Supplementary Materials:

PCR conditions and gel electrophoresis

Briefly, DNA was isolated and purified from *E. coli* using the alkaline lysis method [1,2] The PCR primers were chosen from published sequences (Table S1). For F18+ screening, we amplified a fragment of FedF adhesin (more conserved in all antigenic variants); for F4+ screening we amplified the major fimbrial subunit FaeG. The primers were selected in order to have similar melting temperatures which resulted in a product of different sizes that could easily be identified in agarose gel.

Table S1. Primer sequences used in the PCR system for identification of *E. coli*. The primers were designed and checked using Vector NTI software (Thermo Fisher Scientific).

	Primer sequences (5'-3')	Target gene	Size (bp)	Acc. Number	Melting Temperature (°C)
F4					
(K88)- F	TGGATGACTGGTGATTTCAATGGTTCGG TTAGTAATAAGTTATTGCTACGTTCAGCG	faeG	792	AY437806	68.7
F4					64.8
(K88)-					04.0
R					
F18-F F18-R	ATTCTAGTGCGAGTAGTGCTCAAGTC	fedF	150	DQ91428 6	66.3
	TTTTGCAATCGCAGGAACATAGATTGAA G		453		66.2

Each test was performed in a volume of 25 μ l containing the following PCR components: dNTP (200 μ M), PCR buffer, MgCl2 (2 mM), each primer set (10 pmol), 1,25U of pfu DNA polymerase (Promega), and DNA template (50 ng). The negative control consisted of 2 μ l of water instead of DNA.

PCR amplifications were performed in a thermal cycle (T100 Thermal cycler, BIORAD) under the following conditions: an initial DNA denaturation step at 95 °C for 2 min, followed by 30 cycles beginning with 1 min of denaturation at 95 °C, 1 min for primer annealing at 57 °C, and 2 min of extension at 72 °C. The final extension step was performed at 72 °C for 5 min. The amplified PCR products were analyzed by electrophoresis in agarose gel after staining with Nancy stain (Sigma Aldrich) and visualization in a UV transilluminator (Figure S1).

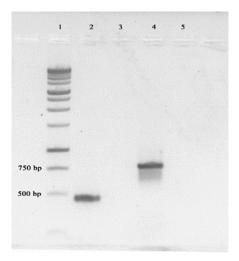
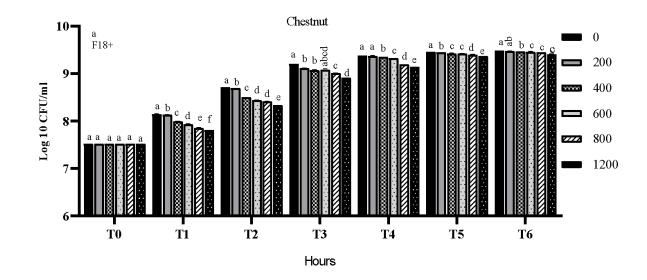
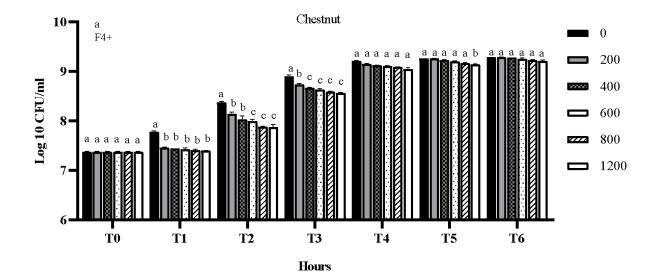
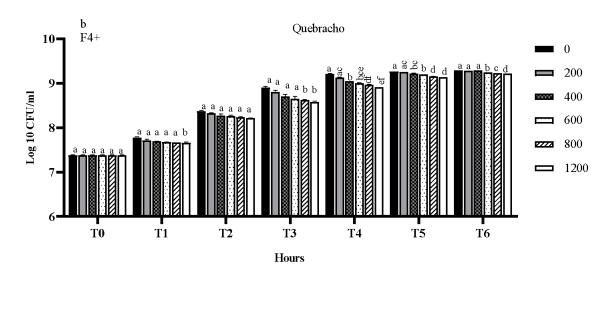
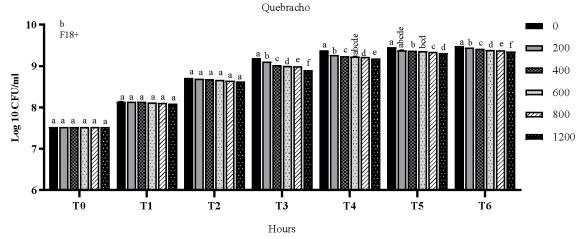






Figure 1. Gel electrophoresis of amplified PCR products.

Figure 2. Effect of 0–1200 μ g/mL of Ch (a) and Qu (b) tannins on *E. coli* F4+ and F18+ growth over time (T). Data are expressed as log10 CFU/mL lsmeans ± S.E.M. (n = 3). Different superscripts indicate significant differences at p<0.05 among different concentrations within the same time point.

References

- 1. Takaiwa, F. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment. *Bioengineered* **2013**, *4*, 136–139.
- 2. Sambrook, J. Russell Molecular Cloning: A Laboratory Manual, 3rd ed.; CSHL: New York, NY, USA, 2001.