Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease

Lang et al.

Supplementary Information

#### **General Experimental Information**

Commercially available chemical reagents, purchased from *Sigma-Aldrich*, *Alfa Aesar*, *TCI* and *ACROS*, were used as received without further purification. All solvents were distilled before usage and moisture-sensitive reactions were performed under nitrogen atmosphere. Analytical thin-layer chromatography (TLC) was performed using silica gel coated aluminum plates with a thickness of 0.2 mm (*Macherey-Nagel*). The compounds were visualized with a potassium permanganate stain solution containing 1.50 g KMnO<sub>4</sub>, 10.0 g K<sub>2</sub>CO<sub>3</sub> and 100 mg NaOH in 200 mL H<sub>2</sub>O. Liquid column chromatography purification was performed with silica gel 60 (40–63 µm mesh, *Macherey-Nagel*).

Nuclear magnetic resonance (NMR) spectra were recorded on a *Bruker* Avance III HD 400 at 295 K. Chemical shifts ( $\delta$ ) are given in parts per million (ppm) with respect to

the solvent residual proton signals ( $\delta$ (CDCl<sub>3</sub>) = 7.26 ppm,  $\delta$ (CD<sub>3</sub>OD) = 3.31 ppm) for <sup>1</sup>H or the resonance signals ( $\delta$ (CDCl<sub>3</sub>) = 77.16 ppm,  $\delta$ (CD<sub>3</sub>OD) = 49.00 ppm) for <sup>13</sup>C. Coupling constants (*J*) are reported in Hertz (Hz) and the multiplicity is abbreviated as s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), br d (broad doublet) etc. Signal assignment was performed with additional information of DEPT135, (<sup>1</sup>H,<sup>1</sup>H)-COSY, (<sup>1</sup>H,<sup>13</sup>C)-HSQC and (<sup>1</sup>H,<sup>13</sup>C)-HMBC. Atom numbers do not refer to the IUPAC nomenclature.

High resolution mass spectrometry (HRMS) was performed with a *Bruker* Daltonics micrOTOF-Q III (electrospray ionization, ESI) instrument.

#### Abbreviations

Boc, *tert*-butoxycarbonyl; CyH, cyclohexane; DMF, *N*,*N*-dimethylformamide; EtOAc, ethyl acetate; Grubbs 2<sup>nd</sup>, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium; MeOH, methanol; NEt<sub>3</sub>, triethylamine; rt, room temperature; TBAF, tetra-*n*-butylammonium fluoride; TBS, *tert*-butyldimethylsilyl-; TFA, trifluoroacetic acid; THF, tetrahydrofuran.

#### **Synthesis route of ω-azido-sphingosine:**

The sphingoid backbone was obtained by olefin cross-metathesis reaction using Grubbs catalyst 2<sup>nd</sup> generation, which is a known method for the synthesis of various sphingolipid derivatives<sup>1,2</sup>. An azide-tagged sphingosine analogue with a C<sub>14</sub>-backbone has already been described by Garrido et al. in 2015<sup>3</sup>. Here we synthesized a more natural  $C_{18}$  long-chain base, starting from the building blocks tert-butyl ((2S,3R)-1-((*tert*-butyldimethylsilyl)oxy)-3-hydroxypent-4-en-2-yl)carbamate (1) and 15bromopentadec-1-ene (2). The syntheses of the allylic alcohol (1) and the brominated alkene (2) were performed according to literature<sup>1,2</sup>. After metathesis reaction, the *E*-configurated alkene *tert*-butyl ((2*S*,3*R*,*E*)-18-bromo-1-((*tert*desired butyldimethylsilyl)oxy)-3-hydroxyoctadec-4-en-2-yl)carbamate (3) was isolated in 50% yield by column chromatography. Nucleophilic substitution of the terminal bromide with sodium azide in N,N-dimethylformamide afforded tert-butyl ((2S,3R,E)-18-azido-1-((*tert*-butyldimethylsilyl)oxy)-3-hydroxyoctadec-4-en-2-yl)carbamate (4) in an excellent yield. Subsequent cleavage of the silyl ether using tetra-n-butylammonium tetrahydrofuran gave diol *tert*-butyl ((2*S*,3*R*,*E*)-18-azido-1,3fluoride in dihydroxyoctadec-4-en-2-yl)carbamate (5) in quantitative yield. In the final step, a dichloromethane solution of the carbamate was treated with trifluoroacetic acid to provide  $\omega$ -azido-sphingosine (6) in 61% yield. All isolated compounds were fully characterized by a combination of <sup>1</sup>H- and <sup>13</sup>C-NMR spectroscopy and HRMS.





#### References

1. Yamamoto, T., Hasegawa, H., Hakogi, T. & Katsumura, S. Versatile synthetic method for sphingolipids and functionalized sphingosine derivatives via olefin cross metathesis. *Org Lett* 8, 5569-5572 (2006).

2. Qu, W., Ploessl, K., Truong, H., Kung, M.P. & Kung, H.F. lodophenyl tagged sphingosine derivatives: synthesis and preliminary biological evaluation. *Bioorg Med Chem Lett* 19, 3382-3385 (2009).

3. Garrido, M., Abad, J.L., Fabrias, G., Casas, J. & Delgado, A. Azide-tagged sphingolipids: new tools for metabolic flux analysis. *Chembiochem* 16, 641-650 (2015).

#### **Experimental Procedures**

## *tert*-Butyl ((*2S*,3*R*,*E*)-18-bromo-1-((*tert*-butyldimethylsilyl)oxy)-3-hydroxyoctadec-4-en-2-yl)carbamate (3)

To a solution of allylic alcohol **1** (2.00 g, 6.03 mmol, 1.00 eq.) and alkene **2** (6.98 g, 24.1 mmol, 4.00 eq.) in dry  $CH_2Cl_2$  (50 mL) was added Grubbs catalyst 2<sup>nd</sup> generation (154 mg, 181 µmol, 0.03 eq.) at rt. The reaction mixture was stirred at 50 °C for 2 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (CyH:EtOAc, 1:0 to 9:1 v/v) to give **3** (1.80 g, 3.03 mmol, 50 %) as a colourless, waxy solid.



**TLC** (CyH:EtOAc, 9:1 v/v):  $R_f = 0.25$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.74 (dtd, <sup>3</sup>J<sub>5,4</sub> = 15.4 Hz, <sup>3</sup>J<sub>5,6</sub> = 6.8 Hz, <sup>4</sup>J<sub>5,3</sub> = 1.3 Hz, 1H, H-5), 5.49 (ddt, <sup>3</sup>J<sub>4,5</sub> = 15.4 Hz, <sup>3</sup>J<sub>4,3</sub> = 5.9 Hz, <sup>4</sup>J<sub>4,6</sub> = 1.3 Hz, 1H, H-4), 5.23 (br d, <sup>3</sup>J<sub>NH,2</sub> = 8.2 Hz, 1H, NH), 4.16–4.20 (m, 1H, H-3), 3.93 (dd, <sup>2</sup>J<sub>1,1</sub> = 10.3 Hz, <sup>3</sup>J<sub>1,2</sub> = 3.0 Hz, 1H, H-1), 3.74 (br dd, <sup>2</sup>J<sub>1,1</sub> = 10.3 Hz, <sup>3</sup>J<sub>1,2</sub> = 2.6 Hz, 1H, H-1), 3.54–3.58 (m, 1H, H-2), 3.40 (t, <sup>3</sup>J<sub>18,17</sub> = 6.9 Hz, 2H, H-18), 3.33 (br d, <sup>3</sup>J<sub>OH,3</sub> = 7.5 Hz, 1H, Other 2.02, 2.07 (m, 2H, H, C), 1.91 (1.92 (m, 2H, H, 17), 1.44 (s, 0H, H, 2H), 1.25 (m, 14.2))

OH), 2.02–2.07 (m, 2H, H-6), 1.81–1.88 (m, 2H, H-17), 1.44 (s, 9H, H-3'), 1.25–1.42 (m, 20H, H-7–16), 0.89 (s, 9H, H-3''), 0.06 (s, 3H, H-1''), 0.06 (s, 3H, H-1''); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.9 (C-1'), 133.2 (C-5), 129.6 (C-4), 79.5 (C-2'), 74.8 (C-3), 63.6 (C-1), 54.6 (C-2), 34.2 (C-18), 33.0 (C-17), 32.4 (C-6), 29.8, 29.7, 29.7, 29.6, 29.6, 29.3, 28.9, 28.3 (overall 10C, C-7–16), 28.5 (3C, C-3'), 25.9 (3C, C-3''), 18.2 (C-2''), -5.5 (C-1''), -5.5 (C-1''); HRMS (m/z): [M+Na]<sup>+</sup> calcd. for C<sub>29</sub>H<sub>58</sub>BrNNaO<sub>4</sub>Si, 614.3211; found, 614.3223.

#### tert-Butyl ((2S,3R,E)-18-azido-1-((tert-butyldimethylsilyl)oxy)-3-hydroxyoctadec-4-en-2-yl)carbamate (4)

To a solution of bromide 3 (1.00 g, 1.69 mmol, 1.00 eq.) in DMF (20 mL) was added NaN<sub>3</sub> (329 mg, 5.06 mmol, 3.00 eq.). The reaction mixture was stirred at 70 °C for 18 h, cooled to rt and then H<sub>2</sub>O (100 mL) was added. After the extraction with EtOAc (5 x 30 mL), the combined organic phases were washed with brine (20 mL) and dried  $(MgSO_{4})$ . The solvents were removed under reduced pressure to give 4 (930 mg, 1.68 mmol, 99 %) as a colourless, waxy solid.





**TLC** (CyH:EtOAc, 9:1 v/v):  $R_f = 0.25$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.74 (dtd, <sup>3</sup>J<sub>5.4</sub> = 15.3) Hz,  ${}^{3}J_{5.6} = 6.8$  Hz,  ${}^{4}J_{5.3} = 1.2$  Hz, 1H, H-5), 5.49 (ddt,  ${}^{3}J_{4.5} = 15.3$  Hz,  ${}^{3}J_{4.3} = 5.9$  Hz,  ${}^{4}J_{4.6} = 1.2$ 1.3 Hz, 1H, H-4), 5.23 (br d, <sup>3</sup>J<sub>NH.2</sub> = 8.2 Hz, 1H, NH), 4.17–4.19 (m, 1H, H-3), 3.92 (dd,  $^{2}J_{1,1} = 10.3 \text{ Hz}, {}^{3}J_{1,2} = 3.0 \text{ Hz}, 1\text{H}, H-1$ ), 3.74 (br dd,  ${}^{2}J_{1,1} = 10.3 \text{ Hz}, {}^{3}J_{1,2} = 2.5 \text{ Hz}, 1\text{H}, H-1$ ), 3.54–3.57 (m, 1H, H-2), 3.33 (br s, 1H, OH), 3.24 (t, <sup>3</sup>J<sub>18.17</sub> = 7.0 Hz, 2H, H-18), 2.01–2.07 (m, 2H, H-6), 1.55–1.62 (m, 2H, H-17), 1.44 (s, 9H, H-3'), 1.25–1.38 (m, 20H, H-7–16), 0.89 (s, 9H, H-3''), 0.06 (s, 3H, H-1''), 0.05 (s, 3H, H-1''); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 155.9 (C-1'), 133.2 (C-5), 129.6 (C-4), 79.5 (C-2'), 74.8 (C-3), 63.6 (C-1), 54.6 (C-2), 51.6

(C-18), 32.4 (C-6), 29.8, 29.7, 29.7, 29.6, 29.6, 29.6, 29.3, 29.3, 26.8 (overall 10C, C-7-16), 29.0 (*C*-17), 28.5 (3*C*, *C*-3'), 25.9 (3*C*, *C*-3''), 18.2 (*C*-2''), -5.5 (*C*-1''), -5.5 (*C*-1''); **HRMS** (m/z):  $[M+Na]^+$  calcd. for  $C_{29}H_{58}N_4NaO_4Si$ , 577.4120; found, 577.4126.

*tert*-Butyl ((2*S*,3*R*,*E*)-18-azido-1,3-dihydroxyoctadec-4-en-2-yl)carbamate (5) To a solution of silyl ether **4** (1.84 g, 3.32 mmol, 1.00 eq.) in dry THF (35 mL) was added TBAF (1 m in THF, 3.98 mL, 3.98 mmoL, 1.20 eq.) at 0 °C. The ice bath was removed and the reaction mixture was stirred at rt for 30 min. After the addition of H<sub>2</sub>O (50 mL) and brine (50 mL), the aqueous layer was extracted with EtOAc (5 x 50 mL). The combined organic phases were washed with brine (25 mL), dried (MgSO<sub>4</sub>) and the solvents were removed under reduced pressure. The residue was purified by column chromatography on silica gel (CyH:EtOAc, 2:1 v/v) to give **5** (1.46 g, 3.31 mmol, quant.) as a colourless, waxy solid.



**TLC** (CyH:EtOAc, 2:1 v/v):  $R_f = 0.20$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 5.75 (dtd, <sup>3</sup>J<sub>5,4</sub> = 15.3 Hz, <sup>3</sup>J<sub>5,6</sub> = 6.8 Hz, <sup>4</sup>J<sub>5,3</sub> = 1.2 Hz, 1H, H-5), 5.50 (ddt, <sup>3</sup>J<sub>4,5</sub> = 15.3 Hz, <sup>3</sup>J<sub>4,3</sub> = 6.4 Hz, <sup>4</sup>J<sub>4,6</sub> = 1.2 Hz, 1H, H-4), 5.34 (br d, <sup>3</sup>J<sub>NH,2</sub> = 7.9 Hz, 1H, NH), 4.27–4.29 (m, 1H, H-3), 3.91 (dd, <sup>2</sup>J<sub>1,1</sub> = 11.3 Hz, <sup>3</sup>J<sub>1,2</sub> = 3.7 Hz, 1H, H-1), 3.68 (dd, <sup>2</sup>J<sub>1,1</sub> = 11.3 Hz, <sup>3</sup>J<sub>1,2</sub> = 3.6 Hz, 1H, H-1), 3.56–3.59 (m, 1H, H-2), 3.24 (t, <sup>3</sup>J<sub>18,17</sub> = 7.0 Hz, 2H, H-18), 3.00 (br s, 2H, 2 x OH), 2.01–2.06 (m, 2H, H-6), 1.54–1.62 (m, 2H, H-17), 1.43 (s, 9H, H-3'), 1.24–1.38 (m, 20H, H-7–16); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 156.4 (C-1'), 134.2 (C-5), 129.0 (C-4), 79.9 (C-2'), 74.8 (C-3), 62.7 (C-1), 55.5 (C-2), 51.6 (C-18), 32.4 (C-6), 29.7, 29.7, 29.7, 29.6, 29.6, 29.3, 29.3, 29.2, 26.8 (overall 10C, C-7–16), 28.9 (C-17), 28.5 (3C, C-3'); HRMS (m/z): [M+Na]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>44</sub>N<sub>4</sub>NaO<sub>4</sub>, 463.3255; found, 463.3250.

(2S,3R,E)-2-Amino-18-azidooctadec-4-ene-1,3-diol /  $\omega$ -azido-sphingosine (6) To a solution of carbamate 5 (900 mg, 2.04 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added TFA (4.72 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h and subsequently treated with H<sub>2</sub>O (100 mL) and 1 M aq. NaOH (100 mL). After the extraction with EtOAc (10 x 50 mL), the combined organic phases were washed with brine (10 mL), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH<sub>2</sub>Cl<sub>2</sub>:MeOH, 9:1 v/v) to give **6** (423 mg, 1.24 mmol, 61 %) as a colourless, waxy solid.



**TLC** (CH<sub>2</sub>Cl<sub>2</sub>:MeOH:NEt<sub>3</sub>, 10:1:0.1 v/v): R<sub>f</sub> = 0.08; <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD):  $\delta$  5.76 (dtd, <sup>3</sup>J<sub>5,4</sub> = 15.3 Hz, <sup>3</sup>J<sub>5,6</sub> = 6.8 Hz, <sup>4</sup>J<sub>5,3</sub> = 1.0 Hz, 1H, H-5), 5.49 (ddt, <sup>3</sup>J<sub>4,5</sub> = 15.3 Hz, <sup>3</sup>J<sub>4,3</sub> = 7.3 Hz, <sup>4</sup>J<sub>4,6</sub> = 1.4 Hz, 1H, H-4), 4.02–4.06 (m, 1H, H-3), 3.70 (dd, <sup>2</sup>J<sub>1,1</sub> = 11.0 Hz, <sup>3</sup>J<sub>1,2</sub> = 4.4 Hz, 1H, H-1), 3.53 (dd, <sup>2</sup>J<sub>1,1</sub> = 11.0 Hz, <sup>3</sup>J<sub>1,2</sub> = 7.3 Hz, 1H, H-1), 3.28 (t, <sup>3</sup>J<sub>18,17</sub> = 6.9 Hz, 2H, H-18), 2.85 (ddd, <sup>3</sup>J<sub>2,1</sub> = 7.3 Hz, <sup>3</sup>J<sub>2,3</sub> = 5.8 Hz, <sup>3</sup>J<sub>2,1</sub> = 4.4 Hz, 1H, H-2), 2.06–2.11 (m, 2H, H-6), 1.55–1.62 (m, 2H, H-17), 1.30–1.44 (m, 20H, H-7–16); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD):  $\delta$  135.6 (*C*-5), 130.3 (*C*-4), 74.2 (*C*-3), 63.2 (*C*-1), 58.1 (*C*-2), 52.4 (*C*-18), 33.4 (*C*-6), 30.8, 30.7, 30.7, 30.6, 30.4, 30.3, 30.3, 27.8 (overall 10C, *C*-7–16), 29.9 (*C*-17);

#### **HRMS** (m/z): $[M+H]^+$ calcd. for $C_{18}H_{37}N_4O_2$ , 341.2911; found, 341.2917.

a





# Control

b





#### **Supplementary Figure 1: Efficiency of macrophage depletion by clodronate**

**a**&**b**: Immunofluorescence of livers (a) and spleens (b) from wild-type (WT) mice that were pretreated with control-liposomes and WT mice that were pretreated with clodronate-liposomes (day -3), infected with 6×10<sup>6</sup> tissue culture infection dose 50 (TCID<sub>50</sub>) HSV-1 and analyzed after 24 h (n = 3, blue represents Hoechst staining, scale bar 100 µm). c: Immunofluorescence of livers from WT mice that were pretreated with clodronateliposomes (day -3), infected with  $8 \times 10^7$  TCID<sub>50</sub> HSV-1 and analyzed after 1 h (n = 3, blue represents Hoechst staining, scale bar 100 μm).





#### Supplementary Figure 2: Herpes simplex virus type 1 (HSV-1) infection of primary fibroblasts

Representative electron microscopy images of wild-type (WT) fibroblasts infected with HSV-1 (MOI 250) analyzed after 30 minutes (n = 106 images from three independent experiments, scale bar 5  $\mu$ m). Detail shows HSV-1 close to the nucleus.





WT, HSV-1 Samhd1<sup>-/-</sup>, HSV-1 Ifnar<sup>-/-</sup>, HSV-1 MyD88<sup>-/-</sup>x Trif<sup>-/-</sup>x Cardif<sup>-/-</sup>, HSV-1

## Supplementary Figure 3: Real-time polymerase chain reaction (RT-PCR) for herpes simplex virus type 1 (HSV-1) in mice with different innate immune deficiencies

RT-PCR of lymph nodes (LN), spleens and livers from wild-type (WT; n = 9), Samhd1<sup>-/-</sup> (n = 4), Ifnar1<sup>-/-</sup> (n = 4), and  $MyD88^{-/-} x Trif^{-/-} x Cardif^{-/-}$  (n = 3) mice that were infected with 2×10<sup>6</sup> tissue culture infection dose 50 (TCID<sub>50</sub>) HSV-1 and analyzed on day 3 (2way Anova [Tukey's multiple comparison]). All data are shown as mean +/- SEM. \* equals p ≤ 0.05. \*\* equals p ≤ 0.01. # equals p ≤ 0.001. ## equals p ≤ 0.001.

|  |  | • |  |
|--|--|---|--|

a



Primary macrophages



















untrea mye S N Rin 90 30

Supplementary Figure 4: Mass spectrometric analysis and immunofluorescence microscopy of sphingolipids after treatments in different cell lines

**a**: Mass spectrometric analysis of sphingolipids in Raw264.7 cells (n = 6-12) and bone marrow derived macrophages (BMDMs; n = 4) that were incubated for 30 minutes with 250  $\mu$ M D-erythro-sphingosine (Sph), 100 µM of sphingosine kinase inhibitor (SKI), 250 U/L ceramidase (CDase) or 6.5 U/ml sphingomyelinase (SMase) and analyzed after 24 h (Raw264.7 cells, one-way Anova [Dunnett's /Kruskal-Wallis multiple comparison]) or 6h (BMDMs, one-way Anova [Dunnett's multiple comparison]). (b) BMDMs were treated for 30 minutes with 0.3 µg ceramidase, 90 minutes with 1.56 U / 250 $\mu$ L sphingomyelinase or left untreated (n = 3, one-way Anova [Tukey's multiple comparison]). All data are shown as mean +/- SD. \* equals  $p \le 0.05$ , \*\* equals  $p \le 0.01$ , # equals  $p \le 0.001$ , # equals  $p \le 0.001$ , # equals  $p \le 0.01$ , # equals  $p \ge 0.01$ , # equals 0.001, ## equals  $p \le 0.0001$ .

|  | J <b>L</b> |  | 240 | JUIJ | Υ. |  | .0 |  |
|--|------------|--|-----|------|----|--|----|--|
|--|------------|--|-----|------|----|--|----|--|



#### Supplementary Figure 5: Expression of Asah1 in macrophages during development is dependent on IRF8 a: Real-time polymerase chain reaction (RT-PCR) results for Asah1 mRNA expression of monocytes, granulocytes and precursor cells from the myeloid lineage, isolated from wild-type (WT) and IRF8 deficient mice (n = 5-8; onetailed Student's *t*-test). **b**: Gating strategy for cell sorting. All data are shown as mean +/- SEM. \* equals $p \le 0.05$ ,

|--|

![](_page_12_Figure_1.jpeg)

#### Supplementary Figure 6: Asah1 expression in different tissues

Real-time polymerase chain reaction (RT-PCR) for *Asah1* of the indicated organs, relative to heart, derived from naïve C57BL/6 mice (n = 4-5). All data are shown as mean +/- SEM.

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_5.jpeg)

macrophages fibroblasts

![](_page_13_Picture_7.jpeg)

![](_page_13_Picture_8.jpeg)

![](_page_13_Figure_9.jpeg)

Supplementary Figure 7: Uncropped Western blots as shown in Figure 2h.

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

Supplementary Figure 8: Uncropped Western blots as shown in Figure 6d.

![](_page_15_Figure_1.jpeg)

Supplementary Figure 9: <sup>1</sup>H NMR spectrum of 3 (CDCl<sub>3</sub>, 400 MHz).

![](_page_16_Figure_1.jpeg)

|    | •••• |     | <u> </u> |      |      | 3.   | · I  | ·    | · I  | ·    |     |      |     |
|----|------|-----|----------|------|------|------|------|------|------|------|-----|------|-----|
| 34 | 33   | ppm | 29.8     | 29.6 | 29.4 | 29.2 | 29.0 | 28.8 | 28.6 | 28.4 | ppm | -5.4 | ppm |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     |          |      |      | Ĩ    |      |      |      | ī    |     |      |     |
|    |      |     |          |      |      |      |      |      |      |      |     | T    |     |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     |          |      | I    |      |      |      | , 1  |      |     |      |     |
|    |      |     |          |      |      |      |      |      |      |      |     |      |     |
|    |      |     | <br>     |      |      |      |      |      |      |      |     | <br> |     |

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Supplementary Figure 10: <sup>13</sup>C NMR spectrum of 3 (CDCl<sub>3</sub>, 100 MHz).

![](_page_17_Figure_1.jpeg)

Supplementary Figure 11: <sup>1</sup>H NMR spectrum of 4 (CDCl<sub>3</sub>, 400 MHz).

| 29.8 | 29.6                                                                                                           | 29.4                                           | 29.2 | 29.0 | 28.8                                  | 28.6 | ppm | - 5 | .5 ppm |
|------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|------|---------------------------------------|------|-----|-----|--------|
|      |                                                                                                                |                                                |      |      |                                       |      |     |     |        |
|      |                                                                                                                |                                                |      |      |                                       |      |     |     |        |
|      |                                                                                                                |                                                |      |      |                                       |      |     |     |        |
|      |                                                                                                                |                                                |      |      |                                       |      |     |     |        |
|      |                                                                                                                |                                                |      |      |                                       |      |     |     |        |
|      |                                                                                                                |                                                |      | 1    |                                       |      |     |     |        |
|      | and and the second state and a state of the second state of the second state of the second state of the second | 2014-09-19-19-19-19-19-19-19-19-19-19-19-19-19 |      |      | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ |      |     |     |        |
|      |                                                                                                                |                                                |      |      |                                       |      |     |     |        |

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Supplementary Figure 12: <sup>13</sup>C NMR spectrum of 4 (CDCl<sub>3</sub>, 100 MHz).

![](_page_19_Figure_1.jpeg)

Supplementary Figure 13: <sup>1</sup>H NMR spectrum of 5 (CDCl<sub>3</sub>, 400 MHz).

37 • 156

![](_page_20_Picture_3.jpeg)

![](_page_20_Figure_5.jpeg)

| <br> |  |  |  |
|------|--|--|--|
|      |  |  |  |
| <br> |  |  |  |
|      |  |  |  |

| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|---|-----|
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|---|-----|

Supplementary Figure 14: <sup>13</sup>C NMR spectrum of 5 (CDCl<sub>3</sub>, 100 MHz).

![](_page_21_Figure_1.jpeg)

Supplementary Figure 15: <sup>1</sup>H NMR spectrum of 6 (CD<sub>3</sub>OD, 400 MHz).

V

![](_page_22_Figure_1.jpeg)

| ļ | 30.8 | 30.6 | 30.4 | 30.2 | 30.0 | ppm   |  |
|---|------|------|------|------|------|-------|--|
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      | Γ ι Ι |  |
|   |      |      |      |      |      |       |  |
|   |      |      |      |      |      |       |  |

Supplementary Figure 16: <sup>13</sup>C NMR spectrum of 6 (CD<sub>3</sub>OD, 100 MHz).

#### Mass Spectrum SmartFormula Report

| Analysis Info                                  |                                                 |                                                                       |                                                 | Acquisition Da                       | te 12/9/2016                                | 9:37:06 AM                               |  |
|------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------|--|
| Analysis Name                                  | D:\Data\Spektren2016\2016                       | 6_3206_SEI_24_01_1010.d                                               |                                                 |                                      |                                             |                                          |  |
| Method<br>Sample Name                          | automation_esi_tune_pos_<br>2016_3206_SEI       | mid_ja.m                                                              |                                                 | Operator<br>Instrument               | J.Adelmann<br>micrOTOF-Q III                | 8228888.20516                            |  |
| Comment                                        | Fink Julian<br>JF021<br>6 pmol/ul in MeCN/CHCl3 |                                                                       |                                                 |                                      |                                             |                                          |  |
| Acquisition Parameter                          |                                                 |                                                                       |                                                 |                                      |                                             |                                          |  |
| Source Type<br>Focus<br>Scan Begin<br>Scan End | ESI<br>Not active<br>50 m/z<br>3500 m/z         | lon Polarity<br>Set Funnel 1 RF<br>Set Funnel 2 RF<br>Set Hexapole RF | Positive<br>300.0 Vpp<br>400.0 Vpp<br>500.0 Vpp | Set Ne<br>Set Dr<br>Set Dr<br>Set Dr | ebulizer<br>y Heater<br>y Gas<br>vert Valve | 0.7 Bar<br>200 °C<br>5.0 I/min<br>Source |  |
| Intens.<br>x104                                |                                                 |                                                                       |                                                 | 201                                  | .6_3206_SEI_24_01_1010.c                    | d: +MS, 0.7-0.8min #44-48                |  |

616.<mark>3217</mark>

![](_page_23_Figure_4.jpeg)

Supplementary Figure 17: Mass spectrum of 3 (ESI<sup>+</sup>).

|                                                |                                               | Mass Spectrum S                                                       | SmartFormula                                    | a Report                             |                                                |                                          |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------|
| Analysis Info                                  |                                               |                                                                       |                                                 | Acquisition Da                       | te 1/23/2017                                   | 1:30:13 PM                               |
| Analysis Name                                  | D:\Data\Spektren2017\2                        | 017_0169_SEI.d                                                        |                                                 |                                      |                                                |                                          |
| Method<br>Sample Name                          | tune_wide.m<br>2017_0169_SEI                  |                                                                       |                                                 | Operator<br>Instrument               | J.Adelmann<br>micrOTOF-Q III                   | 8228888.20516                            |
| Comment                                        | Fink Julian<br>JF037<br>6pmol/uL in MeCN/CHCI | 3                                                                     |                                                 |                                      |                                                |                                          |
| Acquisition Param                              | eter                                          |                                                                       |                                                 |                                      |                                                |                                          |
| Source Type<br>Focus<br>Scan Begin<br>Scan End | ESI<br>Not active<br>50 m/z<br>4000 m/z       | Ion Polarity<br>Set Funnel 1 RF<br>Set Funnel 2 RF<br>Set Hexapole RF | Positive<br>200.0 Vpp<br>300.0 Vpp<br>400.0 Vpp | Set Ne<br>Set Dr<br>Set Dr<br>Set Di | ebulizer<br>ry Heater<br>ry Gas<br>ivert Valve | 0.3 Bar<br>200 °C<br>4.0 I/min<br>Source |
| Intens                                         | 4000 m/z                                      |                                                                       | 400.0 vpp                                       | Set Di                               |                                                | U LMS 0 8 0 8min #45 46                  |

![](_page_24_Figure_3.jpeg)

Supplementary Figure 18: Mass spectrum of 4 (ESI<sup>+</sup>).

#### Mass Spectrum SmartFormula Report

| Analysis Info            |                                               |                           |           | Acquisition Date 2/9/2017 2:33:17 PM |                          |                           |  |  |
|--------------------------|-----------------------------------------------|---------------------------|-----------|--------------------------------------|--------------------------|---------------------------|--|--|
| Analysis Name            | D:\Data\Spektren2017\2                        | 017_0337_SEI_90_01_1387.d |           |                                      |                          |                           |  |  |
| Method                   | automation_esi_tune_po                        | os_mid_ja.m               |           | Operator                             | J.Adelmann               |                           |  |  |
| Sample Name              | 2017_0337_SEI                                 |                           |           | Instrument                           | micrOTOF-Q III           | 8228888.20516             |  |  |
| Comment                  | Fink Julian<br>JF047<br>4 pMol/uL in MeCN/CHC | 213                       |           |                                      |                          |                           |  |  |
| <b>Acquisition Param</b> | eter                                          |                           |           |                                      |                          |                           |  |  |
| Source Type              | ESI                                           | Ion Polarity              | Positive  | Set Ne                               | ebulizer                 | 0.7 Bar                   |  |  |
| Focus                    | Not active                                    | Set Funnel 1 RF           | 300.0 Vpp | Set Dr                               | ry Heater                | 200 °C                    |  |  |
| Scan Begin               | 50 m/z                                        | Set Funnel 2 RF           | 400.0 Vpp | Set Dr                               | ry Gas                   | 5.0 l/min                 |  |  |
| Scan End                 | 3500 m/z                                      | Set Hexapole RF           | 500.0 Vpp | Set Di                               | vert Valve               | Source                    |  |  |
| Intens.<br>x104          |                                               |                           |           | 201                                  | 17_0337_SEI_90_01_1387.c | d: +MS, 0.4-0.5min #23-27 |  |  |
|                          | 463.3250                                      |                           |           |                                      |                          |                           |  |  |

![](_page_25_Figure_3.jpeg)

Bruker Compass DataAnalysis 4.2 printed: 2/9/2017 3:21:48 PM by: J.Adelmann Page 1 of 1

Supplementary Figure 19: Mass spectrum of 5 (ESI<sup>+</sup>).

|                       |                                           | Mass Spectrum Si         | martFormula | Report                                       |                                     |
|-----------------------|-------------------------------------------|--------------------------|-------------|----------------------------------------------|-------------------------------------|
| Analysis Info         |                                           |                          |             | -<br>Acquisition Date 2/16                   | /2017 1:20:24 PM                    |
| Analysis Name         | D:\Data\Spektren2017\20                   | 17 0514 SEI 11 01 1441.d |             |                                              |                                     |
| Method<br>Sample Name | automation_esi_tune_pos<br>2017_0514_SEI  | _low_ja_meoh.m           |             | Operator J.Adelmann<br>Instrument micrOTOF-C | 2 III 8228888.20516                 |
| Comment               | Fink Julian<br>JF052<br>3 pMol/uL in MeOH |                          |             |                                              |                                     |
| Acquisition Paran     | neter                                     |                          |             |                                              |                                     |
| Source Type           | ESI                                       | Ion Polarity             | Positive    | Set Nebulizer                                | 0.7 Bar                             |
| Focus                 | Not active                                | Set Funnel 1 RF          | 100.0 Vpp   | Set Dry Heater                               | 200 °C                              |
| Scan Begin            | 50 m/z                                    | Set Funnel 2 RF          | 300.0 Vpp   | Set Dry Gas                                  | 5.0 l/min                           |
| Scan End              | 5000 m/z                                  | Set Hexapole RF          | 200.0 Vpp   | Set Divert Valve                             | Source                              |
| Intens.               |                                           |                          |             | 2017 0514 SEL 11 01                          | 1441 d + MS 0.6-0.6 min #37-38      |
| x104-                 |                                           |                          |             | 2017_0014_001_11_01_                         | _1441.0. 11415, 0.0 0.011111 #57 50 |
| - 34:                 | 1.2917                                    |                          |             |                                              |                                     |

![](_page_26_Figure_2.jpeg)

Supplementary Figure 20: Mass spectrum of 6 (ESI<sup>+</sup>).

#### **Supplementary Table 1**

b

| GROUP         | RANK<br>(NES) NAME                                                   | SIZE | ES         | NES       | FDR q-val   | FWER<br>p-val | RANK<br>AT MAX LEADING EDGE                          |
|---------------|----------------------------------------------------------------------|------|------------|-----------|-------------|---------------|------------------------------------------------------|
|               | 1 GO AP TYPE MEMBRANE COAT ADAPTOR COMPLEX                           | 37   | 0,6817025  | 2,139373  | 0,009       | Ċ             | ) 4769 tags=73%, list=20%, signal=91%                |
|               | 2 GO CLATHRIN COATED VESICLE                                         | 140  | 0,4177536  | 2,1109693 | 0,009       | 0,009         | 3360 tags=36%, list=14%, signal=42%                  |
|               | 6 GO CLATHRIN ADAPTOR COMPLEX                                        | 27   | 0,6502399  | 2,0203426 | 0.018837286 | 0,063         | 8 4769 tags=70%, list=20%, signal=87%                |
| clathrin-     | 15 GO CLATHRIN COAT                                                  | 45   | 0.6242246  | 1.87694   | 0.025962245 | 0.153         | 4769 tags=67%. list=20%. signal=83%                  |
| coated        | 16 GO TRANS GOLGI NETWORK TRANSPORT VESICLE                          | 26   | 0.50127023 | 1.8702269 | 0.025858812 | 0.17          | 7 3360 tags=42%. list=14%. signal=49%                |
| membranes     | 19 GO COATED VESICLE                                                 | 205  | 0,33293936 | 1,8079635 | 0.03574674  | 0,243         | 3360 tags=29%, list=14%, signal=33%                  |
|               | 20 GO CLATHRIN COATED VESICLE MEMBRANE                               | 66   | 0,42314196 | 1,8042084 | 0,03488713  | 0,243         | 3 3124 tags=36%, list=13%, signal=42%                |
|               | 34 GO COATED MEMBRANE                                                | 81   | 0,5143869  | 1,724187  | 0,0398519   | 0,381         | 4845 tags=51%, list=20%, signal=63%                  |
|               | 46 GO CLATHRIN VESICLE COAT                                          | 22   | 0,56756634 | 1,6978397 | 0,035762247 | 0,429         | 3019 tags=55%, list=12%, signal=62%                  |
| endocytosis   | 30 GO_PHAGOCYTIC_VESICLE                                             | 73   | 0,52179927 | 1,7359599 | 0,03921569  | 0,35          | 5 4086 tags=51%, list=17%, signal=61%                |
|               | 37 GO_PHAGOCYTIC_VESICLE_MEMBRANE                                    | 46   | 0,53581667 | 1,7175857 | 0,03818942  | 0,388         | 4086 tags=50%, list=17%, signal=60%                  |
|               | 50 GO_ENDOCYTIC_VESICLE                                              | 223  | 0,34582347 | 1,6779151 | 0,041357946 | 0,499         | 9 3881 tags=33%, list=16%, signal=39%                |
| oorly         | 3 GO_EARLY_ENDOSOME                                                  | 262  | 0,4225165  | 2,0901139 | 0,009000001 | 0,009         | 9 4259 tags=40%, list=18%, signal=48%                |
| earry         | 5 GO_EARLY_ENDOSOME_MEMBRANE                                         | 90   | 0,45907736 | 2,0442317 | 0,017993936 | 0,048         | 8 4368 tags=44%, list=18%, signal=54%                |
| endosome      | 40 GO_RETROMER_COMPLEX                                               | 19   | 0,70777726 | 1,7091843 | 0,037392348 | 0,419         | 4075 tags=68%, list=17%, signal=82%                  |
|               | 4 GO_LATE_ENDOSOME_MEMBRANE                                          | 87   | 0,49950457 | 2,0850801 | 0,009       | 0,009         | 9 4528 tags=52%, list=19%, signal=63%                |
| late          | 7 GO_LATE_ENDOSOME                                                   | 184  | 0,44429532 | 2,0017903 | 0,020909633 | 0,085         | 5 4704 tags=44%, list=19%, signal=54%                |
| endosome      | 8 GO_ENDOSOMAL_PART                                                  | 370  | 0,42579743 | 1,9757125 | 0,023100177 | 0,085         | 5 4576 tags=44%, list=19%, signal=53%                |
|               | 33 GO_RECYCLING_ENDOSOME                                             | 118  | 0,40409502 | 1,7256137 | 0,0396777   | 0,381         | 4368 tags=41%, list=18%, signal=49%                  |
|               | 9 GO_LYTIC_VACUOLE                                                   | 463  | 0,4277387  | 1,9631885 | 0,021533486 | 0,085         | 5 4530 tags=44%, list=19%, signal=53%                |
|               | 12 GO_LYTIC_VACUOLE_MEMBRANE                                         | 235  | 0,48414743 | 1,9161127 | 0,025993459 | 0,14          | 4362 tags=49%, list=18%, signal=59%                  |
| lysosome      | 26 GO_VACUOLAR_LUMEN                                                 | 104  | 0,3773395  | 1,7634717 | 0,0366276   | 0,319         | 3524 tags=38%, list=15%, signal=45%                  |
|               | 27 GO_BLOC_COMPLEX                                                   | 17   | 0,6160383  | 1,7550533 | 0,03736286  | 0,319         | 3791 tags=59%, list=16%, signal=70%                  |
|               | 38 GO_LYSOSOMAL_LUMEN                                                | 81   | 0,38517004 | 1,7134563 | 0,037687793 | 0,401         | 1 3471 tags=41%, list=14%, signal=47%                |
|               | 18 GO_REPLICATION_FORK                                               | 58   | 0,5975565  | 1,8338519 | 0,031645566 | 0,223         | 8 6436 tags=71%, list=26%, signal=96%                |
|               | 39 GO_MIDBODY                                                        | 116  | 0,35698095 | 1,7105753 | 0,03786879  | 0,419         | 9 5584 tags=46%, list=23%, signal=59%                |
| cell division | 41 GO_REPLISOME                                                      | 28   | 0,6371837  | 1,7077754 | 0,036902785 | 0,419         | 6765 tags=75%, list=28%, signal=104%                 |
|               | 42 GO_NUCLEAR_REPLICATION_FORK                                       | 38   | 0,57244664 | 1,7048541 | 0,03673616  | 0,429         | 9 6436 tags=68%, list=26%, signal=93%                |
|               | 54 GO_SPINDLE                                                        | 252  | 0,3613654  | 1,653535  | 0,048039164 | 0,579         | 9 5675 tags=42%, list=23%, signal=54%                |
| chromosomal   | I 28 GO_CHROMOSOME_CENTROMERIC_REGION                                | 158  | 0,44841677 | 1,7494394 | 0,039191/3  | 0,35          | 5584 tags=46%, list=23%, signal=59%                  |
| region        | 52 GO_CHROMOSOMAL_REGION                                             | 295  | 0,3901/215 | 1,6661352 | 0,04389605  | 0,553         | 6047 tags=44%, list=25%, signal=58%                  |
| microtubule   | 14 GO_CENTRIOLE                                                      | 86   | 0,45790482 | 1,8//48/2 | 0,02/1/3832 | 0,153         | 48/9 tags=43%, list=20%, signal=54%                  |
|               | 45 GO_MICROTUBULE_ORGANIZING_CENTER_PART                             | 123  | 0,42793038 | 1,69/9/36 | 0,03635697  | 0,429         | 5643 tags=46%, list=23%, signal=60%                  |
| proton        | 11 GO_PROTON_TRANSPORTING_TWO_SECTOR_ATPASE_COMPLEX_CATALYTIC_DOMAIN | 22   | 0,67587835 | 1,9239477 | 0,026597569 | 0,13          | 4100  tags=56%, IISt=17%, Signal=68%                 |
| comploy       | 13 GO_PROTON_TRANSPORTING_V_TYPE_ATPASE_CONFILEX                     | 42   | 0,0414103  | 1,0005471 | 0,027705144 | 0,14          | 4100  ldgs=64%, IIsl=17%, Signal=76%                 |
| comprex       | 22 CO OPCANELLE INNER MEMBRANE                                       | 42   | 0,38030893 | 1,0305505 | 0,030980838 | 0,200         | $5 - 4100 \ lags - 52\%, 11st - 17\%, signal - 05\%$ |
|               | 22 GO_ORGANELLAR_RIBOSOME                                            | 70   | 0,3901329  | 1,7873333 | 0,030073573 | 0,270         | 5 5017 tags - 40%, 11st - 24%, signal - 51%          |
|               | 31 GO MITOCHONDRIAL MEMBRANE PART                                    | 154  | 0.4452351  | 1,7425757 | 0,030528555 | 0,33          | 6149 tags=45% list=25% signal=60%                    |
|               | 32 GO_INNER_MITOCHONDRIAL_MEMBRANE_PROTEIN_COMPLEX                   | 93   | 0 4993963  | 1 7265102 | 0.040178046 | 0,37          | 7 5710 tags=46% list=24% signal=60%                  |
|               | 35 GO_INTRINSIC_COMPONENT_OF_ORGANELLE MEMBRANE                      | 237  | 0.32457468 | 1,7241015 | 0.038970415 | 0.381         | 4674 tags=33% list=19% signal=41%                    |
| mitochondria  | 43 GO MITOCHONDRIAL MATRIX                                           | 389  | 0.34331876 | 1.7011355 | 0.036091138 | 0.429         | 5166 tags=36%, list=21%, signal=45%                  |
|               | 47 GO MITOCHONDRIAL PROTEIN COMPLEX                                  | 123  | 0.44945076 | 1.6955893 | 0.03665585  | 0.475         | 6139 tags=46%. list=25%. signal=61%                  |
|               | 49 GO RESPIRATORY CHAIN                                              | 75   | 0,49076676 | 1,6788516 | 0,0411818   | 0,499         | 5710 tags=43%, list=24%, signal=56%                  |
|               | 51 GO INTRINSIC COMPONENT OF MITOCHONDRIAL MEMBRANE                  | 44   | 0,46190116 | 1,6689262 | 0,04424508  | 0,535         | 5 4932 tags=43%, list=20%, signal=54%                |
|               | 53 GO INTRINSIC COMPONENT OF MITOCHONDRIAL INNER MEMBRANE            | 17   | 0,5082864  | 1,6564015 | 0,047987744 | 0,561         | 2770 tags=41%, list=11%, signal=46%                  |
|               | 10 GO_AXON_CYTOPLASM                                                 | 31   | 0,50222677 | 1,9246219 | 0,028357327 | 0,13          | 3 3791 tags=42%, list=16%, signal=50%                |
| ungrouped     | 21 GO_IMMUNOLOGICAL_SYNAPSE                                          | 32   | 0,54109186 | 1,7903459 | 0,037997648 | 0,278         | 4488 tags=47%, list=18%, signal=57%                  |
|               | 23 GO_TRANS_GOLGI_NETWORK_MEMBRANE                                   | 64   | 0,49522012 | 1,7766278 | 0,037670236 | 0,305         | 5 3780 tags=44%, list=16%, signal=52%                |
|               | 24 GO_MICROBODY                                                      | 129  | 0,3392097  | 1,7741073 | 0,036906812 | 0,305         | 5 5560 tags=37%, list=23%, signal=48%                |
|               | 25 GO_PIGMENT_GRANULE                                                | 99   | 0,41682222 | 1,7652943 | 0,0377327   | 0,319         | 9 3780 tags=34%, list=16%, signal=41%                |
|               | 36 GO_AUTOPHAGOSOME                                                  | 68   | 0,3550243  | 1,7179679 | 0,039000235 | 0,388         | 8 4494 tags=43%, list=19%, signal=52%                |
|               | 44 GO_EXTRINSIC_COMPONENT_OF_ORGANELLE_MEMBRANE                      | 22   | 0,46452084 | 1,6993158 | 0,035895374 | 0,429         | 9 5634 tags=50%, list=23%, signal=65%                |
|               | 48 GO_PML_BODY                                                       | 87   | 0,46760246 | 1,6898024 | 0,037775308 | 0,483         | 3 5943 tags=45%, list=24%, signal=59%                |
|               | 55 GO_EXTRINSIC_COMPONENT_OF_CYTOPLASMIC_SIDE_OF_PLASMA_MEMBRANE     | 95   | 0,33212984 | 1,6519495 | 0,04801346  | 0,579         | 2920 tags=26%, list=12%, signal=30%                  |

|                | RANK  |                                       |      |             |            |             | FWER  | RANK AT |                                |
|----------------|-------|---------------------------------------|------|-------------|------------|-------------|-------|---------|--------------------------------|
| Group          | (NES) | NAME                                  | SIZE | ES          | NES        | FDR q-val   | p-val | MAX     | LEADING EDGE                   |
| extracellular  | 1     | GO_EXTRACELLULAR_MATRIX               | 403  | -0,6421122  | -2,1020749 | 0,046640944 | 0,029 | 3660    | tags=48%, list=15%, signal=55% |
| matrix         | 2     | GO_PROTEINACEOUS_EXTRACELLULAR_MATRIX | 336  | -0,65685314 | -2,0959249 | 0,027820474 | 0,038 | 3660    | tags=48%, list=15%, signal=55% |
|                | 3     | GO_ENDOPLASMIC_RETICULUM_LUMEN        | 184  | -0,5300437  | -1,9498274 | 0,04489303  | 0,11  | 3157    | tags=38%, list=13%, signal=43% |
| ER/Golgi       | 5     | GO_GOLGI_LUMEN                        | 82   | -0,5789842  | -1,8918775 | 0,046840988 | 0,181 | 3386    | tags=35%, list=14%, signal=41% |
| anchoring      | 6     | GO_CELL_SUBSTRATE_JUNCTION            | 387  | -0,38705605 | -1,8837918 | 0,045543816 | 0,199 | 3782    | tags=36%, list=16%, signal=42% |
| junctions      | 9     | GO_ANCHORING_JUNCTION                 | 469  | -0,39091176 | -1,8360764 | 0,047074653 | 0,275 | 4155    | tags=37%, list=17%, signal=44% |
|                | 7     | GO_LAMELLIPODIUM_MEMBRANE             | 18   | -0,76415986 | -1,88053   | 0,042221658 | 0,199 | 3290    | tags=72%, list=14%, signal=83% |
| projection     | 10    | GO_NEURON_PROJECTION_MEMBRANE         | 32   | -0,61009735 | -1,8091    | 0,04889716  | 0,285 | 3837    | tags=50%, list=16%, signal=59% |
| membranes      | 14    | GO_DENDRITE_MEMBRANE                  | 18   | -0,57180417 | -1,7932113 | 0,04320775  | 0,303 | 2095    | tags=39%, list=9%, signal=43%  |
|                | 4     | GO_VESICLE_LUMEN                      | 96   | -0,5390744  | -1,9249805 | 0,04230829  | 0,11  | 3943    | tags=40%, list=16%, signal=47% |
| platelet alpha | 12    | GO_PLATELET_ALPHA_GRANULE_LUMEN       | 53   | -0,5812689  | -1,8022362 | 0,047483716 | 0,303 | 3943    | tags=42%, list=16%, signal=49% |
| granules       | 13    | GO_PLATELET_ALPHA_GRANULE             | 72   | -0,4918661  | -1,7938668 | 0,045219976 | 0,303 | 3943    | tags=39%, list=16%, signal=46% |
| gap junction,  | 8     | GO_GAP_JUNCTION                       | 28   | -0,61969125 | -1,8709532 | 0,041193422 | 0,222 | 3631    | tags=39%, list=15%, signal=46% |
| connexion      | 11    | GO_CONNEXON_COMPLEX                   | 18   | -0,6039202  | -1,8056597 | 0,046751294 | 0,285 | 3631    | tags=39%, list=15%, signal=46% |

#### Supplementary Table 1: Gene set enrichment analysis (GSEA)

**a**: GSEA report of the most enriched Gene Ontology CC gene sets (FDR < 0.05) in macrophages, ranked by their normalized enrichment score and grouped by function/compartment. **b**: GSEA report of the most enriched Gene Ontology CC gene sets (FDR < 0.05) in fibroblasts, ranked by their normalized enrichment score and grouped by function/compartment.

#### **Supplementary Table 2**

| Gene   | Name                                                  |
|--------|-------------------------------------------------------|
| Acaa1a | 3-ketoacyl-CoA thiolase A, peroxisomal                |
| Acaa1b | 3-ketoacyl-CoA thiolase B, peroxisomal                |
| Acaa2  | 3-ketoacyl-CoA thiolase, mitochondrial                |
| Asah1  | Acid ceramidase                                       |
| Asah2  | Neutral ceramidase                                    |
| Chpt1  | Choline Phosphotransferase 1                          |
| Degs1  | Delta 4-Desaturase, Sphingolipid 1                    |
| Degs2  | Delta 4-Desaturase, Sphingolipid 2                    |
| Far1   | Fatty Acyl-CoA Reductase 1                            |
| Far2   | Fatty Acyl-CoA Reductase 2                            |
| Edft1  | Farnesyl-dinhosphate farnesyltransferase 1            |
| Edns   | farnesyl dinhosnhate synthase                         |
| Gape1  | Geranylaeranyl Dinhosnhate Synthase 1                 |
| Gk2    | Glycorol Kinaco 2                                     |
|        | Chycerol Kinggo 5                                     |
| Canat  |                                                       |
| Gnpat  | Giyceronephosphate O-Acyltransferase                  |
| Gpd1   | Glycerol-3-Phosphate Dehydrogenase 1                  |
| Gpd1I  | Glycerol-3-Phosphate Dehydrogenase 1 Like             |
| Gpd2   | Glycerol-3-Phosphate Dehydrogenase 2                  |
| Hmgcr  | 3-Hydroxy-3-Methylglutaryl-CoA Reductase              |
| Hmgcs1 | 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1             |
| Hmgcs2 | 3-Hydroxy-3-Methylglutaryl-CoA Synthase 2             |
| Idi1   | Isopentenvl-Diphosphate Delta Isomerase 1             |
| Idi2   | Isopentenvl-Diphosphate Delta Isomerase 2             |
| Kder   | 3-Ketodihvdrosnhingosine Reductase                    |
|        | Coramido Synthaso 2                                   |
|        | Ceramida Synthase 2                                   |
| Lasso  |                                                       |
| Lass4  | Ceramide Synthase 4                                   |
| Lass5  | Ceramide Synthase 5                                   |
| Lass6  | Ceramide Synthase 6                                   |
| M∨k    | Mevalonate Kinase                                     |
| Pcyt1a | Phosphate Cytidylyltransferase 1, Choline, Alpha      |
| Pcyt1b | Phosphate Cytidylyltransferase 1, Choline, Beta       |
| Pcyt2  | Ethanolamine-phosphate cytidylyltransferase           |
| Pemt   | Phosphatidylethanolamine N-Methyltransferase          |
| Pisd   | Phosphatidylserine Decarboxylase                      |
| Plcb1  | Phospholipase C Beta 1                                |
| Plcb2  | Phospholipase C Beta 2                                |
| Plcb3  | Phospholipase C Beta 3                                |
| Plcb4  | Phospholipase C Beta 4                                |
| Plcg1  | Phospholipase C Gamma 1                               |
| Plcg2  | Phospholipase C Gamma 2                               |
| Plcl1  | Phospholipase C Like 1 (Inactive)                     |
| Plcl2  | Phospholipase C Like 2                                |
| Pmvk   | Phosphomevalonate Kinase                              |
| Ptdss1 | Phosphatidylserine Synthase 1                         |
| Ptdss2 | Phosphatidvlserine Svnthase 2                         |
| Sams1  | Sphingomvelin Synthase 1                              |
| Same2  | Snhingomvelin Synthase 2                              |
| Sanl1  | Snhinaneina-1-Phoenhata Luaea 1                       |
| Sann1  | Sphingosing_1_Dhoenhata Dhoenhataaa 1                 |
| Sape2  | Sphingooine 1 Dheanhate Dheanhatee 2                  |
| Syppz  | Sphingomyalia Dhaanhadiaataraaa 4                     |
| Sinpan | Sphingomyelin Phosphoalesterase 1                     |
| Smpd2  | Sphingomyelin Phosphodiesterase 2                     |
| Smpd3  | Sphingomyelin Phosphodiesterase 3                     |
| Smpd4  | Sphingomyelin Phosphodiesterase 4                     |
| Sphk1  | Sphingosine Kinase 1                                  |
| Sphk2  | Sphingosine Kinase 2                                  |
| Sptlc1 | Serine Palmitoyltransferase Long Chain Base Subunit 1 |
| Sptlc2 | Serine Palmitoyltransferase Long Chain Base Subunit 2 |
| Sptlc3 | Serine Palmitoyltransferase Long Chain Base Subunit 3 |
| Sqle   | Squalene Epoxidase                                    |
| Tpi1   | Triosephosphate Isomerase 1                           |
| •      |                                                       |

#### Supplementary Table 2: Membrane-modulating proteins in macrophages vs fibroblasts

Membrane-modulating proteins from the families of sphingolipids (including gangliosides), cholesterol and phosphatidylcholine which were considered for simplified comparison of macrophages and fibroblasts.