Aetiology, Risk Factors, and Biomarkers in Systemic Sclerosis with Interstitial

Lung Disease

Dinesh Khanna, Donald P. Tashkin, Christopher P. Denton, Elisabetta A. Renzoni,

Sujal R. Desai, and John Varga

ONLINE DATA SUPPLEMENT

Online Data Supplement

Table E1. Statistically Significant Associations Between SSc-ILD and HLA Alleles: Studies with Ssc-ILD Cohorts ≥ 100 Patients (E1). Adapted by permission from Nature: Springer Nature. *Eur J Hum Genet*. Genetic predictors of systemic sclerosis-associated interstitial lung disease: a review of recent literature. Stock CJW, Renzoni EA. COPYRIGHT (2018). This table is excluded from the Open Access license; permission must be obtained from Springer Nature for its reuse.

HLA region	Allele/Serotype	OR and <i>P</i> Value for SSc-ILD	Population	Cohort Size
DPB1	301	OR = 3.56 (1.27–10.73)*	Han Chinese	199/78 ⁺
		<i>P</i> = 0.0069		
	1301	OR = 2.25 (1.4–3.62) [‡]	Han Chinese	199/480 [§]
		$P = 3.3 \times 10^{-4}$		
DQB1	501	OR = 5.03 [‡]	Han Chinese	134/239 [§]
		$P = 6 \times 10^{-7}$		
DRB1	3	OR = 2.47 (1.35–4.52) [‡]	Han Chinese	295/458 [§]
		<i>P</i> = 0.0026		

Definition of abbreviations: HLA = human leukocyte antigen; ILD = interstitial lung disease; OR = odds

ratio; SSc = systemic sclerosis; SSc-ILD = systemic sclerosis-associated interstitial lung disease.

*Versus SSc-no ILD.

⁺SSc-ILD/SSc-no ILD.

[‡]Versus control.

[§]SSc-ILD/control.

Table E2. Statistically Significant Associations Between SSc-ILD and Non-HLA Genes: Studies with SSc-ILD Cohorts ≥ 100 Patients (E1). Adapted by permission from Nature: Springer Nature. *Eur J Hum Genet*. Genetic predictors of systemic sclerosis-associated interstitial lung disease: a review of recent literature. Stock CJW, Renzoni EA. COPYRIGHT (2018). This table is excluded from the Open Access licence; permission must be obtained from Springer Nature for its reuse.

			OR and P		
			Value for SSc-		
Gene	Polymorphism	Function	ILD	Population	Cohort Size
CD226	rs763361:T>A	-	OR = 1.27	French,	662/1642 [‡]
			(1.12–1.45)*	German,	
			$P = 2.98 \times 10^{-4}$	$Italian^{T}$	
	Haplotype rs763361:T>A,	Correlates with	OR = 1.27	Spanish,	729/3,966 [‡]
	rs34794968:C>A,	expression levels	(1.05–1.54)*	German,	
	rs727088:G>A	in		Dutch, Italian,	
		T cells	<i>P</i> = 0.032	Swedish,	
				British,	
				Norwegian †	
CTGF	rs918698:G>C	Alters ratio of	OR = 3.1	British	207/500 [‡]
		Sp1:Sp3 binding	(1.9–5.0)*		
		affecting			
		transcriptional	<i>P</i> =0.001		
		activity			
	rs6918698:G>C	See above	OR = 2.0	Japanese	188/269 [‡]
			(1.5–2.6)*		
			<i>P</i> = 0.001		

IRAKI	rs1059702:A>G/	Increased NFĸ-B	OR = 1.37	French, Italian,	604/2,217 [‡]
	rs1059703:G>A	activity	(1.16–1.62)*	$German^{\dagger}$	
	(in complete LD)				
			$P = 1.99 \times 10^{-4}$	(Female only)	
	rs1059702:A>G/	See above	OR = 1.30	Spanish,	461/2,043 [‡]
	rs1059703:G>A		(1.07–1.58)*	German,	
	(in complete LD)			Dutch, British ^{\dagger}	
			<i>P</i> = 8.46 x10 ⁻³	(Female only)	
	rs1059702:A>G/	See above	OR = 1.2	European	1,065/2,237 [¶]
	rs1059703:G>A		(1.05–1.37) [∥]	$descent^{\dagger}$	
	(in complete LD) [§]				
			<i>P</i> = 0.007		
IRF5	rs2004640:G>T	Results in	OR = 1.44	French	280/760 [‡]
		transcription of	(1.19–1.76)*		
		alternative exon			
		1			
	rs2004640:G>T	See above	OR = 1.38	Han Chinese	502/227 [‡]
			(1.1–1.75)*		
			<i>P</i> = 0.028		
	Haplotype	In LD with 5-bp	OR = 0.64	French	292/989 [‡]
	rs3757385:G>T –	indel which	(0.51–0.79)*		
	rs2004640:G>T –	increases SP1			
	rs10954213:G>A	binding			
	rs4728142:G>A	Associated with	Mean	American	914**
		lower expression	difference =	Caucasian	
			2.64		
			(0.43–4.84)		

(Linear

P = 0.019

analysis with

regression

FVC %

predicted)

	rs2004640:G>T§	See above	OR = 1.12	French,	1,682/2,806 [¶]
			(1.02−1.22) [∥]	European	
				Caucasian,	
			<i>P</i> = 0.014	Han Chinese †	
NLRP1	rs8182352:T>C	_	OR = 1.19	French,	674/1,587 [‡]
			(1.05–1.36)*	German,	
			<i>P</i> = 0.0065	Italian †	
STAT4	rs7574865:T>G	_	OR = 1.42	French	316/970 [‡]
			(1.16–1.73)*		
			<i>P</i> = 0.008		
	rs7574865:T>G	-	OR = 1.86	Han Chinese	237/534 [‡]
			(1.34–2.59)*		
			$P = 1.2 \times 10^{-4}$		
	rs7574865:T>G§	-	OR = 1.259	French,	640/842 [¶]
			(1.07–1.47)∥	Spanish, Han	
			<i>P</i> = 5.35 x 10 ⁻³	Chinese ⁺	
	rs10168266:C>T	-	OR = 1.73	Han Chinese	237/534 [‡]
			(1.24–2.41)		
			$P = 7.7 \times 10^{-4}$		
	rs3821236:G>A	_	OR = 1.54	Han Chinese	237/534 [‡]
			(1.07–2.22)*		
			<i>P</i> = 0.015		

Unreplicated studies with small –			European	439/399 [¶]
cohort sizes		OR = 1.45	descent	
ALOX5AP r	rs10507391:A>T	(1.17–1.79) [∥]		
	(NC_000013.11:	<i>P</i> = 0.0006		
	g_30737959A>T)			

Definition of abbreviations: ALOX5AP = arachidonate 5-lipoxygenase activating protein; bp = base pairs; CTGF = connective tissue growth factor; FVC = forced vital capacity; CD226 = cluster of differentiation 226; HLA = human leukocyte antigen; ILD = interstitial lung disease; IRAK1= Interleukin-1 receptor-associated kinase 1; IRF5 = interferon Regulatory Factor 5; LD, linkage disequilibrium; NFκβ = nuclear factor κβ; NLRP1 = NLR family pyrin domain containing 1; OR = odds ratio; SSc = systemic sclerosis; STAT4 = signal transducer and activator of transcription 4; SSc-ILD = systemic sclerosis-associated interstitial lung disease.

Corrected *P* values given where available. ORs are shown as OR (95% confidence interval), 517 where available.

*Versus control.

⁺Meta-analysis of the different populations 519 included.

[‡]SSc-ILD/control.

[§]Meta-analysis or previously published studies.

Versus SSc-no ILD.

[¶]SSc-ILD/SSc-no ILD.

**Total number of SSc patients 518, when SSc-ILD number not given.

Table E3. Levels of Serum Biomarkers in SSc-ILD: Comparison with Healthy Controls, Ssc Without ILD and IPF. Significant Differences Between StudyGroups Were Only Seen with Respect to KL-6, SP-D and MMP7 (the Kruskal–Wallis Test was Used to Assess for Differences Across the Four Groups) (E2).Data are presented as median (interquartile range). Reprinted with permission of Mattioli 1885: Kennedy B et al. Biomarkers to identify ILD and predict lungfunction decline in scleroderma lung disease or idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2015; 32: 228–236.

	Controls	SSc w/o ILD	SSc-ILD	IPF	P Value
KL-6 (ng/ml)	198 (52–360)	192 (0–525)	836 (431–1303)	633 (492–1,675)	0.0003*
SP-D (ng/ml)	137 (97–284)	169 (137–219)	398 (190–727)	542 (305–577)	0.0012 ⁺
MMP7 (ng/ml)	0 (0–0.06)	2.36 (1.2–5.1)	5.4 (2.6–7.25)	2.85 (1.5–3.6)	0.0009 [‡]
TGF-β (pg/ml)	7,251 (5,654–10,034)	2,986 (2,483–4,029)	3,743 (1,855–5,500)	2,388 (1,501–7,367)	0.07
CCL18 (ng/ml)	46.85 (34.6–153.1)	49.1 (43.65–65.05)	62.05 (52.3–137.4)	48.4 (36.8–90.5)	0.58
PDGF-AA (pg/ml)	1,011 (605–2,989)	437 (314.5–649)	554 (328–935)	405 (167.5–1,222)	0.057
TNF-α (pg/ml)	2.73 (2.18–3.39)	2.53 (2.43–3.21)	3.41 (2.24–10.06)	2.78 (1.9–5.3)	0.84
VEGF (pg/ml)	60.32 (23.3–209.6)	22.9 (11.88–29.28)	24.96 (20.5–33.46)	24.14 (11.45–37.28)	0.053
Thrombomodulin (ng/ml)	3.07 (1.84–4.45)	1.36 (1.1–2.57)	1.63 (1.05–3.07)	2.57 (1.72–6.2)	0.054
PAI-1 (ng/ml)	37.2 (26.7–61.35)	21.3 (9.15–41.95)	40.55 (21.55–56.5)	32.7 (15.75–56.2)	0.35
VCAM-1 (ng/ml)	467.5 (397.1–686.6)	700.1 (567–969.5)	706.1 (583.2–801.3)	753.7 (444.5–916.3)	0.12
ICAM-1 (ng/ml)	297.7 (206.5–742.7)	259.5 (210.4–361.8)	431.4 (325.3–504.80)	416 (289.7–569.1)	0.18

P-Selectin (ng/ml)	168.5 (91.35–224.6)	131.3 (110–137.3)	133.9 (115.4–167.1)	119.1 (100.9–170.3)	0.51
L-Selectin (ng/ml)	1,397 (914.3–1,878)	1,385 (1,032–1679)	1329 (818.1–1746)	1,203 (891.4–1,784)	0.9
CCL2 (pg/ml)	84.9 (78.3–121.1)	86.7 (43.85–121.7)	145.2 (118.8–189.5)	159.4 (103.7–180.3)	0.06

CCL = chemokine (C-C motif) ligand; ICAM-1 = Intercellular Adhesion Molecule 1; IL = interleukin; KL-6 = Krebs von den lugen-6; MMP = matrix metalloproteinase; Pal-1 = Plasminogen activator inhibitor-1; PDGF-AA = Platelet Derived Growth Factor AA; SP-A = surfactant protein A; TGF- β = Tumor growth factor beta; TNF- α = tumor necrosis factor alpha ; VCAM-1 = vascular cell adhesion molecule 1; VEGF = vascular endothelial growth factor

Feature of Comparison	SSC-ILD	IPF
Lung involvement	Lung fibrosis occurs in ~80% of patients	All patients develop characteristic
	with SSc, 25–30% of whom develop	progressive lung fibrosis (E4, E5)
	progressive ILD (E3).	
Pulmonary symptoms	Dyspnea on exertion, nonproductive	Dyspnea on exertion, non-productive cough
	cough and predominantly basal	and predominantly basal inspiratory
	inspiratory crackles on auscultation (E6,	crackles on auscultation (E6, E5)
	E7, E8)	
Extra-pulmonary	Multisystem characteristics of SSc (e.g.,	Digital clubbing (E6)
features	vasculopathy, Raynaud's phenomenon,	
	immune dysfunction, skin fibrosis,	
	gastro-esophageal reflux) (E3, E9, E10)	
Clinical course	Variable rate of progression (some	Progressive decline in lung function;
	patients show rapid, early decline;	spontaneous regression never occurs and
	disease course may be stabilized by	the disease is unlikely to respond to
	treatment with immunosuppressants;	immunosuppressant therapy; median
	spontaneous regression can occur	survival is 2–3 years (E6, E4)
	[albeit infrequently]); median survival is	
	5–8 years (E6, E11)	
Disease mechanisms	Repetitive endothelial/epithelial cell	Similar to SSc-ILD, fibroblast activation,
	injury leads to activation of innate and	proliferation and differentiation into
	adaptive immune system, recruitment	myofibroblasts culminates in excess
	and activation of fibroblasts, and	deposition of ECM (E18, E14). However,
	differentiation of fibroblasts to a	unlike SSc-ILD, mast cell density is increased
	myofibroblast phenotype, accumulation	versus healthy controls and no increases in
	of ECM and development of fibrosis (E7,	CD4+CD25+ regulatory T-cells or IL-22-
	E12–E14). Increased numbers of	

Table E4. Comparison of Clinical and Mechanistic Features of SSc-ILD and IPF

	CD4+CD25+ regulatory T-cells and IL-22-	producing T-helper cells are observed (E17,
	producing T-helper cells (E15, E16); mast	E19, E20).
	cell density similar to healthy controls	
	(E17).	
Autoimmune	Most patients are positive for	No clinically relevant levels of
characteristics	antinuclear antibodies and other specific	autoantibodies (E6)
	autoantibodies (E6).	
Radiographic features	NSIP pattern is typical, including ground-	UIP pattern with honeycombing; ground-
	glass opacities with areas of subpleural	glass opacities not seen (E6, E21).
	sparing, reticular markings and traction	
	bronchiectasis. UIP observed in a	
	minority of patients, with honeycombing	
	of lower prominence compared with IPF	
	(E6, E22).	

Definition of abbreviations: ECM, extracellular matrix; IL = interleukin; ILD = interstitial lung disease;

IPF = idiopathic pulmonary fibrosis; NSIP = nonspecific interstitial pneumonia; SSc = systemic

sclerosis; UIP = usual interstitial pneumonia.

References

- E1. Stock CJW, Renzoni EA. Genetic predictors of systemic sclerosis-associated interstitial lung disease: a review of recent literature. *Eur J Hum Genet* 2018;26:765–777.
- E2. Kennedy B, Branagan P, Moloney F, Haroon M, O'Connell OJ, O'Connor TM, *et al.* Biomarkers to identify ILD and predict lung function decline in scleroderma lung disease or idiopathic pulmonary fibrosis. *Sarcoidosis Vasc Diffuse Lung Dis* 2015;32:228–236.
- E3. Denton CP, Khanna D. Systemic sclerosis. Lancet 2017;390:1685–1699.
- E4. Sharif R. Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. *Am J Manag Care* 2017;23:S176–S182.
- E5. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, *et al*. Idiopathic pulmonary fibrosis. *Nat Rev Dis Primers* 2017;3:17074.
- E6. Herzog EL, Mathur A, Tager AM, Feghali-Bostwick C, Schneider F, Varga J. Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? *Arthritis Rheumatol* 2014;66:1967–1978.
- E7. Cappelli S, Bellando Randone S, Camiciottoli G, De Paulis A, Guiducci S, Matucci-Cerinic M.
 Interstitial lung disease in systemic sclerosis: where do we stand? *Eur Respir Rev* 2015;24:411–419.
- E8. Wells AU, Steen V, Valentini G. Pulmonary complications: one of the most challenging complications of systemic sclerosis. *Rheumatology (Oxford)* 2009;48:iii40–iii44.
- E9. Denton CP, Hughes M, Gak N, Vila J, Buch MH, Chakravarty K, *et al.*; BSR and BHPR Standards, Guidelines and Audit Working Group. BSR and BHPR guideline for the treatment of systemic sclerosis. *Rheumatology (Oxford)* 2016;55:1906–1910.
- E10. Khanna D, Tashkin DP, Denton CP, Lubell MW, Vazquez-Mateo C, Wax S. Ongoing clinical trials and treatment options for patients with systemic sclerosis-associated interstitial lung disease. *Rheumatology (Oxford)* 2019;58:567–579.

- E11. Kim HJ, Tashkin DP, Gjertson DW, Brown MS, Kleerup E, Chong S, *et al.* Transitions to different patterns of interstitial lung disease in scleroderma with and without treatment. *Ann Rheum Dis* 2016;75: 1367–1371.
- E12. Akter T, Silver RM, Bogatkevich GS. Recent advances in understanding the pathogenesis of scleroderma-interstitial lung disease. *Curr Rheumatol Rep* 2014;16:411.
- E13. Giacomelli R, Liakouli V, Berardicurti O, Ruscitti P, Di Benedetto P, Carubbi F, et al. Interstitial
 lung disease in systemic sclerosis: current and future treatment. *Rheumatol Int* 2017;37:853–
 863.
- E14. Usategui A, del Rey MJ, Pablos JL. Fibroblast abnormalities in the pathogenesis of systemic sclerosis. *Expert Rev Clin Immunol* 2011;7: 491–498.
- E15. Frantz C, Auffray C, Avouac J, Allanore Y. Regulatory T cells in systemic sclerosis. *Front Immunol* 2018;9:2356.
- E16. Truchetet ME, Brembilla NC, Montanari E, Allanore Y, Chizzolini C. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. *Arthritis Res Ther* 2011;13:R166.
- E17. Cha SI, Chang CS, Kim EK, Lee JW, Matthay MA, Golden JA, *et al*. Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis. *Histopathology* 2012;61:98–106.
- E18. Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. *Eur Respir Rev* 2015;24:102–114.
- E19. Hou Z, Ye Q, Qiu M, Hao Y, Han J, Zeng H. Increased activated regulatory T cells proportion correlate with the severity of idiopathic pulmonary fibrosis. *Respir Res* 2017;18:170.
- E20. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, *et al.* Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. *J Exp Med* 2010;207:535–552.
- E21. Song JW, Do KH, Kim MY, Jang SJ, Colby TV, Kim DS. Pathologic and radiologic differences between idiopathic and collagen vascular disease-related usual interstitial pneumonia. *Chest* 2009;136:23–30.

E22. Cavazza A, Rossi G, Carbonelli C, Spaggiari L, Paci M, Roggeri A. The role of histology in idiopathic pulmonary fibrosis: an update. *Respir Med* 2010;104:S11–S22.