Supporting Information

Pro-nifuroxazide Self-Assembly Leads to Triggerable Nanomedicine for Anti-Cancer Therapy

Santosh K. Misra,^{1,3}†¥ Zhe Wu,⁵† Fatemeh Ostadhossein,^{1,3} Mao Ye, ^{1,3} Kingsley Boateng,⁸ Klaus Schulten,^{2,5} Emad Tajkhorshid,^{2,6} and Dipanjan Pan^{1,2,3,4,7*}

¹Department of Bioengineering, University of Illinois at Urbana-Champaign, USA, 61801

²Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-

Champaign, Illinois, USA, 61801

³Mills Breast Cancer Institute, Carle Foundation Hospital, 502 N. Busey, Urbana, Illinois, USA, 61801

⁴Department of Materials Science and Engineering, University of Illinois-Urbana Champaign,

Illinois, USA, 61801

⁵Center for the Physics of Living Cells, Department of Physics, University of Illinois-Urbana

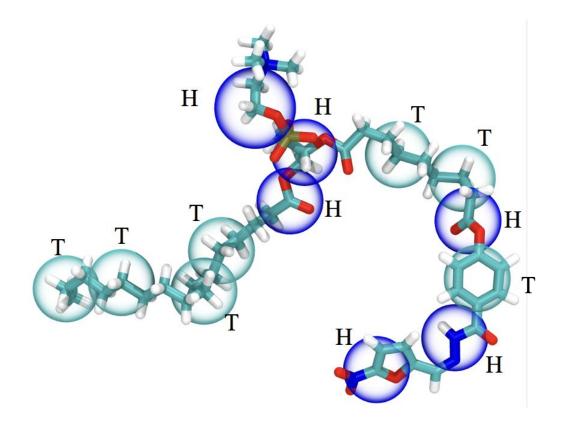
Champaign, Illinois, USA, 61801

⁶Department of Biochemistry, University of Illinois-Urbana Champaign, Illinois, USA, 61801

⁷Department of Materials Science and Engineering, University of Illinois-Urbana Champaign,

Illinois, USA, 61801

⁸Carl R. Woese Institute for Genomic Biology, University of Illinois-Urbana Champaign,


Illinois, USA, 61801

[†]Authors contributed equally to this work.

*Corresponding Author: dipanjan@illinois.edu

Content

Fig. S1. Mapping atomistic structure to a coarse-grained model of pro-nifuroxazide	S-3
Table S1. Coarse-grained model parameters for pro-nifuroxazide	S-4
Fig. S2. Stages of self-assembly DPD simulations	S-5
Fig. S3. Prodrug nanoparticle structures resulted from independent DPD simulations	S-6
Fig. S4. Chemical characterization of pro-nifuroxazide synthesized from nifuroxazide	S-7
Fig. S5. Characterizations of drug and nano-prodrug	S-8
Fig. S6 Stability of different formulations in various mediums	S-9
Fig. S7 Release kinetics of nifuroxazide from different nanoparticles	S-10
Fig. S8 Protein interaction properties of different nanoparticles	S-11
Fig. S9 Protein interaction efficiency by protein assay	S-12
Fig. S10. In vitro analysis of cancer cell growth regression as effect of prodrug	S-13
Fig. S11. In vitro analysis of cancer cell growth regression as effect of nano-prodrug	S-14
Fig. S12. Representative histogram of PI stained MCF-7 cells	S-15
Fig. S13. MTT assay performed on MCF-7 and MDA-MB231 using control nanoparticle	es S-16
Fig. S14. Representative H&E sections of tumors treated with buffer	S-17
Fig. S15. Representative H&E sections of tumors treated with nano-prodrug	S-18
Fig. S16. Representative immune-labelled cross sections of tumors treated with buffer	S-19
Fig. S17. Representative immune-labelled sections of tumors treated with nano-prodrug	S-20
Parameters and system setup in calculation of membrane-prodrug interaction	S-21

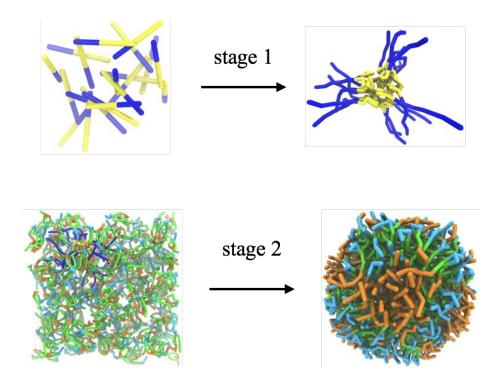
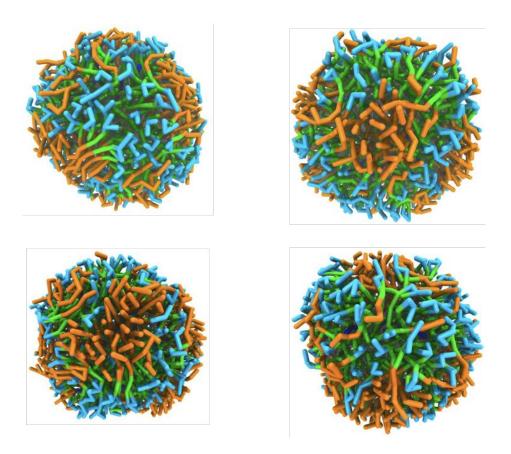


Figure S1. Mapping from atomistic structure to a coarse-grained DPD model of pronifuroxazide. Coarse-grained particle types are labeled by letters.


Table S1. Coarse-grained model parameters for pro-nifuroxazide and polyethylene glycol cetyl ether

	Н	Т	W	
Н	25	50	35	
Т	50	25	75	
W	35	75	25	

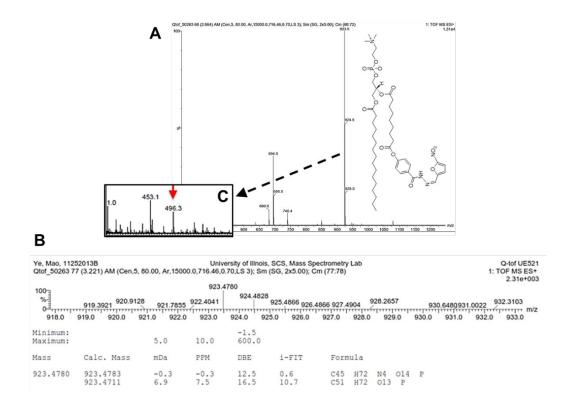
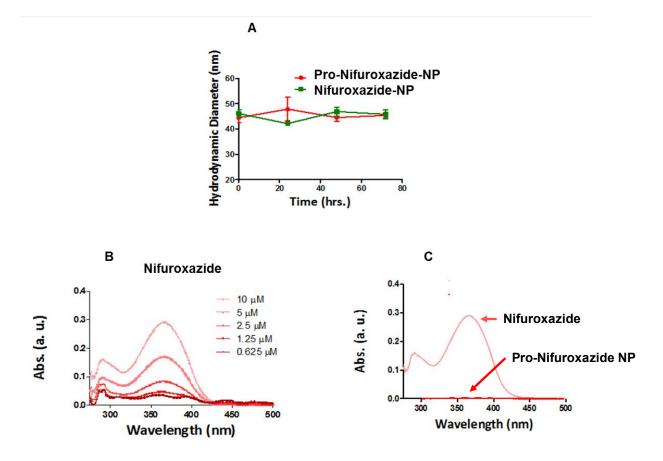
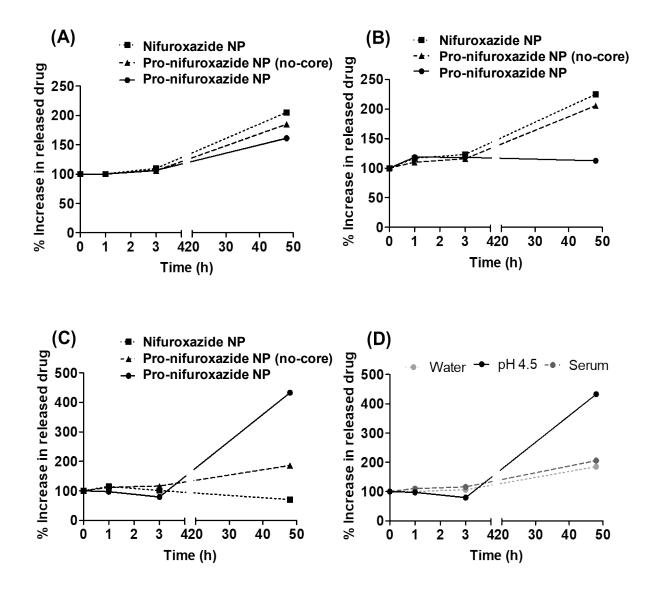
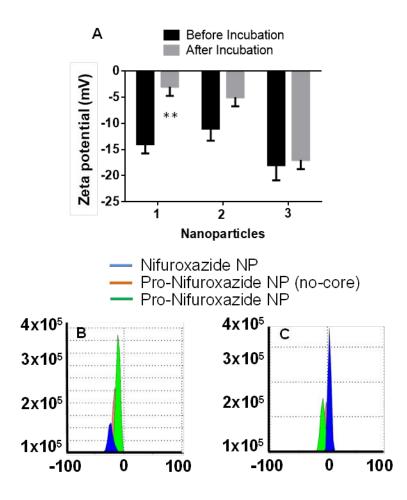

Non-bond interaction force parameter a_{ij} (unit: k_BT/r_0)

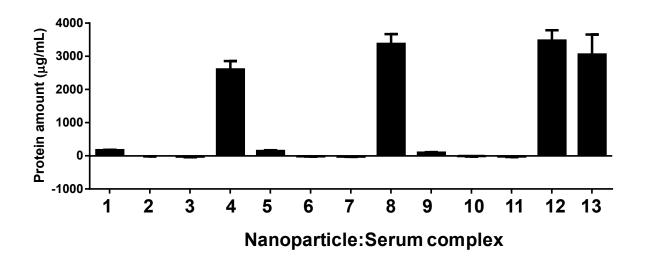
Figure S2. Two stages of self-assembly DPD simulations: (1) formation of a core particle with PEGCE, and, (2) formation of prodrug nanoparticle.

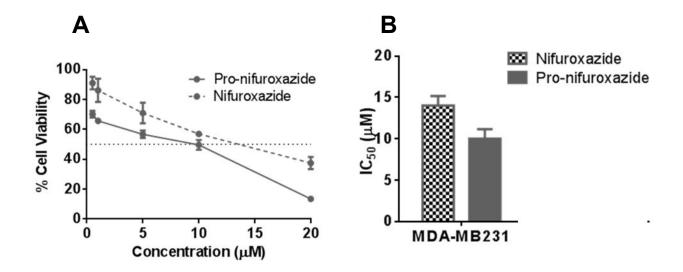
Figure S3. Examples of prodrug nanoparticle structures resulted from independent DPD simulations.

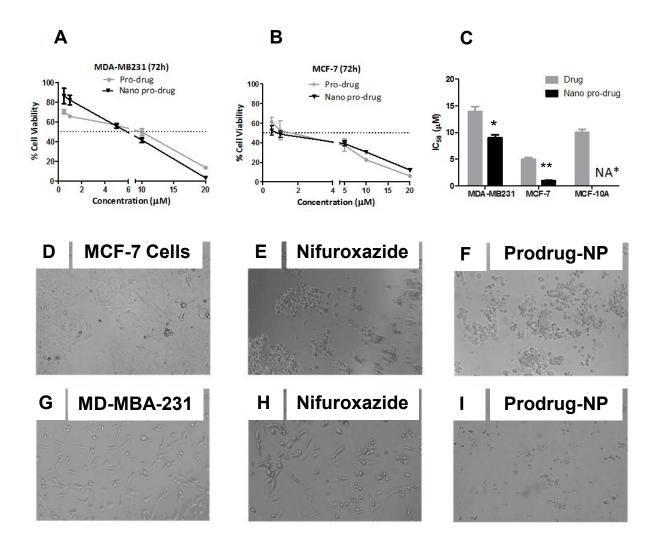
Figure S4. Chemical characterization of pro-nifuroxazide synthesized from nifuroxazide small molecule. LRMS (A) and HRMS (B) analyses after incubation with phosphate buffer at pH 4.5 and after treatment with phospholipase 2 (PLA2) m/z: 496.34 (MH+ for nifuroxazide calculated for $C_{24}H_{51}NO_7P$), calculated 496.64 MH+ for liberated lysoPC (C).


Figure S5. Characterizations of drug and nano-prodrug. (A) stability of nano-prodrug; (B) UVvis spectroscopic pattern varied with change in different concentration of nifuroxazide (10 to 0.625μ M) and (C) decrease in absorbance of nifuroxazide with formation of Pro-nifuroxazide NP.


Figure S6. Stability of different formulations in various mediums. Hydrodynamic diameter of formulations (A) Lipid-NPs, (B) Pro-Nifuroxazide NP (no-core) and (C) Pro-nifuroxazide NP were acquired at 1, 2, 3, 4, 5, 6 and 7 days after incubation with water, Serum, pH 4.5 and pH 12.0 at 37 °C.


Figure S7. Release kinetics of nifuroxazide from different nanoparticles incubated with different suspension mediums including (A) water; (B) blood serum (10%) and (C) pH 4.5. (D) Comparison of nifuroxazide release from Pro-nifuroxazide NPs in different mediums after 48h of incubation. Suspensions were incubated at 37 °C for 1, 3 and 48h.


Figure S8. (A) Protein interaction properties of different nanoparticles presented as (1) Nifuroxazide NP, Pro-Nifuroxazide NP (no-core) and (3) Pro-Nifuroxazide NPs. Formulations were incubated with 10% FBS for 4h at 37 °C before performing the zeta potential experiments. Changes in electrophoretic potential after incubation indicate formation of protein corona. Statistical analysis was performed using ONE Way ANOVA with post Bonferroni test. Here ****** represents p values < 0.01. Zeta potential of Nifuroxazide NP (blue), Pro-Nifuroxazide NP (no-core) (orange) and Pro-Nifuroxazide NPs (green) (B) before and (C) after 7 days of incubation with 10% FBS.

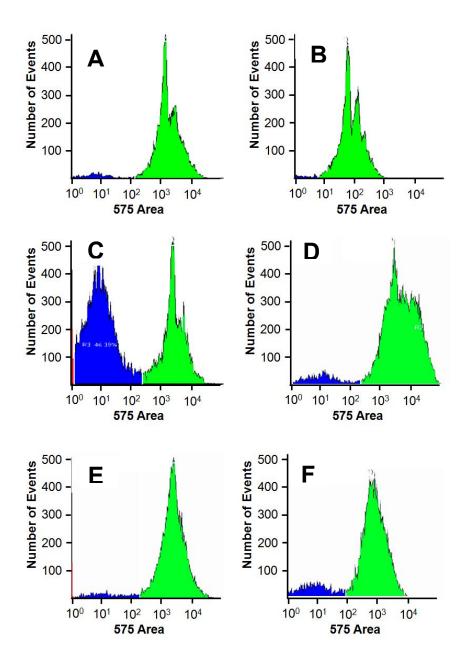
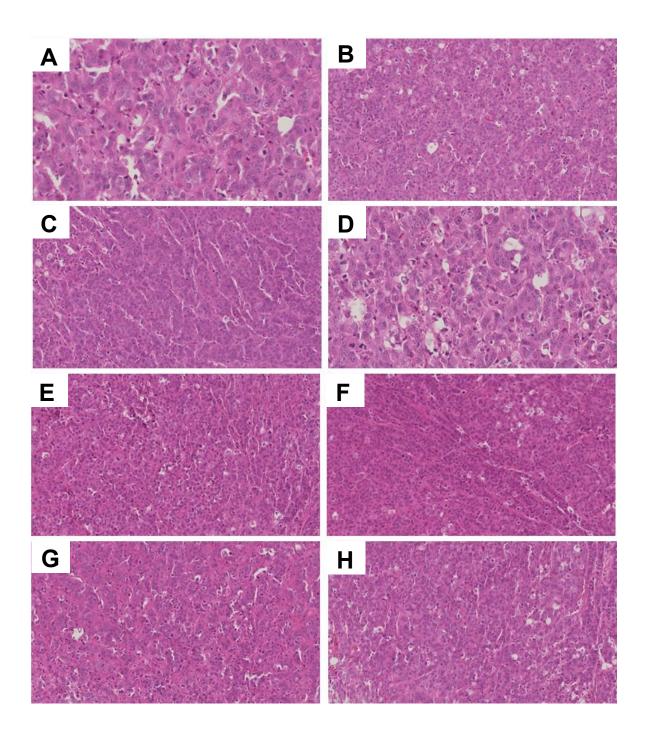
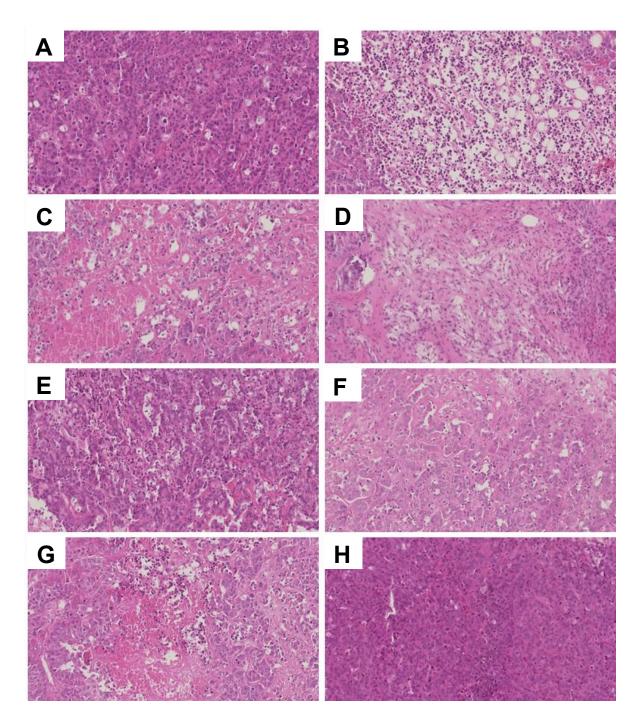
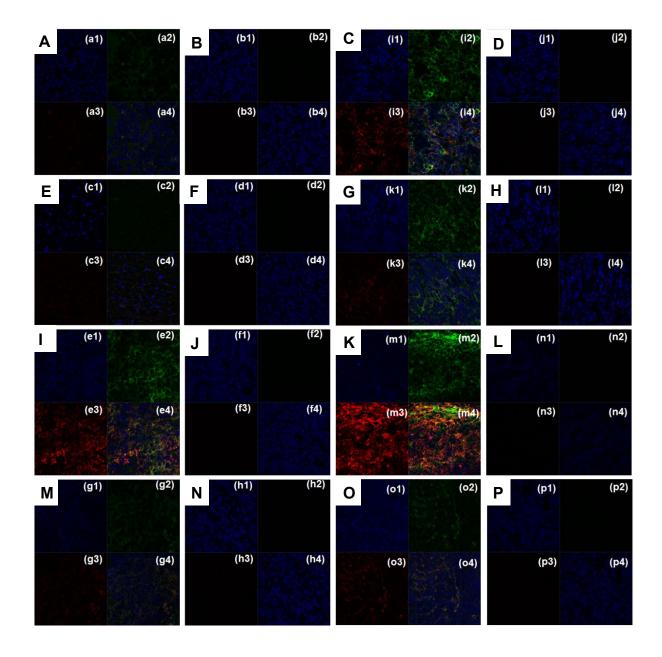

Figure S9. Protein interaction efficiency of Nifuroxazide NP, Pro-Nifuroxazide NP (no-core) and Pro-Nifuroxazide NPs after 4h incubation at 37 °C. A Bradford's assay was performed on nanoparticles coated with protein and remaining protein unbound. Here nanoparticle:serum complexes are represented as 1: Nifuroxazide NP coated with 25% serum protein; 2: Nifuroxazide NP coated with 5% serum protein; 3: Nifuroxazide NP coated with 1% serum protein; 4: Total amount of serum protein added to Nifuroxazide NPs; 5: Pro-Nifuroxazide NP (no-core) coated with 25% serum protein; 6: Pro-Nifuroxazide NP (no-core) coated with 5% serum protein; 7: Pro-Nifuroxazide NP (no-core) coated with 1% serum protein; 7: Pro-Nifuroxazide NP (no-core) coated with 1% serum protein; 8: Total amount of serum protein added to Pro-Nifuroxazide NPs (no-core); 9: Pro-Nifuroxazide NP coated with 25% serum protein; 10: Pro-Nifuroxazide NP coated with 5% serum protein; 11: Pro-Nifuroxazide NP coated with 1% serum protein; 12: Total amount of serum protein added to Pro-Nifuroxazide NP coated with 5% serum protein; 11: Pro-Nifuroxazide NPs and 13: Total amount of protein in used volume of FBS.


Figure S10. *In vitro* analysis of cancer cell growth regression after treatment with nifuroxazide and pro-nifuroxazide. (A) MTT assay performed on MDA-MB231 cells after 72h treatment of nifuroxazide and pro-nifuroxazide at concentration ranging from 0.5 to 20 μ M and (B) IC₅₀ values of nifuroxazide and prodrug in MDA-MB231 cells.


Figure S11. *In vitro* analysis of cancer cell growth regression after treatment with nifuroxazide and nano-prodrug. MTT assay performed on (A) MDA-MB231 and (B) MCF-7 cells after 72h treatment of nifuroxazide and pro-nifuroxazide-NP at concentration ranging from 0.5 to 20 μ M and (C) IC₅₀ summarized for all the cell lines. Bright field images of MCF-7 cells (D) untreated and treated with (E) nifuroxazide; (F) pro-nifuroxazide and MDA-MB231 cells (G) untreated and treated with (H) nifuroxazide; (I) pro-nifuroxazide-NP treated at concentration of 20 μ M. Biostatistical analysis was performed using ONE Way ANOVA with post Bonferroni test. Here * and ** represent p values <0.05 and 0.01, respectively.


Figure S12. Representative histogram of PI stained MCF-7 cells treated with (A) untreated and treated with (B) nifuroxazide and (C) pro-nifuroxazide-NP (nano-prodrug) and MDA-MB231 (D) untreated and treated with (E) nifuroxazide and (F) pro-nifuroxazide-NP (nano-prodrug).


Figure S13. MTT assay performed on MCF-7 and MDA-MB231 using cored nanoparticles with loaded nifuroxazide (Nifuroxazide NP) and non-cored nanoparticles with Pro-nifuroxazide (Pro-nifuroxazide NP (no-core)). Experiments were performed in MDA-MB231 cells at (A) 48 and (C) 72h time points, MCF-7 cells at (B) 48 and (D) 72h time point and comparison for IC50 values in MCF-7 and MDA-MB231 cells. Experiments were performed for two different time points and nifuroxazide concentration of 1.25, 2.5, 5, 10 and 20 μ M. Biostatistical analysis was performed using ONE Way ANOVA with post Bonferroni test. Here *, **, *** and **** represent p values <0.05, 0.01, 0.001 and 0.0001, respectively.

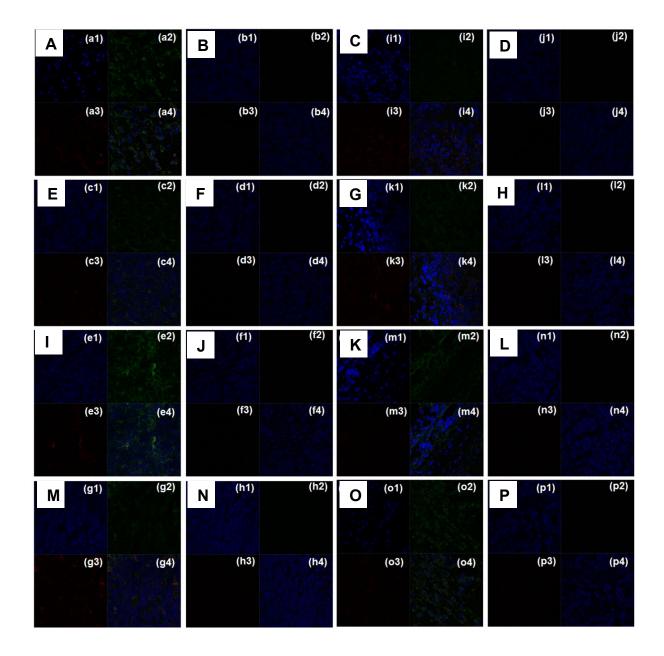

Figure S14. Representative H & E sections of tumors treated with buffer (A-H). Here sections are from same tumors on same or different animals including (A-D) from animal #2 and (E-H) from Animal #9 as each represent individual tumor. Sections were stained with histamine (red) and eosin (blue).

Figure S15. Representative H&E sections of tumors treated with nano-prodrug (A-H). Here sections are from same tumors on same or different animals including (A-D) from animal #1 and (E-H) from Animal #17 as each represent individual tumor. Sections were stained with histamine (red) and eosin (blue).

Figure S16. Representative immune-labelled cross sections of tumors treated with buffer (A-P). Here sections are from same tumors on same or different animals including (A and B); (C and D); (E and F); (G and H) from animal #1 and (I and J); (K and L); (M and N) and (O and P) from Animal #17. Sections were treated with or without pSTAT-3 antibody (red) against antibody treated against common unaffected protein β -actin (green). All the sections from tumors were also stained with DAPI (blue) to visualize cell nuclei. A low level of pSTAT-3 in tumors treated with pro- nifuroxazide NP were visualized across all the section.

Figure S17. Representative immune-labelled cross sections of tumors treated with nano-prodrug (A-P). Here sections are from same tumors on same or different animals including (A and B); (C and D); (E and F); (G and H) from animal #1 and (I and J); (K and L); (M and N) and (O and P) from Animal #17. Sections were treated with or without pSTAT-3 antibody (red) against antibody treated against common unaffected protein β -actin (green). All the sections from tumors

were also stained with DAPI (blue) to visualize cell nuclei. A low level of pSTAT-3 in tumors treated with pro-nifuroxazide NP were visualized across all the sections.

Atomistic CGenFF parameters for pro-nifuroxazide

Parameter file:

* Parameters generated by analogy by

* CHARMM General Force Field (CGenFF) program version 0.9.7.1 beta

*

BONDS

CG2DC1 CG2R51 365.00 1.4500 ! CG2R51 NG2O1 230.00 1.4020 ! CG2R61 OG302 230.00 1.3820 !

ANGLES

CG2R51 CG2DC1 NG2E	01 56.00	117.00 !
CG2R51 CG2DC1 HGA4	32.00	120.00 !
CG2DC1 CG2R51 CG2R	.51 45.80	130.00 !
CG2DC1 CG2R51 OG2R	45.80	124.00 !
CG2R51 CG2R51 NG2O	1 55.00	125.50 !
NG2O1 CG2R51 OG2R5	50 65.00	127.80 !
CG2R61 CG2R61 OG302	2 110.00	120.00 !
CG2R51 NG2O1 OG2N	1 65.00	116.00 !
CG2O2 OG302 CG2R6	1 185.00	120.00 !

DIHEDRALS

NG2D1 CG2DC1 CG2R51 CG2R51	1.6000 2	180.00 !
NG2D1 CG2DC1 CG2R51 OG2R50	1.6000 2	180.00 !
HGA4 CG2DC1 CG2R51 CG2R51	0.6000 2	180.00 !
HGA4 CG2DC1 CG2R51 OG2R50	0.6000 2	180.00 !
CG2R51 CG2DC1 NG2D1 NG2S1	12.0000 2	180.00 !

CG321 CG2O2 OG302 CG2R61 2.0500 2 180.00 !
OG2D1 CG2O2 OG302 CG2R61 0.9650 1 180.00 !
OG2D1 CG2O2 OG302 CG2R61 3.8500 2 180.00 !
CG2DC1 CG2R51 CG2R51 CG2R51 15.0000 2 180.00 !
CG2DC1 CG2R51 CG2R51 HGR51 1.0000 2 180.00 !
CG2R51 CG2R51 CG2R51 NG2O1 8.5000 2 180.00 !
NG2O1 CG2R51 CG2R51 HGR51 2.7000 2 180.00 !
CG2R51 CG2R51 NG2O1 OG2N1 0.9000 2 180.00 !
OG2R50 CG2R51 NG2O1 OG2N1 0.9000 2 180.00 !
CG2DC1 CG2R51 OG2R50 CG2R51 7.5000 2 180.00 !
NG2O1 CG2R51 OG2R50 CG2R51 8.5000 2 180.00 !
CG2R61 CG2R61 CG2R61 OG302 3.1000 2 180.00 !
OG302 CG2R61 CG2R61 HGR61 2.4000 2 180.00 !
CG2R61 CG2R61 OG302 CG2O2 1.2000 2 180.00 !

IMPROPERS

CG2DC1 CG2R51 NG2D1 HGA4	30.0000 0	0.00 !
--------------------------	-----------	--------

END

Parameter file for linkage between nifuroxazide moiety and PAzPC:

BONDS CG321 CTL2 222.500 1.530 ! alkanes, 3/92

ANGLES

CG321CG321CTL258.350113.6011.162.561! alkane, 3/92HGA2CG321CTL226.500110.1022.532.179! alkane, 4/98CG321CTL2CTL258.350113.6011.162.561! alkane, 3/92CG321CTL2HAL226.500110.1022.532.179! alkane, 4/98

DIHEDRALS

CG2O2 CG321 CG321 CTL2 0.000 5 180.00 ! propyl ester, 6/07 CG2O2 CG321 CG321 CTL2 0.317 3 180.00 ! propyl ester, 6/07 CG2O2 CG321 CG321 CTL2 0.557 2 0.00 ! propyl ester, 6/07 CG2O2 CG321 CG321 CTL2 0.753 1 0.00 ! propyl ester, 6/07 X CG321 CG321 X 0.1900 3 0.00 ! alkane, 4/98, yin and mackerell 0.00 ! alkane, 4/98, yin and mackerell X CG321 CTL2 X 0.1900 3 CG321 CG321 CTL2 CTL2 0.101 2 0.00 ! alkane, 7/08, jbk CG321 CG321 CTL2 CTL2 0.142 3 180.00 ! alkane, 7/08, jbk CG321 CG321 CTL2 CTL2 0.074 4 0.00 ! alkane, 7/08, jbk CG321 CG321 CTL2 CTL2 0.097 5 0.00 ! alkane, 7/08, jbk

IMPROPER

OG2D1 X	Х	CG2O2	100.00 0	0.00 ! acetic acid	
OG2D1 X	Х	CG2O1	120.0000 0	0.0000 ! ALLOW	PEP POL ARO

NONBONDED nbxmod 5 atom cdiel shift vatom vdistance vswitch cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5

END

Topology file for nifuroxazide moiety, which includes atom type, charge, bonding information:

S-24

* Toppar stream file generated by

* CHARMM General Force Field (CGenFF) program version 0.9.7.1 beta

* For use with CGenFF version 2b8

*

read rtf card append

* Topologies generated by

* CHARMM General Force Field (CGenFF) program version 0.9.7.1 beta

*

36 1

RESI NIF	0.000 !
GROUP	! CHARGE
ATOM C1	CG2R61 -0.101 !
ATOM H3	HGR61 0.115 !
ATOM C2	CG2R61 0.216 !
ATOM O1	OG302 -0.454 !
ATOM C4	CG2R61 -0.101 !
ATOM H4	HGR61 0.115 !
ATOM C5	CG2R61 -0.063 !
ATOM H5	HGR61 0.115 !
ATOM C6	CG2R61 -0.071 !
ATOM C7	CG2R61 -0.063 !
ATOM H6	HGR61 0.115 !
ATOM C8	CG2O2 0.927 !
ATOM C9	CG321 -0.221 !
ATOM H1	HGA2 0.090 !
ATOM H2	HGA2 0.090 !
ATOM C3	CG321 -0.181 !
ATOM C31	CG331 -0.273 !
ATOM H311	HGA3 0.090 !
ATOM H312	HGA3 0.090 !
ATOM H313	HGA3 0.090 !
ATOM H32	HGA2 0.090 !

ATOM H33	HGA2 0.090 !
ATOM O2	OG2D1 -0.644 !
ATOM C10	CG2O1 0.458 !
ATOM N2	NG2S1 -0.344 !
ATOM N1	NG2D1 -0.315 !
ATOM H9	HGP1 0.305 !
ATOM O3	OG2D1 -0.406 !
ATOM C11	CG2DC1 -0.279 !
ATOM H10	HGA4 0.239 !
ATOM C12	CG2R51 -0.273 !
ATOM H7	HGR51 0.196 !
ATOM C13	CG2R51 -0.273 !
ATOM H8	HGR51 0.196 !
ATOM C14	CG2R51 0.508 !
ATOM O4	OG2R50 -0.342 !
ATOM C15	CG2R51 0.511 !
ATOM N3	NG2O1 0.408 !
ATOM O5	OG2N1 -0.325 !
ATOM O6	OG2N1 -0.325 !
BOND C1	Н3
BOND C1	C2
BOND C1	C7
BOND C2	01
BOND C2	C4
BOND O1	C8
BOND C4	H4
BOND C4	C5
BOND C5	Н5
BOND C5	C6
BOND C6	C7
BOND C6	C10
BOND C7	H6

DOND CO	00		
BOND C8			
BOND C8			
BOND C9	H1		
BOND C9	H2		
BOND C9	C3		
BOND C3	C31		
BOND C3	H32		
BOND C3	H33		
BOND C31	H311		
BOND C31	H312	2	
BOND C31	H313	3	
BOND C10	N2		
BOND C10	03		
BOND N2	N1		
BOND N2	H9		
BOND N1	C11		
BOND C11	H10		
BOND C11	C14		
BOND C12	H7		
BOND C12	C13		
BOND C12	C15		
BOND C13	H8		
BOND C13	C14		
BOND C14	O4		
BOND O4	C15		
BOND C15	N3		
BOND N3	05		
BOND N3	06		
IMPR C8	C9	02	01
IMPR C10	C6	N2	03
IMPR C11	C14	N1	H1

H10

References:

- Shillcock, J. C.; Lipowsky, R. Equilibrium Structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. *J. Chem. Phys.* 2002, 117, 5048.
- (2) Groot, R. D.; Rabone, K. L. Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants. *Biophys. J.* 2001, 81, 725.
- (3) Yamamoto, S.; Maruyama, Y.; Hyodo, S. Coarse Gaining and Scaling in Dissipative Particle Dynamics. J. Chem. Phys. 2002, 116, 5842.
- (4) Ortiz, V.; Nielsen, S. O.; Discher, D. E.; Klein, M. L.; Lipowsky, R.; Shillcock, J. Dissipative particle dynamics simulations of polymersomes. *J. Phys. Chem. B* **2005**, 109, 17708.
- (5) Kranenburg, M.; Nicolas, J.; Smit, B. Comparison of Mesoscopic Phospholipid–water Models. *Phys. Chem. Chem. Phys.* 2004, 6, 4142.
- (6) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117, 1.
- (7) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. *J. Comput. Chem.* 2005, 26, 1781.
- (8) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell; AD Jr. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. *J. Comput. Chem.* **2010**, 31, 671–690.
- (9) Klauda, J. B.; Venable, R. M.; Freites, J. A.; O'Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D., Jr.; Pastor, R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. *J. Phys. Chem. B* 2010, 114, 7830–7843.
- MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L., Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.;

Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin,
D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of
Proteins. J. Phys. Chem. B 1998, 102, 3586–3616.

- (11) Darden, T.; York, D.; Pedersen, L. G. Particle Mesh Ewald: An N3log(N) Method for Ewald Sums in Large systems. J. Chem. Phys. 1993, 98, 10089–10092.
- (12) Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys. 1992, 97, 1990–2001.
- (13) Miyamoto, S.; Kollman, P. A. Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. *J. Comput. Chem.* **1992**, 13, 952–962.
- (14) Andersen, H. C. Rattle: A "Velocity" Version of the Shake Algorithm for Molecular Dynamics Calculations. J. Comput. Phys. 1983, 52, 24–34.
- (15) Grossfield, A. WHAM: The Weighted Histogram Analysis Method, version 2.0.9, http://membrane.urmc.rochester.edu/content/wham.