for which the number of cells is N � 1288.

First, we notice that the distribution of the related tracks in the observation window is not uniform:
Most tracks are found in the right side of the observation area, see Fig. 2A, and cells tend to move along
the horizontal direction, see Fig. 2C. This is confirmed by the scatter plots in Fig. S5: panel (A) contains
the scatter plot of vx i (t) versus vy i (t), for all t � 1, ..., Ti and i � 1, ...,N ; panel (B) contains the scatter
plot of vi (t) � |vi (t) | versus θi (t) for all i � 1, ...,N and t � 1, ..., Ti . From the former we see that positive
velocities along the x direction are more likely to occur than negative ones, and the latter indicates that
the density of data points is higher at θ ∼ 0.

Further, we investigate the presence of correlations among velocities and angles. To achieve this, we
consider the Pearson coefficient, which, for two time sequences f (i , t) and f ( j, t) is defined as

f̃i j �

∑
t[ f (i , t) − 〈 fi〉][ f ( j, t) − 〈 f j〉]√∑

t[ f (i , t) − 〈 fi〉]2
√∑

t[ f ( j, t) − 〈 f j〉]2
(S37)

where 〈 fi〉 �
∑

t f (i , t)/T′ and the sums run until t � T′ � min [T (i), T ( j)]. Further, in order to assess
time auto-correlations, we considered the auto-covariance correlation function, which, for the observable

Section S4  Analysis of motional data .

Fig. S4. Visual comparison between tracks of the wound-healing and dendritic cell experiment. (A) Tracked
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components vy vs. vx (A) and for the velocity norm v vs. the directional angle θ (B). For the sake of clarity, in both
panels only a 10% fraction of all available data points is shown. Second row: histograms for the pairwise correlation
coefficient between the x-component of the velocities (C), between the y-component of the velocities (D), between
the velocity magnitude (E), and between the angles (F). Third row: autocorrelation function for the x-component
of the velocity (G), the y-component of the velocity (H), the magnitude of the velocity (I), and the angle (J). The
outcomes of (a 10% fraction of) all cells are shown in different colors to give a visual representation of the variability
of the autocorrelation.

f (i , t) is defined as

f̂i (τ) �
∑

t[ f (i , t + τ) − 〈 fi〉][ f (i , t) − 〈 fi〉]∑
t[ f (i , t) − 〈 fi〉]2

(S38)

where the sums run unti t � T (i) − τ. As shown in Fig. S5C-F, pairwise correlations over the whole set
of cell couples display a positive skewness for all the observables considered and the related mean

( )
,

median (mdn( )) and standard deviation (std( )) turn out to be ṽx � 0.183 , mdn(ṽx ) � 0.103, std(ṽx ) =
0.225; ṽy � 0.088, mdn(ṽy ) � 0.034, std(ṽy ) � 0.160; ṽ � 0.139, mdn(ṽ) � 0.116, std(ṽ) � 0.202; θ̃ � 0.109
, mdn(θ̃) � 0.026 , std(θ̃) � 0.144. Also, the auto-covariance for vx and v tend to be positive at short
times, while the auto-covariance for vy and θ display basically no dependence on time and fluctuate
around zero, see Fig. S5G-J.

Next,we combine thedata fromall tracks and times, to study theprobabilitydistributionsof vx , vy and
v. The related mean, median and standard deviation are vx � 0.063 , mdn(vx ) � 0.060, std(vx ) � 0.112;
vy � −0.004, mdn(vy ) � −0.003, std(vy ) � 0.075; v � 0.123, mdn(v) � 0.107, std(v) � 0.080. The best
fits for their histograms are shown in Fig. S6: The best fit for the distribution of vx is given by a normal
distributionN (x; µ, σ) � e−(x−µ)2/(2σ2)/

√

2πσ2 with best-fit coefficient µ � 0.068±0.005 and σ � 0.12±0.01

Fig. S5. Statistics of motional data for the wound-healing experiment. First row: scatter plot for the velocity
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the x- and y-component of the velocity, panels (A) and (B), respectively, and for the magnitude v (C) in a semi-
logarithmic scale plot, with the related fit parameters. To highlight the symmetry of the distributions of vy , in (B) we
overlap the histogram for its absolute value |vy | to the positive branch of the original histogram; in fact, vy follows
an exponential distribution. Finally, vx is best fitted by a normal centered at a positive value, while the velocity
magnitude follows a log-normal distribution.

(panel A), while each branch of the histogram of vy it is given by an exponential distribution Exp(−λ)
with best-fit coefficient λ � 19±1 (panel B). The distribution of the modulus of the velocity is log-normal
LogN (x; µ, σ) � e−(ln x−µ)2/(2σ2)/

√

2πσ2x2 with best-fit coefficients µ � −2.22 ± 0.02 and σ � 0.65 ± 0.01
(panel C). It is worth stressing the qualitative different distributions of vx and vy , and the relatively fat
tail of the distribution of v.

S4.2 Dendritic-cell experiment

In what follows we focus on the dendritic-cell experiment, for which we perform the same analyses
discussed for the wound-healing experiment.

S4.2.1 Free environment (zone 1)

We consider tracks in zone 1, where the cytokine concentration is negligible. As a consequence, the
cellular motion is expected to be unbiased (see Fig. 3). This kind of analysis allows us to get a picture of
the migratory abilities of dendritic cells in free motion, i.e., in the absence of an external stimulus.

The overall number of tracks limited to zone 1 is N (1)
Low � 54 in the low-density regime and N (1)

High � 231

Fig. S6. Empirical distributions for cell velocities in the wound-healing experiment. Density histogram for



in the high-density regime.

First, in Fig. S7 we assess the existence of correlations between the velocity components: panel (A)
contains the scatter plot of vx i (t) versus vy i (t), for all i � 1, ...,N (1)

Low and t � 1, ..., Ti ; panel (B) contains
the scatter plot of vi (t) � |vi (t) | versus θi (t) for all i � 1, ...,N (1)

Low and t � 1, ..., Ti . In both cases, the data
display a uniform distribution, and analogous results are obtained for the high-density case.
As far as pairwise correlations are concerned, Fig. S7C-F shows that ṽx , ṽy , ṽ and θ̃ are all pretty symmet-
rically distributed around zero. The relatedmean, median and variance are ṽx � 0.003 , mdn(ṽx ) � 0.011,
std(ṽx ) = 0.202; ṽy � 0.001, mdn(ṽy ) � 0.009, std(ṽy ) � 0.202; ṽ � 0.151, mdn(ṽ) � 0.121, std(ṽ) � 0.255;
θ̃ � 0.008 , µ(θ̃) � 0.008 , std(θ̃) � 0.207. Also, the auto-covariance for all these observables (panels G-J)
display basically no dependence on time and fluctuate around zero.
These results are robust with respect to the density of dendritic cells—the same conclusions are drawn in
both the high- and low-density regimes—and suggest that we can look at tracks as Markov chains where
at each time step we extract randomly the two components of v (and similarly, in a polar system, for v
and θ). The indices of central position and dispersion are vx � 0.030 , mdn(vx ) � 0.045, std(vx ) � 1.807;
vy � 0.046, mdn(vy ) � 0.055, std(vy ) � 1.863; v � 2.132, mdn(v) � 1.848, std(v) � 1.480. The probability
distributions of velocities are shown in Fig. S8: the best fit for |vx | (panel A) and |vy | (panel B) is given
by an exponential distribution Exp(x; λ) � λe−λx for which a least-square fit yields compatible values
of lambda λ � 0.80 ± 0.04 for both components. The analogy of the behavior exhibited by the two
components corroborates that the motion is fully isotropic, as evidenced by the polar histogram for θ,
shown in Fig. 3C. As for the magnitude of the velocity (panel C), the best fitting function is provided
by a Gumbel distribution Gumbel(x; α, β) � 1

β e−z+e−z , where z � (x − α)/β, with best fitting parameters
α � 1.20 ± 0.04 and β � 1.4 ± 0.1. Overall, the distributions shown in Fig. S8 are short-tailed, and thus
expected to preserve the central-limit-theorem regularity in the large-sample limit.

S4.2.2 Perturbed environment (zone 2)

We consider tracks in zone 2, where the cytokine concentration is high. The overall number of tracks
limited to zone 2 is N (3)

Low � 75 in the low-density regime and N (3)
High � 157 in the high-density regime.

As a consequence of the cytokine gradient, the cellular motion is expected to be biased and, in fact, this
appears clear even by eye inspection (see Fig. 3). In particular, there is a bias along the x direction, see the
scatter plot for the velocity components vy versus vx in Fig. S9A. Also, it is clear from the scatter plots v
versus θ (panel B) that the longest steps are typically those along the positive horizontal direction (θ � 0).
The pairwise correlations (panels C-F) exhibit distributions that are less symmetric than those in zone
1: in particular, ṽx and ṽ display a positive skewness and, overall, the indices of central position turn
out to be ṽx � 0.107 , mdn(ṽx ) � 0.078, std(ṽx ) = 0.260; ṽy � 0.007, mdn(ṽy ) � 0.009, std(ṽy ) � 0.270;
ṽ � 0.217, mdn(ṽ) � 0.208, std(ṽ) � 0.345; θ̃ � 0.004 , mdn(θ̃) � 0.008 , std(θ̃) � 0.264. Further, the
auto-covariance functions for the velocity components, the velocity magnitude and the direction angle
are still fluctuating around zero with poor dependence on time (panels G-J).

These results are robust with respect to cell density, and suggest that the picture of the isotropic
random walk is no longer suitable to describe the motion in zone 2.

We now move to the analysis of the velocity distributions. We preliminary obtain vx � 0.898,
mdn(vx ) � 0.550, std(vx ) � 2.066; vy � −0.053, mdn(vy ) � −0.013, std(vy ) � 2.031; v � 2.390, mdn(v) �
1.922, std(v) � 1.868. The distributions of velocities and of angles in Fig. S10 show that, while vy is still
exponentially distributed with a mean value comparable to the one obtained in the free environment
(zone 1), vx is no longer symmetric around zero. Indeed, the distribution of vx is still exponential for
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ṽ

0

100

200

300

c
o

u
n

ts

-1 0 1

θ̃

0

100

200

300

400

c
o

u
n

ts

A B

C D E F

G H I J

the velocity components vy vs. vx (A) and for the velocity norm v vs. the directional angle θ (B). Second row:
histograms for the pairwise correlation coefficient between the x-component of the velocities (C), between the
y-component of the velocities (D), between the velocity magnitude (E), and between the angles (F). Third row:
autocorrelation function for the x-component of the velocity (G), the y-component of the velocity (h), the magnitude
of the velocity (I), and the angle (J). The outcomes of all cells (depicted in different colors) are all shown to give
a visual representation of the variability of the autocorrelation. For the sake of clarity in panels (A), (B) (G)-(J),
the data shown in this figure correspond to the low-density case, however, the high-density case yields analogous
results.

negative vx , while it appears to be half normal for positive vx . More precisely, the density histogram for
vx > 0 is fitted byN1/2(x; σ) �

√
2/(πσ2)e−x2/(2σ2) with best-fit coefficient σ � 2.48 ± 0.03. This implies a

broader dispersion for step lengths along the x-direction with large, positive steps getting more likely.
Moreover, the distribution of the magnitude of the velocity is now best-fitted by a half-normalN1/2(x; σ)
with best-fit coefficient σ � 3.0 ± 0.1, see Fig. S10E. Thus, even in zone 2 and unlike the wound-healing
experiment, the distributions for vx , vy and v are well-behaved distributions with short tails. This
indicates that in the wound-healing experiment relatively large fluctuations are present.

In this Section, we describe howwe estimated the uncertainty in the cell positions resulting from a finite
pixel size.

For either experiment, we chose the grayscale image of a single, representative tracked cell or cell

Section S5  Estimate of positional uncertainty .

Fig. S7. Statistics of motional data for zone 1 in the dendritic cell experiment. First row: scatter plot for
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for the x- and y-component of the velocity, panels (A) and (B), respectively, and for the magnitude v (C) in a semi-
logarithmic scale plot, with the related fits (black solid line). To highlight the symmetry of the distributions of vx and
vy , in panels (A) and (B) we show that the histogram for their absolute values |vx | and |vy | is nicely overlappedwith
the positive branch of the original histogram. Also, in order to corroborate the claim of an exponential distribution
with mean 1/0.40 � 2.5, in panel (C) we also show the histogram for the magnitude z of a two-dimensional vector
z whose components z1 , z2 are independent and identically distributed from the same exponential distribution
Exp(0.40): remarkably, the density histograms of z and v are nicely overlapped and well fitted by a Gumbel
distribution.

nucleus, for the dendritic-cell and wound-healing experiment, respectively, see Fig. S11A. We then
resampled the image as follows. For each pixel we consider its color intensity, C, and divide the pixel
into four equal subpixels. We draw randomly the intensities ci , i � 1, · · · , 4 in each subpixel according to
a multinomial distribution with event probability pi � 1/4, and a total number of trials equal to 4C. As a
result, the average of the intensities across the subpixels will equal the intensity of the original pixel, i.e.,
1/4

∑4
i�1 ci � C. By repeating this operation for all pixels in the original image, we produce a resampled

image, for which we compute the cell center r, see Fig. S11B.

By repeating the procedure above, we obtain a population of resampled images, and the fluctuations
of r across these samples reflect the uncertainty resulting from the finiteness of pixel size in the original
image. As a result, we interpret the standard deviation σ of each component of r across all samples as a
rough estimate of the uncertainty on the cell position resulting from the finite pixel size.

For both components, we obtain σ ∼ 0.15 µm and σ ∼ 0.07 µm for the cancer-cell and wound-healing
experiment, respectively.

Fig. S8. Empirical distributions for cell velocities for zone 1 in the dendritic cell experiment. Density histogram
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velocity components vy vs. vx (A) and for the velocity norm v vs. the directional angle θ (B). Second row: histograms
for thepairwise correlation coefficient between the x-component of the velocities (C), between the y-component of the
velocities (D), between the velocity magnitude (E), and between the angles (F). Third row: autocorrelation function
for the x-component of the velocity (G), the y-component of the velocity (H), the magnitude of the velocity (I), and
the angle (J). The outcomes of all cells (depicted in different colors) are all shown to give a visual representation of
the variability of the autocorrelation. For the sake of clarity in panels (A) and (B), the data shown corresponds in
this figure to the low-density case, however, the high-density case yields analogous results.

The nominal cell positions are then obtained by rounding off the cell coordinates to σ

ri (t) → σ
⌊
ri (t)
σ

⌋
(S39)

in such a way that all positions that differ by less than σ are assigned the same nominal position, see Fig.
1.

The cell positions obtained with (S39) are then used to compute the directions of motion according
to the velocity definition in Section 2.1 and Eq. (7), where some of these directions are, in general,
not defined because of the coarsening scheme described in (S39). The resulting empirical averages are
obtained with Eqs. (1), (9) and (10): for example, the average correlation reads

〈C(S)〉ex �
1

NpT

N∑
i< j�1

T∑
t�1

si (t) · s j (t) (S40)

We then let all ill-defined directions of motion si (t) which enter in the right-hand side of Eq. (S40) vary
between 0 and 2π, and compute the related interval in which 〈C(S)〉ex varies. The lower and upper

Fig. S9. Statistics of motional data for zone 2 in the dendritic cell experiment. First row: scatter plot for the
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histogram for the x- and y-component of the velocity, panels (A) and (B), respectively, and for the magnitude v
(C) in a semi-logarithmic scale plot, with the related fits (solid black line). To highlight the asymmetry and the
symmetry of the distributions of, respectively, vx and vy , in panels (A) and (B) we overlap the histogram for their
absolute values |vx | and |vy | to the positive branch of the original histogram. The comparison is fine only for vy
which follows an exponential distribution quantitatively consistent with the one obtained for zone 1. As for vx ,
the exponential distribution works only for the negative branch, with a mean value slightly smaller than the one
obtained in zone 1, while for the positive branch the best fit is given by a half-normal distribution. A half-normal
distribution is also found to best-fit the distribution for the velocity magnitude.

bounds of this interval are the values Cmin(max)
ex that we use in the MEb method, cf. Eq. (S17). The same

procedure is used to compute the bounds for each component of the polarization M . The resulting
numerical values for the lower and upper bounds for the wound-healing and dendritic-cell experiment
are shown in Tables S1 and S2, respectively.

Fig. S10. Empirical distributions for cell velocities for zone 2 in the dendritic cell experiment. Density



healing experiment, cf. Fig. 3A. (B) Two representative images obtained by resampling the image in (A), where for
each image the cross indicates the cell center (scale bar 5 µm).

〈C〉min 0.16
〈C〉max 0.49

〈M〉min (0.36 , -0.12)
〈M〉max (0.54 , 0.048)

bounds for the empirical averages of the correlation C and polarizationM .

Density High Low

Zone 1 2 1 2

〈C〉min -0.086 -0.018 -0.14 -0.027
〈C〉max 0.15 0.27 0.14 0.28

〈M〉min (-0.12 , 0.0025) (0.22 , -0.13) (0.036 , -0.098) (0.27 , -0.043 )
〈M〉max (0.0011 , 0.12) (0.37 , 0.023) (0.18 , 0.046) (0.43 , 0.12)

and low-density case and the high- and low-cytokine region, i.e., zones 1 and 2, respectively, are shown. For each
experimental instance, we show the lower and upper bounds for the empirical averages of the correlation C and
polarizationM .

Table S2. Confidence intervals for the empirical averages in the dendritic cell experiment. Results for the high-

Table S1. Confidence intervals for the empirical averages in the wound-healing experiment. Lower and upper

Fig. S11. Estimate of the positional error. (A) Original image of a representative cell nucleus in the wound-
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