Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device

Siyuan Xu^a, Takasi Nisisako^{b*}

^a Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
^b Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
*To whom correspondence should be addressed.

Electronic Supplementary Information

Email: nisisako.t.aa@m.titech.ac.jp

Supplementary figures

Figure S1 Flow pattern diagrams for producing biphasic droplets with different silicone oil viscosities: (a) 20 cSt; (b) 50 cSt; (c) 100 cSt.

Figure S2 Particles obtained using different tube length (a) 5 cm, (b) 150 cm. $Q_m:Q_s=1:1$. $Q_{d, \text{ total}} = 1.0 \text{ mL h}^{-1}$, $Q_c = 6.0 \text{ mL h}^{-1} \times 2$. Scale bar: 200 µm.

Supplemental Movie Caption

FF_Janus01.mov: Movie clip of the formation of Janus droplets at a flow-focusing microfluidic geometry, recorded at 10,000 fps. Flow rates of monomer (Q_m) and silicone oil (Q_s) are $Q_m = Q_s = 0.5$ mL h⁻¹. Flow rate of PVA aqueous phase (Q_c) is $Q_c = 6.0$ mL h⁻¹ × 2.

FF_Janus02.mov: Movie clip of the formation of Janus droplets at a flow-focusing microfluidic geometry, recorded at 10,000 fps. Flow rates are $Q_m = 0.1 \text{ mL h}^{-1}$, $Q_s = 0.9 \text{ mL h}^{-1}$, and $Q_c = 6.0 \text{ mL h}^{-1} \times 2$.

FF_Janus03.mov: Movie clip of the formation of Janus droplets at a flow-focusing microfluidic geometry, recorded at 10,000 fps. Flow rates are $Q_m = 0.2 \text{ mL h}^{-1}$, $Q_s = 0.8 \text{ mL h}^{-1}$, and $Q_c = 6.0 \text{ mL h}^{-1} \times 2$.