
Discordant bioinformatic predictions of antimicrobial resistance 

from whole-genome sequencing data of bacterial isolates: an inter-

laboratory study 

 

Supplementary Methods 

 

Each participating team was asked to provide a description of the pipeline used within this study. The 

submitted methods sections are included below: 
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Workflow Overview 

 

Raw reads were checked for quality using FastQC, trimmed/assembled/corrected/reassembled using 

shovill pipeline (see https://github.com/tseemann/shovill). Species ID was achieved with the raw 

reads using Kraken-HLL (see https://github.com/fbreitwieser/krakenhll) and Bracken (for 

abundances, see https://github.com/jenniferlu717/Bracken). AMR analysis involved searching the 

assembled contigs CARD database with RGI tool and ResFinder/ARG-ANNOT databases with the 

software tool c-SSTAR (see https://github.com/chrisgulvik/c-SSTAR ). 

 

Commands 

 

Step 1 (~/AMRIL_data/AMRIL_analysis_raw_data->cat 00.cmds_ID) 

## "Unzipping fastq.gz" 

gunzip *.gz 

## "Running FastQC" 

mkdir 00.fastqc 

fastqc -t 10 -o 00.fastqc -f fastq *.fastq 

## "Running shovill" 

shovill --outdir 01.shovill --R1 AMRIL_7_R1_001.fastq --R2 AMRIL_7_R2_001.fastq --depth 0 --trim -

-force & 

 



(NOTE: for sample AMRIL_2 required to add tag –min_cov 1 – since the majority of the contigs had a 

coverage of 2X, and were discarded after the pilon correction step when using the default settings) 

 

(NOTE: for samples 2 and 5 there was difficulty in assigning the taxonomy to the species level, this 

may be due to a combination of low quality/depth in the raw sequence data and the fact that the 

genus is Enterobacter). 

 

Step 2 (~/AMRIL_data/AMRIL_analysis_raw_data->cat 00.cmds_AMR) 

 

 

Software versions 

 

FastQC 0.11.5  
shovill 0.9.2 using SPADes (version 3.10.1) 
KrakenHLL 0.3.2 using database minikraken_20171101_8GB_dustmasked (Nov  1  2017) 

## "Running KrakenHLL and Braken (with Krona for html reports)" 

mkdir 02.krakenhll 

krakenhll --threads 10 --report-file 02.krakenhll/krakenhll_report --db 

"minikraken_20171101_8GB_dustmasked" --output 02.krakenhll/krakenhll_results --preload --

fastq-input --paired AMRIL_7_R1_001.fastq AMRIL_7_R2_001.fastq 

python2.7 ~/ktoolu/kt_summarize.py --include-unclassified --draw-krona-plot 

02.krakenhll/krakenhll_results_krona.plot.html --path-to-krona ~/KronaTools-2.7/bin/ 

02.krakenhll/krakenhll_results 

kraken-report --db "minikraken_20171101_8GB_dustmasked" 02.krakenhll/krakenhll_results > 

02.krakenhll/krakenhll_results_kraken-report 

python ~/Bracken/est_abundance.py -i 02.krakenhll/krakenhll_results_kraken-report -k 

~/Bracken/minikraken_8GB_200mers_distrib.txt -o 

02.krakenhll/krakenhll_results_Bracken_mini8GB_200mers_est_abundance.txt 

 

#RGI-CARD (contigs) 

sudo docker run -v ~/AMRIL_data/AMRIL_analysis_raw_data/AMRIL_8/:/myData -w /myData 

finlaymaguire/rgi rgi main --input_sequence 01.shovill/contigs.fa --output_file 14.rgi_card.out --

input_type contig 

#c-SSTAR (contigs) - resfinder and argannot 

~/ess_apps/c-SSTAR/c-SSTAR -d ~/ess_apps/c-SSTAR/db/ResGANNOT_srst2.fasta -g 

01.shovill/contigs.fa -o 16.c-SSTAR_ResGANNOT > 16.c-SSTAR_ResGANNOT/stdout 

 



KronaTools 2.7  
Bracken 1.0.0 using database minikraken_8GB_200mers_distrib.txt (Nov  2  2017) 
CARD-RGI 4.0.2 using card database (Jul 24 2018) 
c-SSTAR 1.2c using resfinder and arg-annot databases from (https://github.com/tomdeman-
bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
/blob/master/Latest_AR_database/ResGANNOT_srst2.fasta) 
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Raw reads trimmed using Trimmomatic  

 

and Trim Galore.  

 

Reads assembled using SPAdes.  

 

Resistance genes detected using abricate with the CARD database on assemblies. BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) on 16S and other genes. 
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Read QC, Assembly 

 

10 paired end fastq files were downloaded from the GOSH server. Reads were initially screened for 

quality using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

TrimmomaticPE -phred33 $path4$file'_R1_001.fastq.gz' $path4$file'_R2_001.fastq.gz' 

$path4$file'.pe_1.fq' $path4$file'.upe_1.fq' $path4$file'.pe_2.fq' $path4$file'.upe_2.fq' 

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:24 MINLEN:36 2> 

$file'.log' 

trim_galore --length 36 --paired --retain_unpaired $path4$file'.pe_1.fq' $path4$file'.pe_2.fq' 

trim_galore --length 36  $path4$file'.upe_1.fq'  $path4$file'.upe_2.fq' 

mv $path4$file'.pe_1_val_1.fq' $path4$file'.pe_1.fq' 

cat $path4$file'.pe_1_unpaired_1.fq' $path4$file'.upe_1_trimmed.fq' > $path4$file'.upe_1.fq' 

mv $path4$file'.pe_2_val_2.fq' $path4$file'.pe_2.fq' 

cat $path4$file'.pe_2_unpaired_2.fq' $path4$file'.upe_2_trimmed.fq' > $path4$file'.upe_2.fq' 

spades --careful --cov-cutoff auto -t 8 --pe1-1 $fq$file'.pe_1.fq' --pe1-2 $fq$file'.pe_2.fq' --s1 

$fq$file'.upe_1.fq' --s2 $fq$file'.upe_2.fq'  -k 21,33,55,77,99 -o  $wd'spades' 

https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-/blob/master/Latest_AR_database/ResGANNOT_srst2.fasta
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-/blob/master/Latest_AR_database/ResGANNOT_srst2.fasta
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-/blob/master/Latest_AR_database/ResGANNOT_srst2.fasta
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Raw reads, were assembled using UniCycler (Wick et al., 2017) in “Illumina-only” assembly mode. 

UniCycler uses SPAdes' built-in read correction module. Here we used SPAdes version 3.10.1 

(Bankevich et al., 2012) and generate a SPADes assembly graph. UniCycler then performs additional 

assembly improvement steps through identifying multiplicity of contigs, scaffolding, overlap removal 

and bridging (see Wick et al. for details).  The resultant assemblies were visualized in Bandage (Wick 

et al., 2015) to check overall quality and merge overlapping graphs. 

 

Species Assignment 

 

Taxonomic assignment was performed using two approaches. The first utilized the raw sequencing 

reads, without any assembly step. Raw reads were screened using the distance based tool 

MASH(Ondov et al., 2016), which implements the minHASH k-mer matching algorithm. MASH 

distances were calculated for each of the 10 genomes against an archive of RefSeq genomes (Pruitt 

et al., 2012), release 70, sketched using k=21 and s=1000. The closet matching reference was 

selected based on the proportion of matching k-mers. 

In addition, and to validate the assignments using MASH, the de novo assemblies were uploaded to 

WGSA (wgsa.net), which provides a rapid taxonomic assignment.  

 

AMR Gene Detection 

 

Denovo assemblies were uploaded to 2 independent reference databases for AMR gene 

identification: CARD (Jia et al., 2017) and ResFinder (Zankari et al., 2012), the latter was run with a 

%ID threshold of 90% and a selected minimum length of 80%. Resulting output files were 

downloaded and inspected. 

 

Assigning Resistance Phenotype 

 

Resistance phenotypes were considered in the context of the presence, absence and co-occurence of 

different AMR genes. We took a conservative approach corresponding to the ‘strict’ classification in 

CARD, calling a resistance gene present if there was >80% identity to the reference. We operated on 

a precautionary principle (appropriate for clinical work, where WGS could be used to triage samples) 

and called a gene as present even in cases where not all of the reference gene was covered (e.g. 

AMRIL_2, with 22% coverage of SHV-156).  

The CARD reference database ontology terms were used to relate resistance genes to resistance to 

specific antibiotics. In addition to using this ontology, we discussed the following heuristic reasoning 

for our phenotype classifications based on our existing knowledge: 

Ciprofloxacin (fluoroquinolone): a combination of specific genes (e.g. patA and patB, Qnr1) and 

mutations (e.g. in gyrA and gyrB).   



Gentamicin and amikacin (aminoglycoside): aminoglycoside resistance is conferred by specific genes 

(e.g. AAC family). AAC(3)-II confers resistance to gentamicin, but AAC(6’)-I is additionally required for 

resistance to amikacin.  

Cefotaxime (beta-lactam): many different beta-lactamases, with resistance correspondingly growing 

additively with the number of genes present.  
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Protocol summary 

 

Ariba (https://github.com/sanger-pathogens/ariba) was used to identify antibiotic resistance genes 

and MLST sequence types by running local assemblies.  

Since ariba does not allow species identification, kraken (https://ccb.jhu.edu/software/kraken/; 

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-3-r46) was used to identify 

the species before ariba was run to identify the sequence type. The kraken analysis is based on a 

database from the following publication: Browne at al. Nature 2016, 

https://www.nature.com/articles/nature17645 

Example kraken command: 

 

To identify antibiotic resistance genes, the two following databases were used: The Comprehensive 

Antibiotic Resistance Database “CARD” version 2.0.1 (https://card.mcmaster.ca/home; 

https://www.ncbi.nlm.nih.gov/pubmed/23650175) and Antibiotic Resistance Gene-ANNOTation 

“ARG-ANNOT” (http://en.mediterranee-infection.com/article.php?laref=283&titre=; 

https://www.ncbi.nlm.nih.gov/pubmed/24145532). Databases were downloaded using ariba’s getref 

command on June 27th 2018. Ariba was run using standard settings and results were checked 

manually. Disparate results between the two databases are specified in the comment column, only 

the hit with the best identity was kept. Possible contaminations were highlighted in the commend 

section when the sequence was incomplete and its read coverage deviated from the coverage of 

other contigs (column ctg_cov in the original ariba reports). Only hits of genes conferring resistance 

to aminoglycosides, beta-lactams and fluoroquinolones were listed in the Excel file 

“AMRIL_WGS_reporting”. All hits were kept in the original ariba report files 

(“AMRIL_*_CARD_report.tsv”; “AMRIL_*_argannot_report.tsv”) 

bsub.py --threads 8 --queue normal 40 kraken1 'metagm_run_kraken -t 8 -noclean 

~/lustre/Agata_YALE/kraken/InternalKraken_OCT2017 AMRIL_1.report 

../fastq/AMRIL_1_R1_001.fastq.gz ../fastq/AMRIL_1_R2_001.fastq.gz' 

https://www.nature.com/articles/nature17645


Example command: 

 

Version information: 

 

ARIBA version: 2.12.1 
 
External dependencies: 
bowtie2 2.2.3   /software/pathogen/external/apps/usr/bin/bowtie2 
cdhit   4.6     /software/pathogen/external/apps/usr/bin/cd-hit-est 
nucmer  3.1     /software/pathogen/external/apps/usr/bin/nucmer 
 
Python version: 
3.6.0 (default, Jan 18 2017, 11:39:44)  
[GCC 4.6.3] 
 
Python packages: 
ariba   2.12.1  /software/pathogen/external/apps/usr/local/Python-3.6.0/lib/python3.6/site-
packages/ariba/__init__.py 
bs4     4.6.0   /software/pathogen/external/apps/usr/local/Python-3.6.0/lib/python3.6/site-
packages/bs4/__init__.py 
dendropy        4.2.0   /software/pathogen/external/apps/usr/local/Python-3.6.0/lib/python3.6/site-
packages/dendropy/__init__.py 
pyfastaq        3.16.0  /software/pathogen/external/apps/usr/local/Python-3.6.0/lib/python3.6/site-
packages/pyfastaq/__init__.py 
pymummer        0.10.3  /software/pathogen/external/apps/usr/local/Python-
3.6.0/lib/python3.6/site-packages/pymummer/__init__.py 
pysam   0.11.2.2        /software/pathogen/external/apps/usr/local/Python-3.6.0/lib/python3.6/site-
packages/pysam/__init__.py 
 
Kraken version: kraken-0.10.6-a2d113dc8f 
Database: /nfs/users/nfs_s/sb53/lustre/Agata_YALE/kraken/InternalKraken_OCT2017 
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FastQ files were downloaded and analyzed with the FastQC program (v0.11.7) by Babraham 
bioinformatics. 

bsub.py --queue small 2 log 'ariba run 

~/lustre/ariba_databases/mlst/Klebsiella_pneumoniae/ref_db ../fastq/AMRIL_1_R1_001.fastq.gz 

../fastq/AMRIL_1_R2_001.fastq.gz AMRIL_1' 



Reads are assembled using the A5_miSeq pipeline (v20160825), using standard parameters.  

 
ID was obtained uploading the assembled contigs to the online KmerFinder tool (v2.5) from CGE. 
Conda is used for the posterior analysis, using the RGI (v 4.0.3) software. Also, last version of the 
CARD database (v 2.0.2) is used. Another bash script is used to run RGI.  

 
Results with a Cut-off marked as "Loose" were not taken into account. 
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We used BioNumerics version 7.6.3 with E.coli plug in tools from CGE (ResFinder).  

Web tool KmerFinder (v2.5) was used to determine bacterial species 

http://www.genomicepidemiology.org/. We did not search for gyrA and parC mutations (quinolone 

resistance) in these sequences.  

 

for file in *_R1.fastq 

do 

        file2=${file/R1/R2} 

        std=${file/_R1.fastq/} 

        a5_pipeline.pl $file $file2 $std 

done 

conda create --name amr 

conda activate amr 

conda install rgi 

 

rgi load -i /path/to/card.json 

 

#Another bash script is used to run RGI. 

#! /bin/env bash 

#File: RGI.sh 

 

for file in *.contigs.fasta 

do 

        std=${file/.contigs.fasta/} 

        rgi main -i $file -n 4 -o $std 

done 

http://www.genomicepidemiology.org/
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Reads were trimmed using trimmomatic. Species classification was performed using centrifuge. 
Resistance genes were found using SRST2. Resistance to specific drugs were predicted by assessing 
the literature 
 
Read trimming 
 
Program: trimmomatic  
Version: v0.38 
Program call:  

 
Species classification 
 
Program: Centrifiuge 
Version: 1.0.3-beta 
Database: ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data/p+h+v.tar.gz 
Program call:  

 
Drug resistance gene detection 
 
Program: SRST2 
Version: 0.2.0 
Database: https://github.com/katholt/srst2/blob/master/data/ARGannot_r2.fasta 
Program call: 
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Table 1| List and description of tools utilized in this study. 

Name Associated Workflow Description 

Conda  N/A Package, dependency and environment 
management for multiple programming 
languages. 
(https://conda.io/docs/) 

Snakemake 1 N/A Python based workflow management system. 
(https://snakemake.readthedocs.io/en/stable/) 

trimmomatic PE -threads 1 -phred33 AMRIL_1_R1_001.fastq.gz AMRIL_1_R2_001.fastq.gz -baseout 
AMRIL_1 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:36 

centrifuge -x p+h+v -1 AMRIL_1_1P -2 AMRIL_1_2P > AMRIL_1.log 
centrifuge-kreport x p+h+v AMRIL_1.log > AMRIL_1.kreport 

srst2  --input_pe AMRIL_1_R*.fastq.gz --forward _R1_001 --reverse _R2_001 --output test  --
gene_db  ARGannot_r2.fasta 

https://github.com/katholt/srst2/blob/master/data/ARGannot_r2.fasta
https://conda.io/docs/
https://snakemake.readthedocs.io/en/stable/


Sickle  trim C based program for adaptive trimming of 
FASTQ files [according to quality].  
(https://github.com/ucdavis-
bioinformatics/sickle) 

Unicycler 2 assembly Assembly pipeline for bacterial genomes from 
NGS reads; acts as an optimizer for SPAdes. 
(https://github.com/rrwick/Unicycler) 

SPAdes 3 assembly Python based genome assembler with built-in 
read error correction. 
(http://cab.spbu.ru/software/spades/) 

ABRicate  amr Perl based program for screening of assembled 
genomes [contigs] for antimicrobial resistance 
or virulence genes [database specific]. 
(https://github.com/tseemann/abricate) 

0Kraken 4 taxonomy; taxonomy-
report 

C++, Perl and Shell based program for 
taxonomic classification from sequences files 
[individual reads, assembled genomes etc]. 
(https://github.com/DerrickWood/kraken) 

 
Workflow Overview 

 

1. FASTQ reads are trimmed using sickle yielding trimmed paired reads 1 and 2, and another trimmed 

reads file containing the single, unpaired reads. 

2. Trimmed FASTQ (1, 2 and singles) are then assembled using the Unicycler optimizer for SPAdes. 

The Unicycler optimizer produces a single ‘assembly.fasta’ file (in place of the ‘contigs.fasta’ and 

‘scaffolds.fasta’ default output from SPAdes). 

 

3. Antimicrobial resistance (AMR) is then predicted using the ABRicate tool, along with the ResFinder 

database (note that resfinder is selected over other AMR databases as it only focuses on acquired 

AMR genes, not chromosomal point mutations). Report is generated as ‘.csv’ output. 

The output of ‘abricate’ is a list of predicted acquired AMR genes. These genes correspond to 

specific drug-class resistance (i.e. aminoglycosides) as indicated in the ResFinder database. These 

gene-class associations are used to predict the AMR phenotype of samples to specific drugs (by 

identifying the class associated with each drug, i.e. ciprofloxacin → fluoroquinoline). 

unicycler-runner.py -1 trimmed_read_1 -2 trimmed_read_2 -s trimmed_read_singles \ 
   -t <n_cpus> --mode normal -o output_folder 

sickle pe -f read_1 -r read_2 -t sanger \ 
   -o trimmed_read_1 -p trimmed_read_2 -s trimmed_read_singles 

abricate --db=resfinder assembly.fasta --csv > amr.csv 

https://github.com/ucdavis-bioinformatics/sickle
https://github.com/ucdavis-bioinformatics/sickle
https://github.com/rrwick/Unicycler
http://cab.spbu.ru/software/spades/
https://github.com/tseemann/abricate
https://github.com/DerrickWood/kraken


4. Taxonomic predictions are performed by Kraken (as well as report generation). Kraken utilizes a 

local database, downloaded from the Kraken repository (the standard database). Taxonomic 

prediction file is generated by: 

And the subsequent [human-readable] report generated by: 

The species selection is done by identifying the species with the largest percentage abundance in 

the sample. 

5. The ‘all’ rule is a Snakemake specific workflow rule that indicates all the above rules (as indicated 

in Fig. 1) are required to be carried out. 
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In-house program “qa_and_trim” calls Trimmomatic; nucleotides with a Phred score less than Q30 at 
the ends of the reads were removed with Trimmomatic. In house “kmerid” was used for kmer-based 
species identification (https://github.com/phe-bioinformatics/kmerid). Resistance gene detection 
was done using ‘Genefinder’, an in-house algorithm that uses bowtie2 to map sequence reads to 
reference sequences of interest and Samtools vs 0.1.18 to generate an mpileup file, which is then 
parsed for the rapid detection of sought sequences. Genes were called as present within a genome 
when detected with 100% coverage and >90% nucleotide identity to the reference gene. 
 

kraken --preload --db <DATABASE_FOLDER> --fasta-input assembly.fasta --threads 

<n_cpus> > kraken.out 

kraken-report --db <DATABASE_FOLDER> kraken.out > kraken.txt 



A
m

in
og

ly
co

si
de

B
et

a−
la

ct
am

E
ffl

ux

F
lu

or
oq

ui
no

lo
ne

F
os

fo
m

yc
in

G
ly

co
pe

pt
id

e

M
LS

O
th

er

P
he

ni
co

l

S
ul

ph
on

am
id

e

Te
tr

ac
yc

lin
e

Tr
im

et
ho

pr
im

A
−

1
A
−

2
B
−

1
B
−

2
C
−

1
C
−

2
D

E
F

G

aa
c(

3)
−I

Ia

aa
c(

3)
−I

Ic

aa
c(

3)
−I

id

aa
c(

6')
−I

b−
cr

aa
c(

6')
−I

b4

aa
c(

6')
−I

b7

aa
c(

6')
−I

l

aa
cA

4
aa

dA

aa
dA

15

aa
dA

17

aa
dA

2

aa
dA

24

aa
dA

3

an
t(2

'')−
Ia

an
t(3

'')−
Ia

an
t(3

'')−
Ih
−a

ac
(6

')−
Iid

an
t(3

'')−
IIa

ap
h(

3''
)−

Ib

ap
h(

3')
−I

a

ap
h(

3')
−I

c

ap
h(

3')
−V

I

ap
h(

3')
−V

Ia

ap
h(

6)
−I

d
ar

m
A

am
pC
am

pH
bla

A2

bla
ACT−

14

bla
ACT−

18

bla
ADC−

25

bla
ADC−

73

bla
ADC−

78

bla
CM

Y−
84

bla
CTX−

M
−1

5

bla
CTX−

M
−9

bla
IM

P−
1

bla
IM

P−
34

bla
NDM

−1

bla
OXA−

1

bla
OXA−

18
1

bla
OXA−

23

bla
OXA−

24
7

bla
OXA−

48

bla
OXA−

66

bla
OXY−

2−
8

bla
SHV−

10
0

bla
SHV−

11

bla
SHV−

12

bla
SHV−

16
4

bla
SHV−

66

bla
TEM
−1

B

bla
TEM
−1

D

bla
VIM
−4

PBP
PBP3

ab
eM

ab
eS

ac
rA

ac
rB
ac

rD
ac

rE
ac

rF
ac

rS
ad

eA
ad

eB
ad

eC
ad

eF
ad

eG
ad

eHad
eI
ad

eJ
ad

eK
ad

eL
ad

eN
ad

eR
ad

eS
ba

eR
ba

eS
cp

xA
em

rA
em

rB
em

rD
em

rE
em

rK
em

rR
em

rY
ev

gA
ev

gS
ga

dX hn
s
kd

pE
m

ar
A
m

ar
R
m

df
A
m

dt
A
m

dt
B
m

dt
C
m

dt
E
m

dt
F
m

dt
G
m

dt
H
m

dt
M
m

dt
N
m

dt
O
m

dt
P
m

sb
A
pa

tA
ra

m
A
to

lC yo
jI

oq
xA
oq

xB

qn
rA

1

qn
rB

25

qn
rB

60

qn
rS

1
fo

sA
fo

sA
5
fo

sA
7

BRP(M
BL) m

bl

er
e(

A)

m
ph

(A
)

m
ph

(D
)

m
ph

(E
)

m
sr

(E
)

vg
aC

ba
cA cr

p
ep

tA

om
pK

37
pm

rF

Zn−
de

pe
nd

en
t h

yd
ro

las
e

ca
tA

1

ca
tB

3

ca
tB

4
cm

l

cm
lA

1

cm
lA

5
su

l1
su

l2
te

t(A
)

te
t(B

)

te
t(C

)
te

tR
df

rA
1

df
rA

14

df
rA

16

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Lab_9
Lab_8
Lab_7
Lab_6
Lab_5
Lab_4
Lab_3
Lab_2

Lab_1b
Lab_1a

Gene nomenclature

P
ar

tic
ip

an
t

Figure S1. The presence of all AMR-associated genes in each sample by each par�cipant. Genes are organised and coloured by the class of an�bio�cs they are associated with 

resistance, or if they are associated with the efflux of mul�ple classes of an�bio�cs.   
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