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Below we describe a set of additional analyses and calculations relevant to content in
the main text. These include:

• Calculation of the sum total of cases as a function of direct infection

• An outline of the method for determining the reproductive ratio (R0) for the
Cholera household (direct) infection model.

• Discussion of the stability of the system at the disease free equilibrium

Model dynamics: sum total values

In S1 Table we present the summed total number of counts for all nine dynamic cases
considered in Fig 3. These values can be thought of analogous to the area under each of
the nine curves in Fig 3a-c. Of note, given that the three curves in fig 3c are normalized
to the maximum amount of Cholera summed across both the high and low infectious
reservoirs; the values reported in column 3 of S1 Table are that of the sum total amount
of bacteria across both reservoirs for each of the three model runs.

Basic reproductive ratio – R0

The numeric value for the basic reproductive ratio R0 of V. cholera referenced in the
main text, and used as part of our sensitivity analysis, was derived following the
methods of Diekmann et. al. 2009 [1].
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Total infected cases Total recovered cases
Total bacterial count

(WH+WL)

No direct infection
η = 0

1.55 · 107 1.04 · 107 8.99 · 1011

direct infection
η = nominal value

7.74 · 107 5.24 · 107 4.53 · 1012

direct infection &
0.5x water consumption

3.20 · 107 2.88 · 107 2.51 · 1012

S1 Table. In S1 Table we present the summed total number of counts for all nine
dynamic cases of this model considered in Fig 3. Of note, the values reported in column
3 of S1 Table are that of the sum total amount of bacteria across both reservoirs for
each of the three model runs.

Firstly, we construct the arrays t = (t0, t1, ..., tm) and σ = (σ0, σ1, ..., σm). The ith

element of t, denoted ti, is defined to be the rate term associated with the flow of new
infection into the ith compartment. That is, the flow of infection between two infected
compartments is not included in t. The ith element of σ, denoted σi, is defined to be
the sum of all other rate terms associated with flows into or out of the ith compartment.
That is, the total rate of change of the ith compartment is given by ti + σi. In
calculating R0, it suffices to restrict the index i in ti and σi to infected compartments
only. In the case of V. cholerae, these are the compartments I, A, WL, and WH . Below
we present the elements of t and σ at the disease free equilibrium.

t =



π(A+I)ηN(1−p)(µ+ε)
µ(µ+τ+ε) + παN(1−p)WH(µ+ε)

µκH(µ+τ+ε) + παN(1−p)WL(µ+ε)
µκL(µ+τ+ε)

πηNp(A+I)(µ+ε)
µ(µ+τ+ε) + παNpWH(µ+ε)

µκH(µ+τ+ε) + παNpWL(µ+ε)
µκL(µ+τ+ε)

0

AξA
W + I(θψ−θ+1)ξS

W


σ =


I (γθλ+ γ(1 − θ) + µc + µ)

A(γ + µ)

−χWH + δWL

χWH



We calculate the corresponding T and Σ matrices. These are m×m matrices (in
this case m = 4) defined by,

Tij =
∂ti
∂Xj

(x0)

Σij =
∂σi
∂Xj

(x0)

where Xj is the jth agent, selected from the m agents associated with t and σ, and
x0 is the disease-free equilibrium of the model. Calculating these derivatives for the V.
cholera model one finds,
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T =



πηN(1−p)(µ+ε)
µ(µ+τ+ε)

πηN(1−p)(µ+ε)
µ(µ+τ+ε)

παN(1−p)(µ+ε)
µκL(µ+τ+ε)

παN(1−p)(µ+ε)
µκH(µ+τ+ε)

πηNp(µ+ε)
µ(µ+τ+ε)

πηNp(µ+ε)
µ(µ+τ+ε)

παNp(µ+ε)
µκL(µ+τ+ε)

παNp(µ+ε)
µκH(µ+τ+ε)

0 0 0 0

(θψ−θ+1)ξS
W

ξA
W 0 0



Σ =



γθλ+ γ(1 − θ) + µc + µ 0 0 0

0 γ + µ 0 0

0 0 δ −χ

0 0 0 χ



Next we calculate the inverse of the matrix Σ. For our case this turns out to be,

Σ−1 =


1

γθ(1−λ)−µc−γ−µ 0 0 0

0 1
γ+µ 0 0

0 0 1
δ

1
δ

0 0 0 1
χ



We then calculate the matrix product −T · Σ−1.

−T · Σ−1 =



πηN(1−p)(µ+ε)
µ(µ+τ+ε)(γθ(λ−1)+µc+γ+µ)

πηN(1−p)(µ+ε)
µ(γ+µ)(µ+τ+ε)

παN(1−p)(µ+ε)
δµκL(µ+τ+ε)

παN(1−p)(µ+ε)(χκH+δκL)
δµχκHκL(µ+τ+ε)

πηNp(µ+ε)
µ(µ+τ+ε)(γθ(λ−1)+µc+γ+µ)

πηNp(µ+ε)
µ(γ+µ)(µ+τ+ε)

παNp(µ+ε)
δµκL(µ+τ+ε)

παNp(µ+ε)(χκH+δκL)
δκHκLµχ(µ+τ+ε)

0 0 0 0

(θψ+1−θ)ξS
W (γθ(λ−1)+µc+γ+µ)

ξA
W (γ+µ) 0 0



Due to its analytic complexity, an analytic expression for R0 was not explicitly
determined. Instead the characteristic polynomial of −T · Σ−1 from which the
maximum eigenvalue of this expression, was numerically determined.
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Jacobian ODE system analysis & related values



− Iγ(WH+µ)+γµ(I+N)+(WH+µ)(I+N)(R(ε+κL)+S+α)
(WH+µ)(I+N) −Rθ −Rθ µC τ − WHγθ

(WH+µ)2
− Nγθ

(I+N)2

(A−1)(−Iγ(WH+µ)+R(WH+µ)(I+N)(ε+κL)(WLκHξA+α−κH(ξA−1)+φ)−γµ(I+N))
(WH+µ)(I+N) Rθ (A− 1) (WLκHξA + α− κH (ξA − 1) + φ) Rθ (A− 1) (WLκHξA + α− κH (ξA − 1) + φ) 0 0 −WHγθ(A−1)

(WH+µ)2
−Nγθ(A−1)

(I+N)2

A(Iγ(WH+µ)+R(WH+µ)(I+N)(ε+κL)+γµ(I+N))
(WH+µ)(I+N) ARθ ARθ − α− κH 0 0 AWHγθ

(WH+µ)2
ANγθ
(I+N)2

0 κH (WLξA − ξA + 1) κH −α− µC 0 0 0
S 0 0 0 −α− τ 0 0

0 ω(ξAξS−ξA+1)
π

W
π 0 0 −V 0

0 0 0 0 0 V −δ



Here we present both a symbolic and numeric form of the Jacobian Matrix of the V.
cholerea ODE system, the numeric form being at the disease-free equilibrium. The
eigenvalues for the disease-free Jacobian are predominantly non-positive but include 2
positive values.



−0.25004 −0.35399 −2.7317 0.00342 0.00137 0.0 0.0
0.0 0.08194 0.0 0.0 0.0 0.0 0.0
0.0 0.0 2.53166 0.0 0.0 0.0 0.0
0.0 0.226 0.2 −0.00347 0.0 0.0 0.0
0.25 0.0 0.0 0.0 −0.00141 0.0 0.0
0.0 16501.33333 17.33333 0.0 0.0 −1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 −0.03333



Above we present the numeric form of the DFE Jacobian Matrix. This was
calculated using the nominal model parameters applied throughout the simulation.
Below are the eigenvalues corresponding to this matrix.

−0.0035, −0.2514, 0.0, −0.0333, −1.0, 2.5317, 0.082

As with any set of ordinary differential equations, the Jacobian Matrix represents a
linear approximation of the flow of the system in phase space at the selected point. The
eigenvectors give the direction of flow and the sign of the associated eigenvalues
indicates whether the flow is toward or away from the selected point. Given that the
Jacobian Matrix is computed at the disease-free equilibrium and there exists positive
eigenvalues, we can say that the DFE is an unstable equilibrium (given the nominal
chosen model parameters) and the system tends not to equilibriate to the DFE point in
phase space [2, 3]. This is consistent with an R0 value greater than one.
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