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eMethods. Neural Network Details, Performance Evaluation, and Discussion 

 

 

Neural Network Details 

As shown in supplemental figure 1, We combined the traditional U-Net architecture with attention-gates1 to focus 

on target structures without additional supervision, which was achieved by combining contextual information 

from output of previous layers (coarser scales) and symmetric encoding layers.  

 

The model was trained with ADAM optimizer (learning rate 0.0005) using a batch size of 16 and 120 epochs. 50% 

dropout was implemented for preventing overfitting in both encoding and decoding layers2. We used a mixed loss 

function of weighted binary cross-entropy, mean absolute error (L1 loss), Dice score coefficient (DSC), and 

volume loss as described below in more detail. Since stroke lesions are only present in relatively a small fraction 

of all brain voxels, weighting was applied to balance the numbers of positive and negative voxels. The weights 

for positive and negative voxels were calculated based on the ratio of the positive and negative voxels of each 

training batch:  
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where N- and N+ represent the number of negative and positive voxels per batch, respectively. 
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p is the predicted probability. y is the ground truth value of that voxel (0 = not infarcted, 1 = infarcted). N is the 

total number of pixels. NTP, NFP, and NFN are the number of true positive, false positive, and false negative voxels, 

respectively. 

 

The loss function was then expressed as: 

 

Loss = Weighted binary cross entropy + L1 loss + 0.5×(1 – DSC) + 0.5×Volume loss 

 

The weight of 0.5 was given to DSC and volume loss to adjust them to a similar scale of the weighted binary cross 

entropy and L1 loss. 
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The implementation was based on Keras (version 2.2.2) with Tensorflow (version 1.10.0) backend. All tests 

were conducted on a workstation equipped with Quadro GV100 and Tesla V100-PCIE graphical processing 

units (Nvidia, Santa Clara, CA, USA).  

 

Five-fold cross-validation was performed. Patients were randomly divided into five sets. In each fold, the 5 sets 

were split by a ratio of 3:1:1, with 3 sets used for training, 1 for validation, and 1 for testing. The best model for 

each training fold was selected based on the best performance in the validation set. Then the evaluation of 

model prediction was performed on the test set. No test cases were part of the training or validation sets for any 

of the 5 folds in the cross-validation; i.e., the results are from 5 separate models trained independently with the 

training/validation sets for that fold. Each fold took approximately 7 hours to train. A prediction map can be 

generated in approximately 20 sec for each patient once the model was trained (inference). 

 

Performance Evaluation 

Area-under-curve (AUC) was calculated for the deep learning model by varying the output probability threshold 

for classifying a voxel as infarcted tissue. The AUC methodology influences the results greatly due to the 

overwhelming number of non-infarcted voxels in stroke patients. We adopted two common AUC calculation 

methods: to compare with Tmax and ADC segmentation, AUC was calculated for each case within the 

ipsilateral stroke hemisphere, except in one case, where there were bilateral strokes; To enable comparison with 

previous studies3, another formulation (AUC0) was calculated for the model4, which considered the prediction 

based on regions inside and outside the hypoperfused areas. Additionally, in patients with minimal and major 

reperfusion, we calculated an AUC for the clinical thresholding methods using Tmax and ADC. To calculate 

AUC in minimal reperfusion patients, the Tmax threshold was varied (4s, 6s, 8s, and 10s) with fixed 

segmentation of ADC < 620 x 10-6 mm2/s. To calculate AUC in major reperfusion patients, the ADC threshold 

was varied using the original ADC map.  

 

Discussion 

 

There have been a few prior studies that have tried to predict subacute stroke lesions from baseline data using 

machine learning or deep learning approaches3,5-7. Nielsen et al. trained a deep CNN model in 158 IV tPA treated 

patients to predict follow-up FLAIR lesions in a test set of 29 patients, reporting an AUC0 of 0.88±0.123, similar 

to our model’s AUC0 of 0.89 (IQR 0.83, 0.93). Another study, the Ischemic Stroke Lesion Segmentation (ISLES) 

2017 challenge6,8, centered around predicting 90-day FLAIR lesions based on acute imaging. The top performing 

team achieved a DSC of 0.33, reflecting the difficulty of the task.  Using a non-neural network approach, 

McKinley et al.5 trained two random forest classifiers on 15 cases with complete recanalization (TICI 3) and 10 

cases with permanent occlusion (TICI 0). They reported a DSC of 0.32±0.23 in cases with TICI grade of 1 and 2a 

and 0.34±0.22 in cases with TICI grade 2b and 3. Compared to these studies, our model had almost 2-fold higher 

DSC (0.53), likely related to the much larger number of patients available for training. 

  



©2020 Yu Y et al. JAMA Network Open. 
 

eFigure 1. The Block Diagram of The Attention-Gated U-Net Model and the 

Schematic of the Attention Gate 

 

 

Input images included 5 consecutive slices of diffusion-weighted imaging (b=1000), apparent diffusion coefficient and its 

thresholded mask with a threshold of less than 620×10−6 mm2/s, Tmax and its thresholded mask with a threshold of more than 6 

sec, mean transit time, cerebral blood flow, and cerebral blood volume maps. The number of channels is denoted on the top of 

the box. The skip connections allow detailed features to be maintained during training. In an attention gate, the output of previous 

layer (g) and the symmetric encoding layer (xl) undergo convolution (with 1-by-1 kernel), summation, and ReLU activation. Then 

another convolution with sigmoid activation is applied to the extract attention coefficient (a), which is then multiplied with the skip 

connection. 
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eFigure 2. Example of Cases With Low, Medium, and High Dice Score Coefficient 

 

 

 

Three example cases with low, medium, and high Dice score coefficient (DSC) are shown. The more the overlap between the 

predicted lesion (red line) and the true lesion (black line) is, the higher the DSC will be. DSC of around 0.50 is usually considered 

significant overlap for this task. We used this metric to describe not only the accuracy of the prediction in terms of size, but also 

to make sure it detects the correct location as well. 
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eFigure 3. The Correlation of Cubic-Rooted Volume Prediction From Model vs True Lesion 

Volume  

 

The black line represents the fitted linear function of all cases, and grey area represents 95% confidence interval. 
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eFigure 4. Comparison Between the Proposed Deep Learning Model, Tmax + ADC, 

and ADC Lesion Volume Prediction in Patients With Minimal, Partial, Major, and 

Unknown Reperfusion  

 

The deep learning model prediction is more stable across all subgroups with a mean volume difference closer to zero compared 

to the predictions of ADC and Tmax. The line inside the box represents median volume difference. The boundaries of boxes 

represent 25th and 75th percentile of volume difference. The error bar represents upper and lower 95% confidence intervals.  
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eFigure 5. Examples of Predictions From Model Compared With Thresholding 

Methods in Atypical Cases  
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A) Initial negative DWI: A male patient with baseline NIHSS of 8 and a negative baseline DWI who received IV tPA and 

thrombectomy at 8.8 hrs after onset, achieved TICI 2b recanalization and 24 hr reperfusion rate of 15%. However, the patient still 

had a significant lesion growth and the model fails to predict the infarct lesion. In this case, the Tmax+ADC method performed 

best. B) DWI reversal: A female patient with baseline NIHSS of 20 who underwent thrombectomy at 4 hrs after onset with TICI 

2b recanalization. In this case, the ADC thresholding method performed best, although it is possible that some of the regions with 

DWI reversal may represent infarcted tissue on later follow-up. C) A male patient with baseline NIHSS of 14, who underwent 

thrombectomy at 1.6 hrs and achieved TICI 3 recanalization and 24 hr reperfusion rate of 83%. Despite that, the patients still 

developed infarctions in cortical regions. The ADC model predicted no lesion, while the Tmax+ADC overpredicted the lesion by 

114 ml. The proposed model predicted an intermediate sized lesion and had the best performance in this case.  

  

Abbreviations: NIHSS = National Institute of Health Stroke Sclae, mRS = modified Rankin Scale, TICI = Thrombolysis in Cerebral 

Infarction, IV tPA = Intravenous tissue Plasminogen Activator, DWI = diffusion-weighted imaging. 
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